go back

A Hierarchical System Integration Approach with Application to Visual Scene Exploration for Driver Assistance

Benjamin Dittes, Martin Heracles, Thomas Michalke, Robert Kastner, Alexander Gepperth, Jannik Fritsch, Christian Goerick, "A Hierarchical System Integration Approach with Application to Visual Scene Exploration for Driver Assistance", Proceedings of the 7th International Conference on Computer Vision Systems, Liége, Belgium, Octobre 13-15, 2009, pp. 255-264, 2009.

Abstract

A scene exploration which is quick and complete according to current task is the foundation for most higher scene processing. Many specialized approaches exist in the driver assistance domain (e.g. car recognition or lane marking detection), but we aim at an integrated system, combining several such techniques to achieve sufficient performance. In this work we present a novel approach to this integration problem. Algorithms are contained in hierarchically arranged layers with the main principle that the ordering is induced by the requirement that each layer depends only on the layers below. Thus, higher layers can be added to a running system (incremental composition) and shutdown or failure of higher layers leaves the system in an operational state, albeit with reduced functionality (graceful degradation). Assumptions, challenges and bene ts when applying this approach to practical systems are discussed. We demonstrate our approach on an integrated system performing visual scene exploration on real-world data from a prototype vehicle. System performance is evaluated on two scene exploration completeness measures and shown to gracefully degrade as several layers are removed and to fully recover as these layers are restarted while the system is running.



Download Bibtex file Download PDF

Search

Cookies preferences

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

Necessary

Necessary
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.