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Abstract. A scene exploration which is quick and complete according
to current task is the foundation for most higher scene processing. Many
specialized approaches exist in the driver assistance domain (e.g. car
recognition or lane marking detection), but we aim at an integrated sys-
tem, combining several such techniques to achieve sufficient performance.
In this work we present a novel approach to this integration problem. Al-
gorithms are contained in hierarchically arranged layers with the main
principle that the ordering is induced by the requirement that each layer
depends only on the layers below. Thus, higher layers can be added to
a running system (incremental composition) and shutdown or failure of
higher layers leaves the system in an operational state, albeit with re-
duced functionality (graceful degradation). Assumptions, challenges and
benefits when applying this approach to practical systems are discussed.
We demonstrate our approach on an integrated system performing visual
scene exploration on real-world data from a prototype vehicle. System
performance is evaluated on two scene exploration completeness mea-
sures and shown to gracefully degrade as several layers are removed and
to fully recover as these layers are restarted while the system is running.

Keywords: Visual scene exploration, System integration, Hierarchical
architecture, Driver assistance

1 Introduction

In real-world scenarios, artificial intelligence systems face an overwhelming abun-
dance of sensory data and high information density. One example is the domain
of driver assistance, where camera images and range finder measurements are
taken while driving on an inner-city road. Additionally, the amount of processing
power available is limited. To handle this abundant data with limited resources,
the system must select important positions in the input data space before launch-
ing a – usually computationally expensive – detailed analysis. Since our main



focus is on driver assistance systems analyzing camera images we call this process
visual scene exploration and the important positions ‘visual targets’.

Several approaches for general visual scene exploration exist, presenting both
algorithms (e.g. [1, 2]) and integrated systems (e.g. [3, 4]). However, the analysis
of the integration process performed to arrive at such systems is very rarely
done. It is much more common that specific systems are presented without a
discussion about the benefits or drawbacks of the chosen integration approach.
On the other hand, many existing vision systems are oriented strongly along the
underlying software architecture, most notably blackboard[5], agent-based[6] or
data-flow modeling[7].

Lömker et. al.[8] also see this problem of increasing system complexity and
react with the introduction of a technical software environment on top a modern
xml-based blackboard architecture[9]. Leibe et. al.[10] present a 3D scene analysis
system with a strong decomposition and explicit top-down communication, but
without formalizing it as a system integration approach.

In this work we will present a hierarchical system integration approach largely
independent of the used software platform (necessary assumptions are discussed).
It is based on the Systematica approach introduced in [11], a synthesis of the two
major contributions to cognitive system architecture so far, the subsumption[12]
and 3-tier[13] approaches. We go beyond this work by placing a strong restriction
on the dependence of layers as the main decomposition principle. Furthermore,
we go towards practical use with a generic mechanism to utilize top-down infor-
mation while keeping independence at design- and run-time and a discussion of
main design challenges when building practical systems.

We illustrate this approach on the problem of scene exploration in the driver
assistance domain. As an integration problem, this is interesting because it does
not simply require a sequence of processing steps producing a set of visual tar-
gets given the input data. Rather, there is a dualism between scene exploration
(i.e. detecting important visual targets) and subsequent scene analysis (i.e. rec-
ognizing, tracking or storing these targets): based on a set of visual targets,
the analysis of these targets may yield the necessity to tune parameters in the
scene exploration sub-system. This may include setting parameters in other al-
gorithms or directing the focus of the scene exploration to areas where important
objects are expected to appear. This reflux of data from scene analysis to scene
exploration is what we call top-down modulation and what makes system inte-
gration significantly more powerful, but also much more complex than sequential
composition.

In Sec. 2 we will present our hierarchical system integration approach. We will
then proceed to illustrate this integration process on the example of a concrete
system instance performing visual scene exploration on a prototype vehicle in
Sec. 3. An evaluation in Sec. 4 will show the behavior and positive qualities
of this implemented system and discuss that this is a result of the integration
approach. Discussion and outlook follow in Sec. 5.
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Fig. 1. The proposed hierarchical integration approach – Left: each layer Li

with internal processing runs in parallel and receives a sub-space Si of the sensor
data. It generates a representation Ri to be read by higher layers (solid lines), a motor
command/priority pair Mi, Pi sent to actuators and top-down information sent to lower
layers (dashed lines). Finally, it receives and integrates top-down information coming
from higher layers (encircled box). Right: For each kind of top-down information
received, the layer has to guarantee that it responds correctly but does not depend on
the data. This is achieved by the ‘top-down switch’: a hierarchical switching module
which chooses the valid top-down data from the highest layer and can fall back to a
default if no top-down data is received.

2 The incremental architecture approach

For the domain of large-scale artificial intelligence systems we see several re-
quirements an integrated system has to fulfill:

– The high processing load requires sub-systems to be distributed to multiple
processing units, thus they must be able to run asynchronously in parallel

– To allow collaboration of many researchers building the system, sub-systems
must have clear interfaces and should continue to work without modifications
when new sub-systems are added

– Operating in a real-world domain requires a high level of robustness to unex-
pected input and errors within the system, which is why sub-systems must be
able to continue to work even if some of the other sub-systems are removed
to save resources or fail

We propose an approach decomposing the integration problem into hierar-
chically arranged layers Li, i = 1..n. All layers run in parallel in an asynchronous
manner and each layer can receive any subset Si of available sensory data and
produce motor commands Mi together with motor command priorities Pi to
allow selecting among competing commands. Communication between layers is
done through explicit channels: every layer Li can access data and events pro-
duced in any lower layer Lj,j<i through bottom-up channels and transmit data
or events to any lower layer Lk,k<i through top-down channels. Fig. 1(left) illus-
trates this schematically.

In addition to this structural definition, the main design principle defining
our approach is the requirement that every layer Li depends only on the presence



of lower layers Lj,j<i to function. As a result, a layer Li may perform any or all
of the following functions:

1. Receive a subspace Si of all sensory data S
2. Access bottom-up information provided by lower layers
3. Synchronize to events emitted by lower layers
4. Provide a set of internal states, called a ‘representation‘ Ri, to higher layers
5. Produce motor commands and priorities Mi, Pi and send to system actuators
6. Produce top-down information and send to lower layers
7. Allow modulation of the processing for items 4, 5 and 6 by top-down infor-

mation received from higher layers

As a result, a layer can depend on and synchronize to lower layers, as well as
use all their representations for it’s own processing. Every layer is added to
the system as an extension: relying on all existing lower layers, but making no
assumptions on anything that might be added later, except providing ‘ports’
where top-down modulation may be received. Since the arrival of this top-down
information cannot be relied on by any layer, a layer must not depend on the
presence or arrival of information from higher layers or wait for events from
higher layers. In the following we will discuss the main challenges in composing
systems in such a way:

Influence of Layer Ordering. The key to success or failure of a sys-
tem integrated with this approach is the hierarchical composition of layers. The
most obvious constraint imposed by the approach is the unidirectional depen-
dence of layers, but sometimes this is not enough to arrive at a unique ordering.
Communication between two layers can occasionally be formulated either as top-
down modulation or as access to bottom-up representations, making the ordering
seemingly arbitrary. However, there are additional guides: Firstly, the ordering
defines the final behavior of each of the possible running sub-systems L1..i,i=2..n

consisting of only a sub-set of layers. Thus, if one layer Lj is necessary for the
first intended sub-system to function while another layer Lk would add addi-
tional functionality to the next-higher sub-system, Lj must be sorted under Lk.
Secondly, it is often prudent to operate lower layers at higher frequencies than
higher layers in order to avoid too fast top-down modulation leading to oscilla-
tion. Finally, the failure of one layer may cause the failure of all higher layers,
therefore more reliable layers should be sorted lower.

On System Design Methodology In addition to finding a compromise
between the constraints on the layer ordering every system design is the results
of a more of less suited problem decomposition. For most problems, including
the example chosen in Sec. 3, decomposition is a problem in itself as there is no
“natural” way to achieve it. We believe no system integration approach can, by
itself, solve this problem in an automated methodology and problem decompo-
sition will remain an art that requires as much skill as theoretical background.
Therefore, this contribution focuses on the formalization and implementation
of integrated systems given a decomposition and cannot provide a complete
methodology. However, experience has shown that a formalization helps both in



the process of designing by suggesting crucial questions to be answered as well
as in the communication about the design by providing a shared language.

Handling of Top-down Information. To provide the demanded indepen-
dence of layers, the most important requirement is that layers must be able to
react to top-down information without depending on it. More precisely, there are
three cases to be considered: first, a layer must be able to function if the layer(s)
sending the top-down information are not present yet; second, it must use the
received top-down information immediately after higher layers appear; third, it
must return to default operation if higher layers are removed or fail. This is
non-trivial since processing is asynchronous and the number of layers sending
top-down information may not even be known while designing the current layer.
We propose to solve all three by the help of a ‘top-down switch’ (Fig. 1(right)), a
component which receives all top-down data of one type, analyzes their temporal
behavior and returns the valid top-down data from the highest layer, or a default
if none is valid. Validity is computed by comparing the input’s time tdata to the
typical temporal behavior µ∆t, σ∆t of data coming from the sending layer. Given
a scaling factor ν, data is considered valid if tnow − tdata ≤ µ∆t + νσ∆t. This is
similar to the ‘suppression’ mechanism introduced in the subsumption architec-
ture[12], but it i) allows a clear definition of the top-down interface, ii) accepts
an arbitrary number of top-down inputs and iii) adds a temporal adaptation
mechanism.

We see three beneficial system-properties resulting from this approach:

– Incremental Composition. Higher layers can be added at run-time, thus pro-
viding top-down modulation or additional motor commands and increasing
system performance without restarting the whole system. The new top-down
channels usually lead to the formation of new internal control loops; it is the
responsibility of the added layers to prevent any negative effects, e.g. pro-
viding top-down modulation at a lower rate to avoid oscillation.

– Graceful Degradation. The removal of a layer only affects the layers on top of
it, all lower layers will continue to function and still provide an acceptable,
albeit lower level of performance.

– Reduction of Design Space. Extending an existing integrated system by
adding a new layer does not require modification of existing layers: new
layers passively consume existing sensor inputs and representations of lower
layers and they provide top-down modulation to (existing) ports of the ex-
isting top-down switching modules.

3 The visual processing hierarchy

To approach the problem of scene exploration we applied the above principles
to an integrated system which employs several state-of-the-art methods. The
system is designed with four layers (see Fig. 2): it combines saliency computation,
drive path computation, visual target selection including inhibition of return and
a parameterization with task-relevant modulatory data.
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Fig. 2. Overview of the implemented hierarchical system – The figure shows
the layers composing the implemented scene exploration system. It is composed of four
layers performing saliency computation, visual target selection, drive path computation
and task execution which communicate through the depicted bottom-up (solid) and
top-down (dashed) channels. Top-down switching is done in three places: once for
switching between top-down and default weights for the saliency, once for switching
between top-down and default spatial prior for visual target selection and a third time
for selecting the task id, although this switch is (currently) not receiving any top-down
input. Since layer L2 produces motor output, the first functional sub-system is L1,2,
followed by L1,2,3 and L1,2,3,4 (dotted boxes).

Saliency Computation. For the lowest layer L1 we use an algorithm[14]
which evaluates a multitude of image features (DoG, Gabor, RGBY, motion, . . . ).
It is tuned to real-world scenarios and allows setting weights to specify selectiv-
ity. The result is an image-sized, float-valued saliency map using either default
weights, or the ones received by top-down modulation – therefore this is the first
point in the system where top-down switching is needed.

Visual Target Selection. The core task of the scene exploration system
is the selection of a visual target, performed in L2. Here, we use the saliency
map produced by L1, multiply it with a top-down spatial prior and select the
maximum as the current visual target. A top-down switching is needed to reliably
integrate this top-down spatial prior under the constraint of loose coupling to
the higher layers producing it. To get multiple visual targets per image, we apply
an inhibition of return (IOR)[15] by subtracting a Gaussian at the last selected
position from an IOR map. This map is provided to higher layers in case they
need to focus processing on regions that have not been covered yet.

Drive Path Computation. In the car domain, one very helpful spatial
prior can be extracted from the drive path in front of the car. The drive path
itself is computed in L3 by using segmentation on a number of sensors based on
training regions in the camera images, combined with a temporal integration[4].
The result is a binary road map used to produce a spatial prior with a broad
range of excitation around the edges of the drive path and very little on the path



a) b) c) d)

Fig. 3. Ground-truth information and internal processing results – The im-
ages show input and internal states of the system when processing one image with
all layers running. a) Input left camera image with added ground truth information
about target objects (turquoise boxes); b) saliency map computed in L1 with top-down
weights from L4 (for b,c,d: darker = higher activation); c) drive path spatial prior com-
puted in L3, with artificially highlighted drive path; d) integrated attention map with
added resulting visual targets (red), computed in L2, and ground-truth (green: hit,
gray: not hit).

or in the sky. This spatial prior allows to focus on obstacles and the side of the
road and is provided to L2 as top-down modulation.

Task-relevant Parameterization. In addition to improving the spatial se-
lectivity, a suitable set of top-down weights can greatly increase the performance
of the saliency computation. Layer L4 therefore receives a task identifier as a
top-down input and gives a matching weight set (e.g. for cars) to L1.

The described system has three points of top-down switching: one for receiv-
ing the top-down weights in L1, one for receiving the spatial prior in L2, one
for settings the current task in L4. All switches use the mechanism described in
Sec. 2, without any specialization needed. All layers provide a default in case
that no top-down information is received. In this manner, each layer is designed,
implemented and started without caring about the subsequent higher layers.

4 Evaluation

The system described in Sec. 3 was implemented on a software infrastructure
for data-flow oriented real-world capable processing systems[16]. The platform
provides the main prerequisites for utilizing the benefits of the presented ap-
proach: Firstly, it allows sub-systems provided by researchers to be ‘wrapped’
into opaque larger modules with clear interfaces. Secondly, it allows these mod-
ules to be started or stopped in separate system processes, potentially on different
machines, while providing robust data communication between these processes.

On this basis, each of the layers seen in Fig. 2 has been implemented as a
module running in a separate process, communicating with the others through
the software infrastructure. The final system is capable of running on-board a
prototype vehicle but experiments for this work where done on a data stream
(recorded on that vehicle) with additional hand-labeled ground-truth informa-



tion. We chose a 30s data stream, recorded at 10Hz during a typical drive on
an inner-city road, with typical lighting conditions and occasionally missing lane
markings, on a cloudy day, but without rain (see Fig. 3 for samples).

When on-board the vehicle, the system is distributed on three 2-GHz dual-
core computers, one performing sensor acquisition and preprocessing (disparity,
pitch correction etc.), one with layers L1, L2 and L4 and one with layer L3.
The most time-consuming layers are L1 and L3, both are currently running
at 3Hz, which is enough to achieve interactive processing when driving with
slow velocity. Layer L2 is running with 12Hz to extract four visual targets per
processed image4, layer L4 sends top-down information with a rate of 1Hz.

To evaluate system performance, we annotated the stream with ground-truth
information, which can be seen in Fig. 3: for each image I(t), all task-relevant
objects oi(t) ⊂ I(t) where marked. The labeling is consecutive, i.e. the identifier i
is used in all previous and following images for the same object. Thus, an object’s
appearance, movement through the stream and disappearance can be tracked.
The scene exploration system produces a set of visual targets v(t) = {vj(t), j =
1..n, vj(t) ∈ I(t)}, in our experiments n = 4. We can define several related
values: the first time an object i was marked ti0 = arg mint oi(t) 6= {}, the first
time an object i was hit ti1 = arg mint ∃jvj(t) ∈ oi(t), the number of marked
objects Nobj(t) = |{i, oi(t) 6= {}}| and the number of hit objects Nhit(t) =
|{i,∃jvj(t) ∈ oi(t)}|.

We now define two measures: the ‘time-to-hit’ indicates for each object oi
how much time passed between the appearance of the object and the first time
it was hit: q1(o, v) =

〈
ti1 − ti0

〉
i
. The ‘local hitrate’ indicates for each image

how many of all objects in this image where hit by visual targets: q2(o, v) =〈
Nhit(t)/Nobj(t)

〉
t
. Both together give a good impression of how early and how

reliably the scene exploration is focusing on the important objects in the scene.
We evaluate both scene exploration performance measures once for the three

functional sub-systems (see Fig. 2) and, most importantly, a fourth time for a
full system run with induced shutdowns in layers L3 and L4 and subsequent
restarts. The results of our experiments can be seen in Fig. 4 and caption.

5 Discussion and Outlook

In this work we introduced a novel, generic, hierarchical system integration ap-
proach for practical application in large-scale artificial intelligence systems. The
system instance we used to show the benefits of the approach represents a func-
tional, extendable effort towards visual scene exploration, incorporating several
complex, state-of-the-art algorithms running asynchronously and communicating
through explicit bottom-up and top-down channels. At the same time, it exhibits
the described system properties: each layer implements one specific algorithm,
depending only on lower layers; layers can fail or be deactivated at run-time

4 Although L2 is running faster than L1 it cannot introduce oscillations because there
are no top-down channels from L2 to L1.



Fig. 4. Performance during several system runs with varying active layers –
Top Left: Each of the target objects is plotted over time (colored bars). Black dia-
monds indicate when an object was hit by a visual target, in this case with subsystem
L1,2. The first measure (time-to-hit) can be seen in this visualization as the difference
between the appearance of an object and the first hit, the second measure (local hi-
trate) evaluates how many of the objects at one specific point in time where hit. Top
Right: The figure compares the time-to-hit performance over the entire data stream
for the three possible functional subsystems. Bottom: The figure shows the local hi-
trate recorded over four separate runs of the system. The first three (dashed lines)
where done with stable (sub-)sets of the full system: lowest L1,2, middle L1,2,3, highest
L1,2,3,4. Since the local hitrate shows considerable jitter in raw data, measurements
have been averaged over 7s. The fourth run (solid red line) demonstrates the system’s
ability for graceful degradation and recovery. The system is started with all layers, af-
ter 12.5s L3 and L4 are removed and restarted after 19s and 23s, respectively. As can
be seen, the system performance drops to the performance of the remaining functional
sub-system L1,2 after the removal (asymptotically, due to the floating average) and
recovers as higher layers are restarted.

without taking down the full system; layers can be started and restarted at run-
time leading to a full recovery of system performance (see Fig. 4 and caption).
In order to utilize this robustness, we plan to add a ‘quality of service’ controller
which autonomously shuts down layers to save resources and restart failed layers.

The introduced performance measures are specific to the visual scene explo-
ration domain, resulting from the absence of any measures allowing to compare



system integration strategies in general. For the same reason we cannot quantify
the reduction of design or integration time following this approach, a comparison
of identical teams using different approaches seems unrealistic.

It is also clear that no system integration approach will be able to give a
generic solution to problem decomposition, which is why we discussed several
design challenges in Sec. 2. However, we strongly believe that a discussion about
the principles governing the construction of cognitive systems will enable learning
from the success or failure of previous systems. It will thereby allow construct-
ing more complex systems, or even allow a more straightforward comparison of
existing systems as it is currently possible.
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