

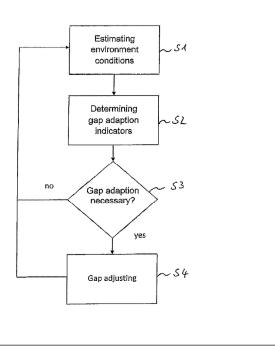
PERSONALIZATION & HMI

ON THE NEXT PAGES YOU CAN SEE SUMMARIES OF THE FOLLOWING PATENTS IN THE RESEARCH FIELD PERSONALIZATION & HMI:

EP3081447 INTELLIGENT GAP SETTING FOR ADAPTIVE CRUISE CONTROL

EP2865576 COMPOSITE CONFIDENCE ESTIMATION FOR PREDICTIVE

DRIVER ASSISTANT SYSTEMS


Intelligent gap setting for adaptive cruise control EP3081447 B1

Current assignees		IPC - International classification			
HONDA RESEARCH INSTITUTE	EUROPE*	B60R-021/0132	B60W-030/16*	G08G-001/16	
Inventors		CPC - Cooperativ	ve classification		
REBHAN SVEN	_	B60W-030/16*	B60W-2530/14	B60W-2540/04	
KLEINEHAGENBROCK MARCU	S	B60W-2540/215	B60W-2550/00	B60W-2550/10	
Filing date:	Granting Date:	B60W-2550/12	B60W-2550/14	B60W-2550/146	
2015-04-14	2020-07-01	B60W-2550/148	B60W-2550/302	B60W-2550/308	
		B60W-2550/408	B60W-2552/00	B60W-2552/30	
		B60W-2552/40	B60W-2554/00	B60W-2554/801	
		B60W-2554/804	B60W-2555/00	B60W-2555/20	
		B60W-2556/65	B60W-2750/308	B60W-2754/30	

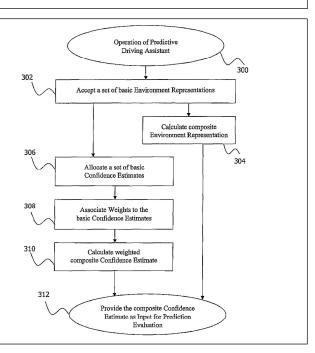
<u>Family</u>	<u>amily</u>
JP6812109 B2 JP2016199252 A	P6812109 B2
EP3081447 B1 US20160304092 A1	P3081447 B1
US9969393 B2 EP3081447 A1	S9969393 B2

(EP3081447)

The present invention relates to a method for assisting a driver in driving a vehicle, in which sensor data are produced by at least one sensor (2, 3) physically sensing the environment of a host vehicle (E) and/or by obtaining data conveying information about the environment of a host vehicle (E), an object (A) in a path of the host vehicle (E) is detected based on the sensor data, a distance between the host vehicle (E) and the detected object (A) is controlled based on a preset gap (t GAP), environmental conditions of the host vehicle (E) are estimated (S1) based on the sensor data, gap adaption indicators associated to the estimated environmental conditions are determined (S2), wherein each of the gap adaption indicators indicates an extension or a reduction of the preset gap (t GAP) and the preset gap (t GAP) is adjusted (S4) based on the gap adaption indicators.

Composite confidence estimation for predictive driver assistant systems EP2865576 B1

Current assignees IPC - International classification HONDA RESEARCH INSTITUTE EUROPE* B60R-021/0132 B60W-030/08 B60W-030/14 B60W-030/18 B60W-040/04 B60W-050/00* Inventors G01S-013/93 G06K-009/00 G06K-009/62 SCHMÜDDERICH JENS G06N-005/04 G08G-001/16* Filing date: **Granting Date:** 2013-10-22 2018-07-04 **CPC - Cooperative classification** B60W-030/08 B60W-030/14 B60W-030/16 B60W-030/18/163 B60W-040/04 B60W-050/00/97* B60W-2050/0022 B60W-2550/20 B60W-2554/00 B60W-2556/20 G06K-009/00/805 G06K-009/62/92 G06N-005/04 PCL - US patent classification PCLO: 701093000*


Family			
JP6544908	B2	EP2865576	A 1
EP2865576	B1	JP2015082324	Α
US9308919	B2	US20150112571	A1

PCLX:

701001000

(EP2865576)

The invention relates to a driving assistance system (100) including a prediction subsystem (110) in a vehicle. According to a method aspect of the invention, the method comprises the steps of accepting a set of basic environment representations (120); allocating a set of basic confidence estimates (122); associating weights to the basic confidence estimates (122); calculating (128) a weighted composite confidence estimate for a composite environment representation; and providing the weighted composite confidence estimate as input for an evaluation of a prediction (130, 132) based on the composite environment representation.

