
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Scheduling Jobs Involving Humans with few
Interaction Rounds for Learning Human
Availabilities

Johannes Varga, Guenther Raidl, Elina Rönnberg,
Tobias Rodemann

2024

Preprint:

Copyright Elsevier 2024. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Scheduling Jobs Using Queries to Interactively Learn
Human Availability Times

Johannes Vargaa,∗, Günther R. Raidla, Elina Rönnbergb, Tobias Rodemannc

aInstitute of Logic and Computation, TU Wien, 1040, Vienna, Austria
bDepartment of Mathematics, Linköping University, 581 83, Linköping, Sweden

cHonda Research Institute Europe, 63073, Offenbach, Germany

Abstract

The solution to a job scheduling problem that involves humans as well some

other shared resource has to consider the humans’ availability times. For prac-

tical acceptance of a scheduling tool, it is crucial that the interaction with the

humans is kept simple and to a minimum. It is rarely practical to ask users to

fully specify their availability times or to let them enumerate all possible start-

ing times for their jobs. In the scenario we are considering, users initially only

propose a single starting time for each of their jobs and a feasible and optimized

schedule shall then be found within a small number of interaction rounds. In

each such interaction round, our scheduling approach may propose each user a

small number of alternative time intervals for scheduling the user’s jobs, and

then the user may accept or reject these. To make the best out of these limited

interaction possibilities, we propose an approach that utilizes integer linear pro-

gramming and an exact and computationally efficient probability calculation for

the users’ availabilities assuming two different stochastic models. In this way,

educated proposals of alternative time intervals for performing the jobs are de-

termined based on the computed availability probabilities and the improvements

these time intervals would enable. The approach is experimentally evaluated on

a variety of artificial benchmark scenarios, and different variants are compared

∗Corresponding author
Email addresses: jvarga@ac.tuwien.ac.at (Johannes Varga), raidl@ac.tuwien.ac.at

(Günther R. Raidl), elina.ronnberg@liu.se (Elina Rönnberg),
tobias.rodemann@honda-ri.de (Tobias Rodemann)

Preprint submitted to Elsevier April 3, 2024

with each other and to diverse baselines. Results show that an initial schedule

can usually be quickly improved over few interaction rounds even when assum-

ing a quite simple stochastic model, and the final schedule may come close to

the solution of the full-knowledge case despite the strongly limited interaction.

Keywords: Job scheduling, human machine interaction, integer linear

programming, active learning

1. Introduction

We consider a class of job scheduling problems in which human users, e.g.,

the personnel of a company, is involved as a bottleneck resource. Jobs of these

users have to be scheduled interactively in a way that is perceived by the humans

as simple, stress-free, and with low cognitive effort, while at the same time a cost

function has to be minimized. In the simplest, and from the users’ perspective

most convenient case, each user just suggests one starting time for each of their

jobs. However, the jobs also require further shared resources, therefore this

directly obtained schedule will rarely be feasible or cost-efficient. Ideally, we

would know all about the times in which each user is available to perform their

jobs. In this case we would be able to directly and optimally solve the scheduling

problem without any further interaction. Requesting such complete availability

information from the users is, however, in most practical scenarios impossible

or far too troublesome. We therefore start with single starting time suggestions

for the jobs from the respective users and collect more information on the users’

availabilities in a small number of simple interaction rounds, which enhance

the flexibility for the scheduling and help to find better schedules. In each

such round, the scheduling approach is allowed to propose each user a small

number of alternative time intervals for scheduling their jobs. The users are

then supposed to indicate their acceptance or rejection of these time intervals

in dependence of their availabilities. Hereby, we explicitly avoid that users need

to specify larger amounts of additional availability intervals on their own. The

insights gathered are used to improve the schedule from the previous round.

2

The main challenge we address in this work is to come up in each interaction

round with meaningful queries for further time intervals to perform jobs in.

These queries are presented to the users and should

(a) have a reasonable chance to be accepted and

(b) allow the optimization to obtain a better schedule.

Very large time intervals, for example, may improve the schedule the most due

to the large gain of flexibility, but they will most likely be rejected by the

users and cannot be considered meaningful. To consider (a), the likelihood

that users accept queried time intervals in some reasonable way, we need to

exploit at least some stochastic assumptions on the users’ unknown availabilities.

Ideally, we would have detailed user-specific stochastic models available, for

example derived from historic availability data. Here, we first assume that such

information is not known and instead build upon just a simple stochastic model,

where the probability that the user is available in a timestep only depends on

the availability in the previous timestep. For comparison purposes, we then also

consider a more advanced stochastic model, which actually reflects the way our

benchmark scenarios are generated.

The scheduling problem introduced in this paper will be called the Interactive

Job Scheduling Problem (IJSP). It is inspired by an industrial setting where a

company owns a few expensive motor test stands and employees use them to

measure different characteristics of motors. We anticipate that this problem

setting can be generalised to a class of problems where availability of employees

and some resource of time-varying cost is needed. In the IJSP we assume that

each job is associated with and requires one specific user and one of a set of

available machines. On each machine, only one job can be performed at any time

in a non-preemptive manner. As planning horizon we consider several days and

time is discretized. Jobs have individual but machine-independent durations.

Scheduling a job induces costs, for example for used electricity, and we consider

these costs to be time-dependent. For example, when electricity is needed in

a substantial way and bought on the spot market, (expected) electricity costs

3

may change significantly over time. To avoid having to deal with infeasible

schedules, we allow that jobs remain unscheduled at additional penalty costs.

The objective is to find a feasible schedule of minimum total cost.

The overall scenario can also be seen as an online optimization problem,

because important instance data only is revealed over time, but also as a kind

of active learning, as the solution approach queries the users to learn more infor-

mation, which is further exploited in the optimization. Our main contributions

are

(a) to propose this general interactive scheduling setting and to narrow it down

specifically to the IJSP for making concrete computational investigations

on,

(b) an exact and computationally efficient calculation of the probabilities for

users to accept potentially queried time intervals based on the already known

availability information from the users and the assumption that the avail-

ability probability in a timestep only depends on the availability of the

previous timestep,

(c) a respective probability calculation for a more advanced stochastic model

reflecting the way our benchmark scenarios are created, and

(d) to propose a heuristic solution approach for the IJSP that utilizes these

probability calculations.

In an experimental evaluation, this solution approach is compared to a greedy

baseline approach as well as to solving the full-knowledge case. Results show

that already with a very moderate amount of interaction and the assumptions

of the simpler model, much better schedules can be obtained than with just the

original user input. Moreover, the probability-based selection of time intervals

to propose the users is clearly superior to the greedy method, and ultimately,

schedules may be obtained that come close to those of solving the full-knowledge

case.

A preliminary version of this work has been published as conference paper

[18]. The current article extends this in several ways. Entirely new is the consid-

4

eration of the advanced stochastic model, which assumes that a user is available

in up to two time intervals per day, both with known distributions for their

start time and duration. The comparison of the two different methods for cal-

culating probabilities within our approach shows that the more advanced model

leads to better results, although the simpler model still performs surprisingly

well and is more generally applicable. Moreover, we considerably extended the

experimental evaluation. In particular we now also

(a) vary the number of users while at the same time fixing the number of jobs,

(b) examine the convergence behavior of our approaches over a higher number

of interaction rounds,

(c) consider different user-communication configurations by varying the amount

of interaction done each round and requiring users to initially specify addi-

tional alternative starting times for each of their jobs, and

(d) evaluate on instances, where the user availabilities are derived from real-

world data.

The next section puts our work in relation to other work from the literature.

Section 3 formalizes our IJSP and introduces the ILP used as optimization core.

Section 4 presents our solution approaches: a greedy baseline method and the

advanced heuristic that makes use of estimated acceptance probabilities for time

interval suggestions. The calculation of acceptance probabilities is subsequently

detailed in Section 5 based on the simpler model and in Section 6 based on

the more advanced model. Section 7 shows experimental results, and Section 8

concludes this work.

2. Related Work

The core of this problem, if neglecting the users, can be described in the com-

mon three-field notation for scheduling problems [7] as Q||TEC. The objective

is to minimize Total Energy Costs (TEC). Usually, uniform machines, which are

indicated by Q, differ in their speed and therefore job processing times between

any two machines differ by a constant factor. In our problem, job processing

5

times are machine independent, still energy costs are uniformly machine depen-

dent and thus we consider the machines to be uniform. The similar problem

Q||Cmax,TEC, again with machine independent processing times and machine

dependent energy costs, additionally takes the makespan into account for the

objective and has been considered in the literature. Solving approaches for it

include applying a solver to a Mixed Integer Linear Program (MILP) [19, 2],

a problem specific heuristic and a genetic algorithm [19], as well as a greedy

heuristic and local search [2]. Also similar is the scheduling problem R||TEC

where jobs have in general different processing times on different machines. For

this problem, Ding et al. [6] proposed a MILP and a Dantzig-Wolfe decomposi-

tion. The MILP formulation was further improved by Cheng et al. [5] and by

Saberi-Aliabad et al. [13].

The overall scenario can be seen as a Markov-decision process. User avail-

abilities are only partially known and revealed over time based on the algo-

rithm’s actions. The algorithm’s current knowledge about user availabilities is

the state, the query is the action and the cost reduction after user replies is

the reward. Markov-decision processes serve as underlying environment in rein-

forcement learning, which has been used in numerous works to solve scheduling

problems. Kayhan and Yildiz [10] review 80 papers on solving scheduling prob-

lems via reinforcement learning, published between 1995 and 2020, and identify

characteristics such as the learning algorithm, the problem type and whether

the system is modelled as single- or as multi-agent. Zhang et al. [20] used rein-

forcement learning to solve another parallel machine scheduling problem. More

recently, Monaci et al. [12] solved the job shop scheduling problem using deep

reinforcement learning, Uzunoglu et al. [16] incorporated supervised learning

to solve a scheduling problem with batching, and Varga et al. [17] introduced

a Benders decomposition framework for scheduling problems in which the ad-

dition of cuts is effectively guided by a machine learning model. Note that

these approaches apply supervised learning and reinforcement learning to learn

a model that is part of the optimization algorithm and thus they cannot be used

for our scenario.

6

In interactive optimization approaches, most works only consider a single

user who guides the optimization process. For instance, Saha et al. [14] develop

approaches based on evolutionary algorithms that cooperate with human design-

ers to find aesthetic, aerodynamic, and structurally efficient designs for automo-

tives. Furthermore, Aghaei-Pour et al. [1] consider a multiobjective optimization

problem where the human interactively specifies preferences on the solution, and

those preferences are considered within an evolutionary algorithm. Interactive

optimization with multiple users is less common. For instance, Jatschka et al. [9]

consider a MILP-based cooperative optimization approach that interacts with

many users to learn an objective function for distributing service points in mo-

bility applications. As optimization core they solve a MILP. In contrast to our

problem setting they do not distinguish between different users and only learn

about the collective preferences of all users.

Active learning on the availability times of the users has already been done

in the domain of calendar scheduling. There, a calendar scheduling agent as-

sists the user in arranging meetings with others and to do so it learns the user’s

preferences over time. Existing approaches use decision trees [11], the weighted-

majority algorithm or the Winnow algorithm [3] for the learning task. In par-

ticular they learn to suggest a duration, location, day-of-the-week and time for

a meeting, given the event type and the attendees. Since these approaches fun-

damentally rely on the event type and attendees, and do not consider a cost

function, they cannot be applied in our setting without substantial modifica-

tions.

3. Interactive Job Scheduling Problem

The IJSP is formally introduced as follows. Let the planning period be

given by tmax-day days, each with tmax uniform timesteps, and let T = {t |

t = (tday, ttime), tday = 1, . . . , tmax-day, ttime = 1, . . . , tmax} be a set of pairs

where each pair refers to a specific timestep at a specific day. To refer to a time

interval within a day and the corresponding set of timesteps, we use the notation

7

[t1, t2] = {(tday1 , ttime
1), . . . , (tday2 , ttime

2)} for t1, t2 ∈ T | tday1 = tday2 , ttime
1 ≤ ttime

2 ,

and adding a scalar ∆ to a tuple t ∈ T is defined as t+∆ = (tday, ttime +∆).

Denote the set of users by U and let the set of jobs of user u ∈ U be Ju.

Let each job j ∈ Ju have a duration dj ∈ {1, . . . , tmax} and use the notation

Tj [t] = [t, t+dj − 1] to refer to the subset of timesteps where job j is performed

if started at timestep t. Furthermore, the candidate starting times of job j ∈ J

are restricted to the set T job
j =

⋃tmax-day

tday=1 {(tday, 1), . . . , (tday, tmax − dj + 1)},

since a job has to finish on the same day it started. Denote the set of all jobs

by J =
⋃

u∈U Ju, and let n = |J |. To perform a job, two resources are needed:

the user associated with the job and a machine. Denote the set of machines by

M .

Using machine i ∈ M in timestep t ∈ T induces a time-dependent cost

cit ≥ 0, e.g., for electricity depending on expected spot market prices. For a job

to be feasibly scheduled, it needs to be given non-preemptive access to a machine

and its user must have time for the complete duration of the job. If a job j ∈ J

cannot be feasibly scheduled, this induces a cost qj ≥ 0, e.g., for over-time or

extra personnel. We assume that the cost for leaving a job unscheduled is always

higher than the highest cost of scheduling it, i.e., qj ≥ dj maxi∈M, t∈T cit, j ∈ J .

The dynamic and interactive aspect of our problem is represented by T =

(Tj)j∈J where Tj ⊆ T job
j are the timesteps in which job j may start in when

considering the respective user’s currently known availabilities. More details on

T are addressed later.

Assuming for now T is given and fixed, we aim at finding a feasible schedule

of minimum cost. The problem is strongly NP-hard and cannot be approxi-

mated, as it is a generalization of the basic STOUC, introduced by Chen and

Zhang [4], which is also NP-hard and cannot be approximated. We model the

IJSP with the following ILP, in which the binary decision variables xjit indicate

if job j ∈ J is scheduled on machine i ∈ M to start with timestep t ∈ Tj , or not.

ILP(T) min
∑
j∈J

∑
i∈M

∑
t∈Tj

∑
t′∈Tj [t]

cit′xjit +
∑
j∈J

qj

1−
∑
i∈M

∑
t∈Tj

xjit

 (1)

8

s.t.
∑
i∈M

∑
t∈Tj

xjit ≤ 1 j ∈ J (2)

∑
j∈J

∑
t∈Tj |t′∈Tj [t]

xjit ≤ 1 i ∈ M, t′ ∈ T (3)

∑
j∈Ju

∑
i∈M

∑
t∈Tj |t′∈Tj [t]

xjit ≤ 1 u ∈ U, t′ ∈ T (4)

xjit ∈ {0, 1} j ∈ J, i ∈ M, t ∈ Tj (5)

The first and second term of the objective function (1) correspond to the

total cost for machine usage and unscheduled jobs, respectively. Constraints (2)

ensure that each job is scheduled at most once, constraints (3) limit the number

of scheduled jobs per machine and timestep to one, and constraints (4) limit the

number of jobs per user and timestep to one.

As indicated, this model can be solved for different sets T that reflect the

user availability information in the current stage of the decision-making. As

an important characteristic of the problem is that the user availability is not

assumed to be fully known, we introduce the following notation for the currently

available information. Let T avail
u ⊆ T be a subset of timesteps where user u ∈ U

has confirmed to be available. Feasible start times for each job j ∈ Ju can then

be derived as T feas
j = {t ∈ T job

j | Tj [t] ⊆ T avail
u }. Further, let T infeas

j ⊆ T refer

to time steps where job j ∈ J is not allowed to start since the user is known to

be unavailable in at least one time step in Tj [t], t ∈ T infeas
j .

Based on these confirmed availabilities and unavailabilities, it is possible

to solve the model ILP(T) for two extreme cases. For T = (T feas
j)j∈J , only

the timesteps that the respective users have so far confirmed to be available are

included, and thus the solution to ILP((T feas
j)j∈J) is feasible for the IJSP and in

general provides a pessimistic bound. For T = (T job
j \ T infeas

j)j∈J , all timesteps

except those where the users are already known to be not available are included,

and the solution to ILP((T job
j \ T infeas

j)j∈J) provides an optimistic bound; but

the corresponding schedule may not be feasible with respect to user availability.

The interactive aspect of the problem is that users can be queried concerning

their availabilities. A query is represented by a pair (u, [t, t′]) specifying a user

u ∈ U and a time interval from t ∈ T to t′ ∈ T . If the user is available in the

9

full interval of the query, this information is directly included in the sets T avail
u

and T feas
j . If the user is unavailable in at least one timestep of the interval, the

interval is rejected and included in the set Ireju . In such update, Ireju is made

sure not to contain any interval that is a superinterval of another interval, as

such superintervals are redundant. The interaction with the users is made in

a number of rounds, and before each new round an updated ILP(T) can be

solved. Let the number of rounds be B ∈ N>0, and let the allowed number of

queries in each round be b ∈ N>0. In each round, one user may receive multiple

queries, i.e., suggestions for alternative starting times for their jobs. The choice

of queries to make in a round is critical for the outcome of the scheduling, and

our strategy for this is described in the next section.

4. Solving Approaches

The challenge in each round is to find a set of queries that are likely to be

accepted and reduce the objective value as much as possible if accepted. We

consider only queries that are reasonable in the following sense. They concern

the scheduling of jobs outside the users’ already known availabilities, and we

do not want to have more than one query for a user for the same day. Denote

with T query
j = T job

j \ T infeas
j \ T feas

j all starting times of job j that would re-

quire a confirmed user query. Most beneficial queries—if accepted—can then be

determined by solving the model ILP((T query
j ∪ T feas

j)j∈J) with the additional

constraints∑
j∈J

∑
i∈M

∑
t∈T

query
j

xjit ≤ b (6)

∑
j∈Ju

∑
i∈M

∑
t̄∈T

query
j |t̄day=tday

xjit̄ ≤ 1 u ∈ U, tday ∈ {1, . . . , tmax-day} (7)

where the former limits the total number of user queries to b and the latter

prevents multiple queries for the same user on the same day. Having obtained

a solution x, each value of one of a variable xjit for u ∈ U , j ∈ Ju, i ∈ M and

t ∈ T job
j \ T infeas

j \ T feas
j results in a query [t, t + dj − 1] for user u. We refer

to this approach to determine user queries by Greedy. In particular, Greedy

selects those queries that improve the objective value the most, if accepted.

10

Query candidates

Compute probabilities

Filter unprobable

Determine b most promising (ILP)

Users

Update availability knowledge

Update schedule (ILP)

0.8 0.2 0.9 0.7 0.9 0.7 0.1

yes no yes

Figure 1: Visualization of the solution approach for a single round.

This approach can possibly be improved by assuming that the user avail-

abilities behave according to some model that yields an acceptance probability

for each query. To exploit such probabilities, we remove the starting times

from T query
j whose associated queries have probabilities below a given thresh-

old 0 ≤ plim ≤ 1, i.e., which we do not consider promising. Queries are again

obtained by solving ILP((T query
j ∪ T feas

j)j∈J) with constraints (6) and (7), but

now with these reduced sets T query
j . As model for the acceptance probabilities,

the next section proposes a rather generic one based on the assumption that

the availability probability of a user only depends on the availability in the

previous timestep. This can also be seen as a two-state Markov process, and

consequently, we refer to this model-based solution approach by Markov(plim).

Later, in Section 6, we will further consider a more specialized model for the

probability calculation, which corresponds to the actual way our benchmark

scenarios were randomly generated. We will refer to this as Advanced(plim).

The whole procedure in each round is shown in Figure 1. First the set

of possible queries is determined and for each of these query candidates the

acceptance probability of the user is estimated. Only queries with estimated

probability above the threshold plim are considered further and an ILP is used

11

(a)

0start

1

ρ01 ρ10

ρ00

ρ11 (b)

00 01

11

02

12

ρ00

ρ 0
1

ρ00

ρ 0
1

ρ
10

ρ11

0tmax

1tmax

0tmax+1

1tmax+1

ρ00

ρ01

ρ
10

ρ11

Figure 2: (a) Two-state Markov process and (b) corresponding unrolled state graph.

to select the b most promising ones, in the sense that they improve the objective

value most if accepted. The corresponding user either accepts or rejects each

of these queries and this feedback is used to update the knowledge about the

users’ availabilities and to compute an improved schedule based on the gained

freedom.

5. Probability Calculation for the Two-State Markov Process

Consider a single user u ∈ U and a single day tday ∈ {1, . . . , tmax-day}.

For better readability we refer to the timesteps of this day in the following by

Ttday = {1, . . . , tmax}. Assume that the average duration of the periods when a

user is available, and the average duration of the unavailable-periods are known.

When we want to exploit just this minimal information, it is natural to model

a user’s availabilities by a simple two-state Markov process. The two states

of this process are 0 and 1, representing that the user either is unavailable in

the current timestep or available, respectively. Moreover, let us introduce the

additional artificial timesteps 0 and tmax + 1 before the start of the day and

after the end of the day. In both of these timesteps, the user is not available

and therefore the corresponding state is 0. Proceeding from one timestep to

the next, we associate probabilities ρ00, ρ01, ρ10, and ρ11 for staying in state

0, transitioning from 0 to 1, transitioning from 1 to 0, and staying in state 1,

respectively. Naturally, ρ00 = 1−ρ01 and ρ11 = 1−ρ10 must hold. This Markov

process is depicted in Figure 2a. The transition probabilities are computed based

on the fact that the expected number of steps the Markov process stays in state

1 is 1/ρ10 and 1/ρ01 for state 0. In this section we only consider one user, and

for the sake of simplicity we omit the index regarding this user.

12

Given the current set of known availability times T avail and the set of so far

rejected time intervals Irej, we now want to determine the probability that the

user is available in some given time interval [τ, τ ′], 1 ≤ τ ≤ τ ′ ≤ tmax. For this

purpose we unroll the Markov process into a state graph over all timesteps from

0 to tmax + 1 as follows and illustrated in Figure 2b.

As the user is supposed to be not available outside of Ttday , the initial state

at the beginning of the day is represented by the single node 00. Then, we

have nodes 0t and 1t for each timestep t ∈ Ttday , indicating the availability

or non-availability of the user in timestep t. We also add node 0tmax+1 and

for now 1tmax+1 to allow a correct modeling of the transition to the time after

the considered time horizon by the two-state Markov process. All nodes of

two successive timesteps are connected with arcs corresponding to the state

transitions of the Markov process, and they are weighted with the respective

transition probabilities ρ00, ρ01, ρ10, and ρ11.

Ignoring known user availabilities T avail and rejected time intervals Irej for

now, this state graph has been constructed in such a way that each path from

node 00 to either node 0tmax+1 or 1tmax+1, which we call terminal nodes, corre-

sponds to exactly one outcome of the Markov process over tmax + 1 timesteps,

and each possible outcome of the Markov process has an individual correspond-

ing path. We refer by the probability of a path to the product of the path’s

arc weights, and with the probability of a set of paths to the sum of the paths’

probabilities. The probability of all paths from node 00 to any of the terminal

nodes is then one as this covers all possible outcomes of the Markov process.

Next, we consider the already known availability times T avail of the user by

removing all nodes 0t for T avail with their incident arcs. This effectively reduces

the set of possible paths, and thus represented Markov process outcomes, to

those where state 1 is achieved in all timesteps from T avail. Moreover, we also

remove node 1tmax+1 with its ingoing arcs in order to model that the user is

unavailable after the last actual timestep tmax.

To modify the graph w.r.t. the intervals in which the user is known to be

available was straightforward since all timesteps of such intervals must have

13

state 1. A time interval rejected by the user requires more care since it implies

only that for at least one timestep in the interval – but not necessary all – the

Markov process is in state 0. Only a rejected time interval [t, t] ∈ Irej of length

one can thus be handled directly by removing node 1t with its incident arcs as

the Markov process has to be in state 0 in this timestep. For a longer rejected

interval [t1, t2] ∈ Irej we ensure that only paths are kept in the graph where

the Markov process achieves state 0 at least once within this interval. More

specifically, observe that if the Markov process is in timestep t ∈ [t1, t2] and

state 0 has not been obtained in timesteps [t1, t] yet, then there has to follow

at least one timestep t′ ∈ [t + 1, t2] in which state 0 is achieved. To model

this aspect, we add further nodes 1t2t for t ∈ [t1, t2 − 1], [t1, t2] ∈ Irej to our

graph. Former arcs (0t, 1t+1) and (1t, 1t+1), t ∈ Ttday ∪ {0}, are now replaced

by arcs (0t, 1
t2
t+1) and (1t, 1

t2
t+1), respectively if there is a rejected time interval

[t1, t2] ∈ Irej starting in the next timestep t1 = t + 1 and ending in timestep

t2. Note that there can be at most one interval in [t1, t2] ∈ Irej that starts at

timestep t1 since Irej has been guaranteed not to contain a proper subinterval

of [t1, t2]. Each new node 1t2t further has an outgoing arc to node 0t+1 if this

node still exists, corresponding to the transition to state 0. Moreover, there is

an outgoing arc from each node 1t2t to node 1t2t+1 as long as t + 1 < t2 for the

case of staying in state 1. Due to the absence of an arc from node 1t2t2−1 to some

successor node in which state 1 is kept, it is effectively enforced that state 0 is

reached at least once within the rejected time interval [t1, t2]. Remaining nodes

without ingoing arcs except 00 and their outgoing arcs are pruned as they do

not play an active further role. An example of such a final state graph is shown

in Figure 3.

Now, we want to utilize this graph to derive the probability that the con-

sidered user is available in a given time interval [τ, τ ′]. The key observation to

do this efficiently is that each path from node 00 to a node v passes through

exactly one predecessor of v. Therefore the total probability ppath00,v
of all paths

from 00 to v, denoted by Paths(00, v), can be computed recursively as

14

00 01

131

132

142

03

143

04

14

05ρ00 ρ00 ρ00

ρ 01
ρ 01

ρ01
ρ10

ρ
10

ρ10 ρ10

ρ11 ρ11

Figure 3: The state graph for tmax = 4, T avail = {2}, and Ireju = {(1, 3), (2, 4)}.

ppath00,v
=

∑
P∈Paths(00,v)

∏
(u,u′)∈P

ρ(u, u′)

=
∑

u∈N−(v)

∑
P∈Paths(00,u)

 ∏
(u,u′)∈P

ρ(u, u′)

 · ρ(u, v) =
∑

u∈N−(v)

ppath00,u
ρ(u, v), (8)

where P denotes one specific 00–v path represented by the corresponding set

of arcs and N−(v) is the set of predecessors of node v. Denoting the set of

successors of node v by N+(v), the probabilities ppathv,0tmax+1
of all paths from a

node v to node 0tmax+1 can be correspondingly computed recursively by

ppathv,0tmax+1
=

∑
w∈N+(v)

ppathw,0tmax+1
ρ(v, w). (9)

We are now interested in all those paths from 00 to 0tmax+1 that stay for

the timesteps τ to τ ′ in state 1 nodes, indicating the availability of the user.

Each of these paths is composed of a path from 00 to 1t2τ , a path P from 1t2τ

to 1t2τ ′ that only uses state 1 nodes, and a path from 1t2τ ′ to 0tmax+1 for some

t2 ≥ τ ′ + 1. As a special case the middle segment P can also start in 1τ and

then it either ends in 1τ ′ if no rejected interval starts within [τ, τ ′] or otherwise

in 1t2τ ′ for an appropriate t2 ≥ τ ′ + 1. There are only a few possibilities for the

middle segment P and the probability of all paths that stay in state 1 nodes for

the timesteps from τ to τ ′ can be computed with a sum over these possibilities.

For us, the conditional probability in respect to all paths in the graph, i.e., those

respecting T avail and Irej and ending in 0tmax+1, is of main interest, which is

pavail([τ, τ ′] | T avail, Irej, 0tmax+1) =

∑
P∈1-Paths(τ,τ ′) p

path
00,Pτ

· ρτ
′−τ

11 · ppathPτ′ ,0tmax+1

ppath0,tmax+1

, (10)

where the sum is taken over all middle segments 1-Paths(τ, τ ′), and Pτ and Pτ ′

are the first and last nodes of a middle segment P , respectively. The denomi-

15

nator is the probability of all paths from 00 to 0tmax+1, and the nominator the

probability of only those paths that stay in state 1 nodes in timesteps τ to τ ′.

Time complexity. The unrolled state graph, considering rejected time intervals,

can have for each timestep τ a 0-state 0τ , a 1-state 1τ and 1-states 1t2τ with t2

being the final timestep of each rejected time interval containing timestep τ , i.e.,

t2 ∈ Îrejτ = {t2 ∈ T | ∃[t1, t2] ∈ Irej, t1 ≤ τ ≤ t2}. Let nrej,max = maxτ∈T |Îrejτ |

be the maximum number of rejected time intervals containing the same time

step τ . As the timesteps range from 0 to tmax + 1, the graph has at most

(nrej,max+2)(tmax+2) nodes and since no node can have more than two outgoing

arcs, the number of arcs is limited by 2(nrej,max + 2)(tmax + 2). Computing

ppath is performed O(|U |tmax-day) times and its time complexity is linear in the

number of nodes and arcs and therefore in O(nrej,maxtmax). The number of

1-Paths in (10) is limited by the number of nodes in timestep τ , since each

1-node can only have one succeeding 1-node. Therefore computing pavail([τ, τ ′] |

T avail, Irej, 0tmax+1) takes time O(nrej,max) and is performed for each user, each

day and each way to fit an interval of job length into the time horizon, in other

words for O(|U |tmax-daytmax maxj∈J dj) queries in each round. This results in an

overall time complexity of O(|U |tmax-daytmaxnrej,max maxj∈J dj) for computing

the probabilities of all queries in one round.

6. Probability Calculation for the Advanced Model

The two-state Markov process is a quite general but crude simplification

of the users’ behavior. To evaluate the impact of this simplification and to

demonstrate how the approach can be extended to a more realistic scenario,

we now consider a more advanced model. In fact, the benchmark instances we

will use in the computational experiments were also generated according to this

model.

Users are assumed to have up to two independent availability intervals each

day, each happening with probability q ∈ [0, 1]. The starting time and duration

of each interval i ∈ {1, 2} are assumed to be distributed according to some

16

0beforestart

1tstart

0no 0after

1− ρ01(t)− ρno(t)

1− ρ10(t, t− tstart + 1)

1 1

ρno(t)

ρ01(t) ρ10(t, t− tstart + 1)

Figure 4: Markov chain that models the random creation of an interval using given distribu-
tions for starting time and duration.

(discrete) distributions with probability mass functions f start
i and fdur

i , and

cumulative distribution functions F start
i and F dur

i , respectively. For more details

on the distribution functions we use in our experimental evaluation, we refer to

Section 7.1.

We derive a Markov chain to model this behavior and use the same ideas as

in the previous section to calculate probabilities for queries to be accepted. A

single availability interval can be represented by the (time-dependent) Markov

chain shown in Fig. 4. Here, 1tstart represents multiple states, one for each

timestep tstart in which the interval may start. In timestep 0, the Markov chain

starts in node 0before. It then transitions with probability 1 − q to state 0no,

corresponding to the case that there is no availability interval, and consequently

no 1-node will be reached. This is represented by

ρno(t) =

1− q if t = 0

0 otherwise.
(11)

Else, each timestep t, 0before transitions into state 1t+1 with probability

ρ01(t) =

q · f start(1) if t = 0

fstart(t)
1−F start(t−1) otherwise,

(12)

which represents the beginning of the availability interval realizing the distri-

bution F start. Note that in the second case the probability is taken under the

condition that the chain stayed in state 0before until timestep t. From state

17

1tstart , the chain transitions into state 0after, which corresponds to ending the

availability interval, with probabilities

ρ10(t, t
dur) =

1 if t = tmax

fdur(tdur)
1−Fdur(tdur−1)

otherwise,
(13)

where tdur = t− tstart + 1.

Let G1 = (V1, E1, ρ1) be the state graph for the first interval and G2 =

(V2, E2, ρ2) be the corresponding one for the second interval. The combined

state graph, which represents the union of both intervals, is the direct product

G1×G2 = (V1×V2, E12, ρ12) [8, Chapter I.5], where each pair of arcs (v1, w1) ∈

E1 and (v2, w2) ∈ E2 results in one arc of E12 with weight ρ1(v1, w1) ·ρ2(v2, w2).

The user is considered to be available in a node (v1, v2) ∈ G1×G2, or equivalently

(v1, v2) is a 1-node, iff at least one of v1 and v2 is a 1-node. All other nodes are

0-nodes.

The former knowledge about the user, T avail and Irej, respectively, is con-

sidered in a similar way as in the previous section. First the product graph

is unrolled, replicating each state in each timestep, with a single 0-node 00

for timestep 0 and a single 0-node 0tmax+1 for timestep tmax + 1. Then in

the timesteps t ∈ T avail, in which the user is available, all 0-nodes are re-

moved. Intervals in Irej are taken into account in a similar way as discussed

in the previous section. In particular, for each 1-node v and each interval end

t2 ∈ T : [t1, t2] ∈ Irej, we add a node vt2 . Arcs (u, v) with u being a node

of timestep t are replaced with arcs (u, vt2), if t1 = t + 1 for some interval

[t1, t2] ∈ Irej that starts in t1 and ends in t2. For each outgoing arc from a node

v to a 0-node w we add to each node vt2 an outgoing arc to node w. Similarly,

we add an outgoing arc to node wt2 from each node vt2 for each outgoing arc

from a node v to a 1-node w, but only if t < t2 − 1, where t is the timestep of

node v. Finally we recursively prune all nodes with no incoming or no outgoing

arcs except for 00 and 0tmax+1.

To get the probability that the user accepts an interval [τ, τ ′], we again use

ppath from (8) and (9), computed for the constructed graph. As 1-states can have

18

multiple 1-state successors, we cannot use Eq. (10). Instead, for the nominator,

we repeat the computation of ppath00,v
from (8), but ignore 0-nodes in the interval

[τ, τ ′]. The denominator is kept the same. To speed up the process, we start

from the precomputed values ppath00,v
for each node v of timestep τ , only make the

computations up to the nodes of timestep τ ′, account for the remaining parts

of the paths by multiplying the so far computed values with ppathv′,0tmax+1
for each

node v′ of timestep τ ′, and finally take the sum over those products.

Time complexity. The state graph in Figure 4 has up to 3+tmax, and its product

graph up to (3 + tmax)2 nodes. To consider Irej, at most nrej,max · (3 + tmax)2

nodes are added for each timestep, where nrej,max = maxτ∈T |{t2 ∈ T | ∃[t1, t2] ∈

Irej, t1 ≤ τ ≤ t2}| is again the maximal number of overlapping rejected time

intervals. Therefore the graph has O(nrej,max · (tmax)3) nodes and computing

ppath has the same time complexity O(nrej,max · (tmax)3), following the same

argumentation as in the previous section. Computing the acceptance probability

of a single query [τ, τ ′] takes time O((τ ′ − τ)nrej,max) and therefore the overall

time complexity for computing the probabilities of all queries in one round is

O(|U |tmax-day(tmax)3nrej,max(maxj∈J dj)
2).

7. Experimental Evaluation

We implemented the approaches in Julia 1.9, using the MILP solver Gurobi

10.0 (https://www.gurobi.com) and the package JuMP as interface to Gurobi.

As real world instances were not available to us we created artificial benchmark

instances and used them to compare the approaches with each other. Each test

run was performed on a single core of an AMD EPYC 7402 and Gurobi was

given a timelimit of 15 minutes for each ILP, which led to final gaps below 1%

for 99.85% of the ILPs and final gaps below 7% for the remaining 0.15%.

7.1. Instance Generation

We consider a time horizon of tmax = 5 days, each starting at 6am and

ending at 10pm, with a time granularity of 15 minutes per timestep. Random

time intervals are determined by a function rand_interval(µstart, σstart, µdur,

19

https://www.gurobi.com

σdur) that first draws a random value from a normal distribution with mean

µstart and standard deviation σstart and rounds it to the closest timestep in T ,

which is then the start of the time interval. The duration of the interval is

then determined by drawing another random value from a normal distribution

with mean µdur and standard deviation σdur, rounding it to the closest positive

integer. Should the interval exceed tmax, it is capped at this last timestep of

our time horizon. This generation process results in discrete probability mass

functions f start and fdur by condensing the probability of the ranges that lead

to the rounded and capped values into points, and those functions are used for

the calculation described in Section 6.

Each user u ∈ U is assumed to be available for a set of timesteps T avail∗
u .

This set is determined independently for each day as follows. With a probability

of 90%, the user is assumed to be available in rand_interval(9am, 1h, 4h, 1h)

and, again with a probability of 90%, the user is assumed to be available in

rand_interval(1pm, 1h, 5h, 1h). If the two intervals overlap the union is taken.

For each job j ∈ Ju of user u ∈ U , the duration dj is chosen uniformly at

random from 30min to 4h. Moreover, a starting time tj that allows the complete

job to be scheduled within T avail∗
u is selected uniformly at random. The initially

provided set of availabilities for user u ∈ U is then T avail
u =

⋃
j∈Ju

Tj [tj].

We generated 30 instances for m = 1, . . . , 5 machines with either 24 or 48

jobs per machine, i.e., n ∈ {24m, 48m}, and made them available online1. When

considering the generated user availabilities, each machine can thus execute

about 30 jobs on average, and for n = 24m usually it is possible to schedule all

jobs, while for n = 48m this is not the case. We study different cases where

each user has 2, 4 and 6 jobs. This results in either 4m, 6m, 8m, 12m, or 24m

users for an instance. We allow |U | user queries in each round, for a total of five

rounds.

Costs for machine usage are based on real-world spot market prices ckWh
t for

electricity in Germany for week 26 in 2022 taken from https://energy-charts.info.

1https://www.ac.tuwien.ac.at/research/problem-instances/#ijsp

20

https://energy-charts.info/charts/price_spot_market/chart.htm?l=en&c=DE&interval=week&legendItems=000010000000&week=26
https://www.ac.tuwien.ac.at/research/problem-instances/#ijsp

(a) (m,n, |U |) = (5, 240, 60). (b) (m,n, |U |) = (5, 240, 60).

(c) (m,n, |U |) = (5, 120, 30). (d) (m,n, |U |) = (5, 120, 30).

Figure 5: Development of the objective value (a, c) and the number of unscheduled jobs (b, d)
when applying Greedy and Markov with different acceptance thresholds for two different
instance sizes.

We use as cost ci,t = 15min · Pic
kWh
t , where the electric power Pi is assumed to

differ among the machines i ∈ M and is thus chosen uniformly at random from

[50kW,150kW]. The cost qj for not scheduling a job j ∈ J is set to 40 Euro · dj ,

which is roughly twice the cost of scheduling the job in the most expensive

timesteps.

7.2. Comparison of the Approaches

We performed simulations for Greedy as well as Markov(plim) and Ad-

vanced(plim) with acceptance probability thresholds plim ∈ {0.25, 0.4, 0.5, 0.75,

0.85} on all benchmark instances. Note that with the advanced model, more

queries tstart ∈ T infeas will in general be rejected. This knowledge can be used

in Greedy and we will refer to this version with Greedy(Advanced). After

each round we determine the best schedule that is feasible for the information

collected up to this round. Figure 5 shows the development of the mean ob-

21

Table 1: Mean %-gaps of the objective values after five interaction rounds for Markov(plim)
and Advanced(plim) with different limits plim and for Greedy with and without the advanced
model. The median runtime per interaction round is given for each instance size, aggregated
over methods and interaction rounds.

m n |U | Markov Advanced
Greedy 0.25 0.4 0.5 0.75 0.85 Greedy 0.25 0.4 0.5 0.75 0.85 Time [s]

1 24 12 48.7 39.5 26.3 21.8 31.0 63.2 49.5 21.7 15.1 10.2 13.9 53.7 8.9
1 24 6 75.9 39.0 33.2 34.1 31.9 65.8 69.9 18.5 18.3 12.2 21.2 43.9 5.4
1 24 4 97.6 68.0 45.3 42.0 41.9 70.0 97.3 32.6 30.3 20.9 23.5 46.9 4.0
1 48 24 47.1 43.2 33.8 28.8 36.2 41.5 44.3 27.2 27.8 30.2 40.4 51.2 17.0
1 48 12 37.8 32.1 25.6 19.7 25.7 27.1 37.0 17.0 15.9 19.7 26.8 32.9 10.1
1 48 8 44.0 38.2 28.1 22.4 21.4 24.7 44.1 19.2 16.0 17.1 23.9 31.3 7.6
2 48 24 53.3 42.6 19.4 13.9 16.2 36.1 48.7 10.1 5.5 4.5 10.9 26.1 19.2
2 48 12 77.3 50.6 26.0 13.2 14.6 38.8 70.9 9.8 5.8 4.9 8.4 23.1 22.1
2 48 8 94.3 68.3 39.0 30.7 23.1 47.8 88.5 24.3 16.8 11.6 15.8 29.6 20.5
2 96 48 43.0 41.8 32.6 27.3 33.6 37.5 43.5 25.5 26.9 29.8 41.1 49.8 43.0
2 96 24 36.7 32.7 24.5 18.3 20.8 23.7 36.2 16.0 15.9 18.7 27.1 33.2 25.0
2 96 16 39.8 36.5 27.4 20.1 19.0 21.4 40.0 15.2 14.2 16.2 24.2 30.3 18.0
3 72 36 37.4 34.2 15.4 9.8 10.6 25.3 38.0 6.0 4.4 4.8 9.3 20.0 40.2
3 72 18 71.9 52.9 32.3 14.9 13.6 32.0 68.2 11.6 7.8 6.9 10.3 22.7 177.2
3 72 12 87.4 59.9 41.2 22.8 14.4 35.2 87.5 14.8 8.8 7.5 9.1 20.9 286.9
3 144 72 44.9 41.6 32.6 27.5 34.1 38.4 44.4 25.9 27.5 31.0 43.2 52.5 116.4
3 144 36 37.1 35.2 26.8 19.4 21.8 24.0 37.5 17.0 17.1 20.1 28.9 35.4 51.4
3 144 24 36.8 34.4 26.6 20.5 18.6 20.0 37.2 14.9 14.4 16.0 24.1 30.4 38.8
4 96 48 32.9 22.6 12.5 9.2 11.5 22.0 30.2 4.9 4.8 5.3 11.1 18.5 83.5
4 96 24 65.5 53.3 23.6 11.5 12.2 27.8 67.7 9.9 5.9 5.4 8.5 16.4 901.7
4 96 16 79.1 65.3 37.2 19.1 9.9 29.4 80.4 17.2 10.9 6.9 8.1 15.0 909.8
4 192 96 40.3 37.6 29.5 25.4 31.3 34.7 39.9 23.6 25.7 28.5 39.8 48.2 196.0
4 192 48 35.5 35.0 26.6 19.3 21.7 23.5 35.4 16.3 16.7 19.3 28.8 35.2 101.5
4 192 32 37.5 34.4 26.9 20.6 19.0 20.5 37.3 15.3 14.8 16.9 24.7 30.5 75.1
5 120 60 22.2 20.4 10.1 8.8 10.2 17.4 22.6 4.7 5.0 4.6 10.2 18.1 168.8
5 120 30 56.3 46.5 21.4 9.1 11.8 25.5 60.1 7.2 5.8 4.6 9.3 16.6 914.0
5 120 20 80.3 58.8 34.6 18.9 12.6 30.4 81.6 15.2 9.2 7.0 8.2 16.9 917.7
5 240 120 42.4 39.7 31.7 27.5 33.3 36.7 42.1 25.3 27.2 31.0 42.7 51.9 326.4
5 240 60 37.3 35.3 27.7 20.5 22.3 23.9 37.5 16.9 17.6 20.3 29.4 36.7 206.7
5 240 40 34.4 31.4 24.3 18.4 17.3 18.7 34.4 13.7 13.6 15.4 23.4 29.1 141.4

jective value and the mean number of unscheduled jobs, respectively, over the

rounds for Greedy and Markov on two different instance sizes. Values are

aggregated over the 30 instances with m = 5 machines and n = 120 respectively

n = 240 jobs. Furthermore, we determine the best feasible schedule with the

information that is available before the first round (“No Interaction”), the best

schedule when assuming that all users are available all the time (“Full Avail-

abilities”), and the best schedule with full knowledge about the users’ avail-

abilities (“Full Knowledge”) and show these as horizontal lines in the figures.

Table 1 additionally shows the mean optimality gaps of the objective values

from Greedy, Markov(plim) and Advanced(plim) in respect to “Full Knowl-

22

edge” after five rounds in percent. Naturally, the objective value of the “Full

Availabilities” scenario has to be less than (or equal to) the objective value of

“Full Knowledge”, which has to be less than (or equal to) the objective value

of “No Interaction”. The objective values of Greedy, Markov(plim) and Ad-

vanced(plim) have to be between the objective values of “Full Knowledge” and

“No Interaction”. Note that the plots 5a and 5b are also representative for the

general trends with (n, |U |) = (48m, 12m), and the same applies for plots 5c

and 5d and (n, |U |) = (24m, 6m).

We observe that Markov(0.5) and Markov(0.75) quickly converge towards

the best possible schedule. For n = 120, the original objective values without

interaction could almost be halved after five rounds, while for n = 240, 16%

and 15% of the original costs could be saved after five rounds. Moreover, for

n = 120, the final optimality gaps of these two approaches are by a factor of

more than four better than the final gap of Greedy. In contrast, plim = 0.25

leads to much slower convergence with an improvement over Greedy of only

roughly 17%. The objectives for plim = 0.4 and plim = 0.85 lie inbetween, being

by a factor of more than two better than the final gap of Greedy. Remarkably,

Markov(0.75) performs best in the first rounds, while Markov(0.5) catches up

later on and performs best in the end. The reason is that the two-state Markov

process has the steady state between 0.5 and 0.75 and therefore Markov(0.75)

does not query days it knows nothing about while Markov(0.5) does; while it

takes more iterations to get enough information about these days, this infor-

mation provides more flexibility in scheduling the jobs. The table confirms our

observations that Greedy consistently performs worse than Markov and that

the values 0.5 and 0.75 are better suited for plim than 0.25, 0.4 and 0.85.

Considering Advanced, Figure 6 shows the objective value and the num-

ber of unscheduled jobs over the rounds, respectively, and Figure 7 compares

Markov to Advanced for plim ∈ {0.25, 0.5}. The objectives for Advanced(plim)

with different plim are closer together than those for Markov, and thus the ad-

vanced model is less sensitive to the choice of plim. A value of plim = 0.5 performs

best for instances with (m,n, |U |) = (5, 120, 30) and Table 1 shows that values

23

Figure 6: Development of the objective value and the number of unscheduled jobs for instances
with (m,n, |U |) = (5, 120, 30) where the probabilities are calculated with the advanced model.

Figure 7: Direct comparison between Markov and Advanced in terms of the objective value
and the number of unscheduled jobs for (m,n, |U |) = (5, 120, 30).

for plim from {0.25, 0.4, 0.5} perform best for other instance sizes. Unsurpris-

ingly, the advanced model leads to better results with a gap that is down to a

factor of 0.32 smaller after five rounds. However, we emphasize that Markov

performs still quite well in comparison, considering that it does assume almost

no knowledge about the users. In particular when looking at the overbooked

case in the table, i.e., instances with n = 48m, Markov is closer to Advanced

and in some cases almost matches the gaps of Advanced.

We furthermore give the median runtime per interaction round for each

instance size, aggregated over the different methods and all five iterations. Note

that these times are clearly dominated by, and almost match the time for solving

the MILP to determine queries. Naturally these times increase with the number

of machines with a median time between four and 17 seconds for one machine

and a significant number of instances hitting the time limit of 15 minutes for five

24

machines. Note that the instances consistently require more time to solve for

more users when n = 24m and less time to solve for more users when n = 48m.

7.3. Real-world availabilities

To evaluate the generalization abilities of our models to real-world data in the

following, we further generated an instance set with m = 5 machines, n = 120

jobs and |U | = 30 users the same way as above, but where the availabilities

are derived from the Dutch time-use-survey from 2005 [15]. The reason for

using this survey is that it records a full week of the respondents, as opposed

to single days for most other time-use-surveys, and that it is publicly available.

For each respondent and each 15-minutes timeslot in a week from Sunday to

Saturday the survey records the persons activity in categories such as sleeping,

work at home, work outside of home, travelling (with a bunch of subcategories),

personal care, and so forth. We assume that the user is using the machine at

work for some work-related tasks. Thus we assume users to be available when

they are present at the workplace, i.e. for the categories “work away from home”,

“overtime” and “coffee/tea breaks”. To make the data fit to our assumptions, we

do not consider persons that are unemployed or work less than two hours on at

least three days, and persons that work on the weekend or on any day before

6am or after 10pm. This results in a dataset of 490 different sets of availabilities,

30 of them exemplarily visualized in Figure 8, and they are chosen randomly to

generate instances.

Figure 9 shows the development of the objective value when applying our

approaches to these instances. Acceptance probabilities of 0.75 and 0.85 seem

to perform best and for those values the objective value quickly converges to the

Full Knowledge case, reducing the gap from 127% to 32.3% for Markov(0.75)

and to 27.6% for Advanced(0.75) within five rounds. Considering the very

different structure of the availability data, the loss of efficiency compared to our

completely randomly generated instances apparently is quite small.

25

Figure 8: The availabilities derived from the first 30 persons in the filtered Dutch Time-Use-
Survey. Days are split by blue vertical lines.

7.4. Acceptance rate

The percentage of queries that have been accepted is of high practical rele-

vance. If users have to reject a majority of queries, they will get frustrated with

the system. Figure 10 shows the mean acceptance rate for Markov and Ad-

vanced with different values for plim plotted over the rounds for one instance

size. As expected, the acceptance rate is higher for higher values of plim. For

Advanced it is a bit higher than plim, since Advanced incorporates a proba-

bility computation that is based on the generation process of the instances, so

the MILP only selects from queries that have a probability higher than plim to

be accepted. In contrast, Markov(plim) has a lower acceptance rate than plim,

as the probabilities are an approximation. Furthermore, there are no significant

changes over the individual rounds.

7.5. Convergence

Although significantly higher numbers of rounds are in most practical ap-

plications not very reasonable, we now study the convergence behaviors of the

different approaches over 50 rounds to evaluate the approaches potential ca-

pabilities. It will give an insight into how long each approach needs to gather

26

(a) Markov (b) Advanced

Figure 9: Development of the objective value when applying (a) Markov and (b) Advanced
with different acceptance thresholds for the instances based on the Dutch Time-Use-Survey,
(m,n, |U |) = (5, 120, 30).

Figure 10: Mean acceptance rate of the users over the rounds for instances with (m,n, |U |) =
(5, 120, 30) and the two models to calculate probabilities.

sufficient relevant information for (almost) closing the remaining optimality gap.

Instances with n = 48m need longer to converge, thus we show the evolution of

the objective values for (m,n, |U |) = (5, 240, 60) in Figure 11. As Advanced

performs better for lower thresholds plim, we additionally show the evolution

for plim = 0.15 and plim = 0.05. Surprisingly, Markov performs slightly better

when looking at the round by which a gap of less than 5% is reached: With

plim = 0.4, it only requires 14 rounds, while Advanced requires 16 rounds with

its best threshold of plim = 0.15. Both, Markov and Advanced, stagnate

with a high plim of 0.75 and 0.85. The reason seems to be that after the first

rounds they do not gather much new information but mostly just confirm their

presumptions when using such a high value for plim.

27

Figure 11: Convergence behavior of Markov and Advanced for (m,n, |U |) = (5, 240, 60).

Figure 12: Impact of the number of users to the objective value after five rounds of user
interaction for Markov and Advanced and instances with (m,n) = (5, 120) and 2, 4 and 6
jobs per user, respectively.

28

Table 2: Mean %-gaps of the objective values after five interaction rounds for Markov(plim)
and Advanced(plim) with different limits plim and for Greedy and Greedy(Advanced) for
varying values of b and nprop. The median runtime per interaction round is given for each
instance size, aggregated over methods and iterations rounds.

m n |U | b nprop Markov Advanced
Greedy 0.25 0.4 0.5 0.75 0.85 Greedy 0.25 0.4 0.5 0.75 0.85 Time [s]

5 120 30 15 1 83.2 65.4 34.3 21.4 20.5 39.5 81.7 16.0 10.4 8.2 12.4 21.9 903.6
5 120 30 15 2 8.5 7.4 5.3 4.3 3.4 4.2 8.4 3.2 2.9 2.7 4.9 6.1 904.8
5 120 30 15 3 4.1 3.7 3.1 2.4 1.6 1.9 4.1 1.4 1.3 1.5 3.1 3.6 137.1
5 120 30 30 1 56.7 47.1 21.9 8.9 12.3 25.6 58.8 7.5 5.5 5.1 9.4 16.0 912.9
5 120 30 30 2 6.6 6.2 3.9 2.5 2.9 3.4 6.3 1.8 2.0 2.3 4.6 6.0 271.6
5 120 30 30 3 3.5 3.1 2.1 1.4 1.4 1.7 3.6 1.0 1.1 1.3 3.0 3.5 135.6
5 120 30 60 1 16.7 15.7 6.6 4.8 6.8 13.7 16.5 3.5 2.8 3.2 6.8 12.5 174.6
5 120 30 60 2 5.0 3.9 2.4 1.8 2.4 2.9 4.8 1.2 1.5 2.0 4.5 5.8 124.4
5 120 30 60 3 3.0 2.7 1.7 1.1 1.4 1.6 3.1 0.8 0.9 1.2 2.9 3.5 117.6
5 240 60 30 1 43.2 40.8 34.6 29.0 24.1 26.8 43.1 22.3 21.9 23.0 30.5 37.2 162.6
5 240 60 30 2 29.2 27.4 23.9 20.2 14.5 16.5 29.1 13.2 13.2 14.2 22.6 26.8 106.6
5 240 60 30 3 22.6 21.4 19.1 15.6 10.8 12.7 22.7 9.3 9.7 10.9 18.8 21.3 127.2
5 240 60 60 1 37.2 35.3 27.7 20.5 22.3 23.9 37.4 16.9 17.6 20.3 29.4 36.7 199.2
5 240 60 60 2 26.5 25.7 20.2 13.5 13.5 15.2 26.7 10.8 11.3 13.0 22.1 26.5 158.2
5 240 60 60 3 21.3 19.9 15.5 10.8 9.8 11.8 21.3 7.4 8.1 9.8 18.4 21.1 146.6
5 240 60 120 1 29.3 27.1 18.1 15.3 21.1 23.3 29.4 14.0 15.6 18.6 28.9 36.3 141.1
5 240 60 120 2 22.8 20.4 14.6 10.9 12.7 14.9 22.4 9.0 10.2 11.8 21.8 26.3 136.3
5 240 60 120 3 18.7 16.9 12.2 8.8 9.5 11.5 18.7 6.5 7.5 9.2 18.0 21.1 126.9

7.6. Influence of the Number of Users

We now investigate the impact of varying the number of jobs per user, and

thus the number of users. Figure 12 compares obtained objective values after

five rounds for instances with different numbers of users. A higher number of

jobs per user (or lower number of users) make the selection of user queries more

challenging—for two jobs per user even Greedy performs reasonably well with

a mean gap of 22.2% to the Full Knowledge case after five rounds, opposed to a

gap of 80.3% for six jobs per user. In contrast Markov(0.75) has similar gaps

of 10.2% and 12.6% for two and six jobs per user. The same behavior is also

apparent for Advanced with gaps of 4.63% and 7.01% for two and six jobs per

user and plim = 0.5. We explain these differences with the higher total amount

of interaction that comes with a higher number of users.

7.7. Comparison of Different Interaction Configurations

We further investigate the impact of different levels of user interaction by

varying b and letting users suggest more than one starting time for each job;

29

Figure 13: Comparison between different interaction budgets b ∈ {0.5|U |, |U |, 2|U |} for in-
stances with (m,n, |U |) = (5, 120, 30).

(a) (m,n, |U |) = (5, 240, 60). (b) (m,n, |U |) = (5, 120, 30).

Figure 14: Comparison between different values of nprop ∈ {1, 2, 3} with interaction budget
b = 0.5|U | for two different instance sizes.

denote with nprop the number of initially suggested starting times per job. For

this purpose we iteratively add two additionally proposed starting times for

each job to the instances with m = 5, n ∈ {120, 240} and |U | = n/4, leading to

instances with nprop ∈ {1, 2, 3}. We perform simulations on these instances with

an interaction budget b of 0.5|U |, |U | and 2|U |. The results are summarized in

Table 2.

Figure 13 compares the results for different interaction budgets b ∈ {0.5|U |,

|U |, 2|U |} per round. Naturally a higher budget results in faster convergence.

However, differences are relatively small, and b = 0.5|U | does not lead to sig-

nificantly worse results. When comparing gaps after a fixed amount of user

interactions, a lower number of interactions per round performs better. For

30

example, the mean gap for Markov(0.5) with b = 0.5|U | after four rounds is

29.2%, with b = |U | after two rounds 42.5%, and with b = 2|U | after one round

58.6%, while in each case 2|U | replies were requested from the users. This indi-

cates that our approach is indeed capable to learn from and react to the user’s

replies—successively produced queries are more cleverly chosen. When just con-

sidering the number of user interactions, it would thus be more user-friendly to

make more interaction rounds with in total less queries, asking only a small

subset of users in each round, and the final result can still be of similar quality.

However, note that depending on the specific application and the form by which

the user interactions are actually implemented, also the number of performed

interaction rounds may substantially impact the perceived user-friendliness.

A comparison for different values of nprop for b = 0.5|U | is shown in Figure 14.

It becomes apparent that, for n = 48m, nprop = 2 without any interaction leads

to a mean gap of 29.4%, which is worse than for nprop = 1 with five rounds of

interaction, which leads to a mean gap of 24.1% with Markov(0.75). Specifying

an additional starting time for each of their four jobs is clearly more bothersome

for the users than answering two to three queries, still the interactive approach

gives a better result. A value of nprop = 3 leads to a better gap of 22.8%, at the

cost of bothering the users even more. The situation is different for n = 24m.

No interaction with nprop = 2 then leads to a gap of 9.08%, which is clearly

better than the gap with nprop = 1 after five rounds of interaction, which is

20.5%. One more starting time for each job (nprop = 3) or, alternatively, five

rounds of interaction with Markov(0.75) further more than halves the gap to

4.14% and 3.35%, respectively.

8. Conclusions

We considered the problem of scheduling jobs involving humans, whose avail-

abilities can only be partially revealed with few time interval queries, made in a

small number of interaction rounds. The proposed solution approach calculates

probabilities for users to accept suggested time intervals based on a two-state

Markov process or, alternatively, a more advanced Markov process that is based

31

on more specific assumptions of user behavior. An ILP is used as optimiza-

tion core and to select time intervals for the next round of queries, aiming

for sufficiently high probabilities of acceptance and a maximum cost reduction.

Experiments on artificial test instances show that an initial solution quickly

improves over the interaction rounds and may soon get close to a solution of

the full-knowledge case despite the very restricted interaction. With the variant

of our approach that utilizes the advanced Markov process, we demonstrated

how the general approach can be specialized when a more specific stochastic

model for the user availabilities is available. While this advanced variant per-

forms significantly better on our benchmark instances, also the simpler and more

generally applicable approach based on the two-state Markov process compares

surprisingly well. Still, the results suggest that more knowledge about the users

is beneficial, and in future work it would be interesting to include and uti-

lize historic user availability data, which reflects the users’ general preferences.

Moreover, alternative ways to consider the estimated acceptance probabilities

of user queries in the optimization core should be investigated.

Acknowledgements

J. Varga acknowledges the financial support from Honda Research Institute

Europe. The authors acknowledge TU Wien Bibliothek for financial support

through its Open Access Funding Programme.

References

[1] Aghaei-Pour, P., Rodemann, T., Hakanen, J., Miettinen, K.: Surrogate

assisted interactive multiobjective optimization in energy system design of

buildings. Optimization and Engineering 23(1), 303–327 (2022)

[2] Anghinolfi, D., Paolucci, M., Ronco, R.: A bi-objective heuristic approach

for green identical parallel machine scheduling. European Journal of Oper-

ational Research 289(2), 416–434 (2021)

32

[3] Blum, A.: Empirical support for winnow and weighted-majority algo-

rithms: Results on a calendar scheduling domain. Machine Learning 26(1),

5–23 (1997)

[4] Chen, B., Zhang, X.: Scheduling with time-of-use costs. European Journal

of Operational Research 274(3), 900–908 (2019)

[5] Cheng, J., Chu, F., Zhou, M.: An improved model for parallel machine

scheduling under time-of-use electricity price. IEEE Transactions on Au-

tomation Science and Engineering 15(2), 896–899 (2018)

[6] Ding, J.Y., Song, S., Zhang, R., Chiong, R., Wu, C.: Parallel machine

scheduling under time-of-use electricity prices: New models and optimiza-

tion approaches. IEEE Transactions on Automation Science and Engineer-

ing 13(2), 1138–1154 (2016)

[7] Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approxi-

mation in deterministic sequencing and scheduling: a survey. In: Hammer,

P., Johnson, E., Korte, B. (eds.) Discrete Optimization II, Annals of Dis-

crete Mathematics, vol. 5, pp. 287–326. Elsevier (1979)

[8] Hammack, R., Imrich, W., Klavžar, S.: Handbook of product graphs, sec-

ond edition. CRC Press (2011)

[9] Jatschka, T., Raidl, G.R., Rodemann, T.: A general cooperative optimiza-

tion approach for distributing service points in mobility applications. Al-

gorithms 14(8) (2021)

[10] Kayhan, B.M., Yildiz, G.: Reinforcement learning applications to machine

scheduling problems: a comprehensive literature review. Journal of Intelli-

gent Manufacturing 34, 909–929 (2021)

[11] Mitchell, T.M., Caruana, R., Freitag, D., McDermott, J., Zabowski, D.,

et al.: Experience with a learning personal assistant. Communications of

the ACM 37(7), 80–91 (1994)

33

[12] Monaci, M., Agasucci, V., Grani, G.: An actor-critic algorithm with policy

gradients to solve the job shop scheduling problem using deep double re-

current agents. European Journal of Operational Research 312(3), 910–926

(2024)

[13] Saberi-Aliabad, H., Reisi-Nafchi, M., Moslehi, G.: Energy-efficient schedul-

ing in an unrelated parallel-machine environment under time-of-use elec-

tricity tariffs. Journal of Cleaner Production 249, 119393 (2020)

[14] Saha, S., Minku, L.L., Yao, X., Sendhoff, B., Menzel, S.: Exploiting linear

interpolation of variational autoencoders for satisfying preferences in evo-

lutionary design optimization. In: 2021 IEEE Congress on Evolutionary

Computation. pp. 1767–1776. IEEE Press (2021)

[15] Sociaal en Cultureel Planbureau: Tijdsbestedingsonderzoek 2005 - TBO

2005 (2005). https://doi.org/10.17026/dans-znn-5xvz, https://doi.org/10.

17026/dans-znn-5xvz

[16] Uzunoglu, A., Gahm, C., Wahl, S., Tuma, A.: Learning-augmented heuris-

tics for scheduling parallel serial-batch processing machines. Computers &

Operations Research 151, 106122 (2023)

[17] Varga, J., Karlsson, E., Raidl, G.R., Rönnberg, E., Lindsten, F., Rode-

mann, T.: Speeding up logic-based benders decomposition by strengthen-

ing cuts with graph neural networks. In: Machine Learning, Optimization,

and Data Science. LOD 2023. Lecture Notes in Computer Science. Springer,

Cham (2023), to appear

[18] Varga, J., Raidl, G.R., Rönnberg, E., Rodemann, T.: Interactive job

scheduling with partially known personnel availabilities. In: Dorronsoro,

B., Chicano, F., Danoy, G., Talbi, E.G. (eds.) OLA 2023: Optimiza-

tion and Learning. Communications in Computer and Information Science,

vol. 1824, pp. 236–247. Springer (2023)

34

https://doi.org/10.17026/dans-znn-5xvz
https://doi.org/10.17026/dans-znn-5xvz

[19] Wang, S., Wang, X., Yu, J., Ma, S., Liu, M.: Bi-objective identical parallel

machine scheduling to minimize total energy consumption and makespan.

Journal of Cleaner Production 193, 424–440 (2018)

[20] Zhang, Z., Zheng, L., Li, N., Wang, W., Zhong, S., Hu, K.: Minimizing

mean weighted tardiness in unrelated parallel machine scheduling with re-

inforcement learning. Computers & Operations Research 39(7), 1315–1324

(2012)

35

