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Abstract—Meta-reinforcement learning aims to overcome im-
portant limitations in reinforcement learning, like low sample
efficiency and poor generalization, by creating agents that adapt
to new tasks. The development of intelligent robots would benefit
from such agents. Long-standing issues like data collection and
generalization to real-world dynamic environments could be
mitigated by sample-efficient adaptable algorithms. However,
most such algorithms have only been proven to work in low-
complexity environments. These provide no guarantee that a
near-optimal global policy does not exist, which makes it difficult
to evaluate adaptable policies. This hinders the in-depth analysis
of an agent’s potential to adapt, while also introducing a gap
between controlled experiments and real-world applications. We
propose MEWA, a collection of task distributions used as a
benchmark for adaptable agents. Our tasks contain a shared
structure that an agent can leverage to learn the task-specific
structure of new tasks. To ensure our environment is adaptive,
we select some of the task parameters using the solution to a
constrained optimization problem. Other parameters are ran-
domized, allowing the creation of arbitrary task distributions.
We evaluate three state-of-the-art meta-reinforcement learning
algorithms on our benchmark, that were previously shown to
adapt to new tasks with a simpler structure. Results show that the
algorithms can reach meaningful performance on the task, but
cannot yet fully adapt to the task-specific structure. We believe
this benchmark will help identify some of the issues that hinder
adaptability, ultimately aiding in the design of new algorithms,
more suitable for real-world human-robot applications.

I. INTRODUCTION

While reinforcement learning (RL) has achieved impressive
results in controlled environments and simulations, its use-
fulness in real-world applications is still limited. Current RL
algorithms suffer from poor generalization to new tasks and
low sample efficiency [1]–[3], making them too unreliable and
expensive for most applications [4]. This is especially true in
the field of human-robot interaction (HRI). Human behavior
is often complex and difficult to predict, so adaptable agents
would have more success in interacting with humans. Addi-
tionally, improvements in sample efficiency would reduce the
cost of collecting data from robots interacting with humans.

Recently, many researchers have attempted to use meta-
reinforcement learning (meta-RL) to mitigate these issues. A
meta-RL agent is expected to learn how to reinforcement learn
[2], [5]. In the literature, meta-RL is most commonly used for
few-shot adaptation [2]. During the meta-training phase, the
agent learns an inductive bias by training on multiple tasks

drawn from a task distribution. The agent is then expected to
use this inductive bias during meta-testing, to quickly adapt to
any new task from the same distribution. In meta-RL, each task
is defined as a Markov decision process (MDP). An important
assumption is that all MDPs in the distribution have the
same state and action spaces, offering structure shared across
all states. The transition probabilities and reward functions,
on the other hand, are task-specific. For an agent with an
inductive bias learned from the shared structure, the objective
of learning a new task is reduced to adapting to the task-
specific structure. Therefore, a meta-trained agent should be
more sample efficient when adapting to new tasks than a
standard RL agent learning from scratch. Besides standard RL,
several other methods, more similar to meta-RL, have been
used in the literature. The most relevant of these are multi-
task RL [3], life-long RL [6], transfer learning [7], [8], or
domain adaptation/generalization [9]. However, these methods
are either limited by the assumptions they make or are not
designed for few-shot adaptation [1].

We believe few-shot meta-RL is promising for HRI. For
example, it could enable robots to adapt to the specific
behavior of each human. Still, despite its potential, the current
applications of meta-RL in HRI are limited. Meta-RL has been
previously used for evaluating bi-directional trust as a robot
adapts to a human [10]. Additionally, [11] presents a method of
learning socially accepted behavior by adapting to new reward
functions. These applications are a good start toward using
meta-RL for adaptable robots.

In this work, we propose Meta-learning for Worker
Adapting (MEWA)1, a new benchmark for few-shot meta-RL.
MEWA is designed in the context of human-robot collabo-
ration (HRC) [12]. We build MEWA as an extension of a
previously proposed HRC task [13]. Fig. 1 shows the simulated
version of our benchmark. We chose to focus specifically on
adaptation to new tasks. Our design aims to guarantee that
only algorithms that can truly adapt perform well on MEWA.
These algorithms could later be used in agents that interact
with real humans.

We believe MEWA will be a step forward toward solving
one of the current problems faced by the meta-RL research
community: state-of-the-art (SOTA) meta-RL algorithms have

1The code for MEWA is available at: https://github.com/RStoican/MEWA



Fig. 1: A simulated version of our benchmark. The environment
contains a Sawyer robot, a human, and the blocks required to
complete a task.

only been shown to solve simple task distributions, with
superficial differences between tasks [14]–[17]. These are
usually referred to as narrow distributions. Recently, more
effort has been put into designing benchmarks for wider task
distributions [17], [18]. MEWA takes inspiration from two
such benchmarks. We follow the main idea of Meta-World
[17], i.e. aiming to design wider task distributions. We also
make MEWA transparent and easy to analyze, in a similar
manner to Alchemy [18]. At the same time, we aim to tackle
two significant limitations in these existing benchmarks. First,
there is no formal process for defining adaptive tasks, i.e.
tasks that force agents to be adaptable. Second, there is no
guarantee that a close-to-optimal non-adaptable policy does
not exist. Such a policy could perform well on most of the
tasks in the distribution. MEWA, on the other hand, proposes
an environment built on such guarantees. We ensure that the
set of policies available for use in a task distribution fulfills
two conditions,

1) there is no globally optimal non-adaptable policy, and
2) there is a large gap between the expected return of any

non-adaptable policy and the optimal (adaptable) policy.
The former condition ensures only an adaptable policy is
optimal. The latter ensures it is easy to identify agents that
do not adapt their policy to each task. In other words, there is
a positive correlation between an agent’s return and its ability
to adapt. Based on these conditions, we propose a method for
generating adaptive tasks. These tasks are parameterized by the
solution to an optimization problem. The proposed benchmark
aims to, together with existing methods, help in developing
more powerful meta-RL approaches in the future.

II. RELATED WORK

The number of existing benchmarks for meta-RL is limited.
One of the most relevant for our work is Meta-World [17],
which introduces several distributions of robotic manipulation
tasks. It focuses on promoting wider task distributions for
evaluating meta-RL algorithms. To the best of our knowledge,
there is no formal definition for the width of a task distribution.
In Meta-World, a narrow distribution is defined as a single

task with many parametric variations. A wide distribution is
then defined as a collection of such tasks (i.e. a collection
of different narrow distributions). Meta-World proposes three
task distributions: a narrow distribution (ML1) and two wide
distributions (ML10, ML45). However, it is unclear how much
shared structure there is for meta-RL agents to leverage when
learning different manipulation tasks. In MEWA, we provide
transparent tasks, with clearly defined shared and task-specific
structures. An additional consequence of this limitation is
the large gap between Meta-World’s narrow and wide distri-
butions. While SOTA meta-RL algorithms can achieve high
performance on the narrow distribution [16], [17], it is unclear
how much more powerful these algorithms have to be to solve
the wide distribution.

Another relevant benchmark is Alchemy [18]. Its envi-
ronment is a procedurally generated video game. Alchemy’s
main goals are to be interesting and accessible. One of its
limitations is the low task complexity, already brought to
attention by the authors [18]. This, together with the tasks’
transparency, allowed Bayes-optimal and brute-force policies
to be computed as baselines. While Alchemy’s environment
contains a fixed number of objects, MEWA’s tasks can be
defined as MDPs of varying complexities. Despite this, we are
still able to provide the expected return of an optimal adaptable
agent as a baseline, even if computing Bayes-optimal agents
is infeasible. This leads to complex, but still transparent tasks.
Finally, the only agents evaluated on Alchemy are trained
using black-box recurrent-based meta-RL algorithms. To the
best of our knowledge, there are currently no other works
testing different meta-RL approaches on Alchemy. In our
work, we instead provide results for SOTA algorithms from
two main meta-RL approaches.

Recently, there has been a high number of RL benchmarks
focused on generalization [19]–[23]. While these have similar
goals to us, they are either limited in some aspects, focused
on specific applications, or not appropriate for evaluating few-
shot adaptation. MetaDrive [19] is an autonomous driving
benchmark for generalization, safe RL, and multi-agent RL.
CARL [20] extends existing RL environments to task dis-
tributions, but focuses on zero-shot generalization. Similarly
to our work, URLB [21] is designed for adaptable agents,
but in the context of pre-training through unsupervised RL.
CausalWorld [22] presents a distribution of manipulation tasks
for causal structure and transfer learning. Another large collec-
tion of manipulation tasks is given by RLBench [23], which
focuses on many different topics, including few-shot meta-
RL. These benchmarks do not share some of the properties
MEWA has, which are required for evaluating few-shot meta-
RL algorithms: wide task distributions, transparency, or an
adaptive environment.

III. THE MEWA BENCHMARK

A. Basic Rules

The learning environment of the benchmark is given by a
collaborative game between the RL agent and another agent.
The second agent will be called a worker, while RL agent and



agent will be used interchangeably throughout the paper. The
worker has no learning capabilities and simply reacts to the
agent’s actions. At the start of a game, the agent is presented
with several sets of differently colored blocks, such that each
set has the same number of blocks. The agent and the worker
have the common goal of building a specific structure using
these blocks. At each step, the agent selects a color and hands a
block of that color to the worker. The worker uses this block to
build a sub-structure, where each sub-structure contains only
blocks of the same color. After the worker receives enough
blocks of the same color, the finished sub-structure is added
to the main structure. The environment is episodic, with an
episode ending when the structure is completed.

To add more task-specific structure to the environment, we
enforce a correct order of completing the sub-structures. At
each time step, a sub-goal is defined as (the color of) the next
sub-structure that must be completed. Completing sub-goals in
the wrong order will still finish the task, but will lead to a sub-
optimal return. Finally, the worker has its own set of colored
blocks. Whenever a sub-goal is completed, the worker lets the
agent know by adding some of these blocks to the structure.

We make the environment stochastic by allowing the worker
to make mistakes at specific points in the game. Whenever the
agent chooses to play the second block of a structure, there
is a chance the worker will make a mistake. A mistake is
simply defined as building the wrong type of structure. When
a wrong structure is completed, the blocks are returned to the
agent instead of being used to complete the goal. This creates
a delay in the game. Section III-C explains how these mistakes
are used to design an environment that forces an optimal agent
to be adaptable.

B. Observation Space, Action Space, and Reward Function

The observation space of the environment is given by the
set of vectors that encode the agent’s blocks, the worker’s sub-
structures and possible mistakes, and the progress towards the
goal. We also provide a version of our benchmark in which the
observations are images collected by a simulated Sawyer robot
inside the Gazebo environment, as shown in Fig. 1. Images add
complexity at the perception layer, but the underlying mechan-
ics of the low-dimensional and high-dimensional versions of
the benchmark are the same. Therefore, since the main goal of
this benchmark is to test an agent’s ability to adapt to changes
in the environment, all the results presented in this work are
from agents using vector observations. The action space is
discrete and depends on the number of unique colors in the
agent’s set of blocks. We define one action per color in both
environments using low- or high-dimensional observations.

The reward function is designed to highlight two of the
core features of the environment: sub-goals must be completed
in a specific order and each sub-goal must be completed as
quickly as possible. We use dense rewards. Assume the goal
is reached after completing N sub-goals, each of a different
color. When working on the i-th sub-goal, i ∈ {1,2, ...,n−1},
the agent receives a reward ri at each step, such that ri < 0 and
ri < ri+1, with rn = 0 as the final reward. Therefore, whenever

the agent completes the next sub-goal, the rewards it receives
in the future improve. Section III-D describes how we choose a
reward function that leads to an adaptive environment. Finally,
we choose to normalize rewards to [0,1] both during meta-
training and meta-testing. This helps mitigate the distraction
dilemma [3], [24], caused by agents focusing more on learning
tasks with higher reward magnitudes.

C. Task Distribution

We follow a hierarchical approach to defining the task
distribution, similar to the one used in Meta-World [17]. At
the upper level of the hierarchy, each task has N sub-goals
and different colors, an order in which sub-goals must be
completed, K blocks per color available to the agent, and a
requirement of M blocks for completing each sub-goal. We
call this a wide task distribution.

At the lower level, each task has variations, which are given
by the mistake probabilities introduced in Section III-A. We
call this a narrow task distribution. This means that every task
from the previously defined wide distribution is in itself a
(narrower) distribution. The probability that an environment
transition will lead to a mistake is given both by the type of
mistake and the specific worker used in that task variation. At
each timestep, a mistake’s type x is equal to the number of
sub-structures that are on the worker’s side (i.e. have at least
one block and have not yet been completed). We refer to these
as active sub-structures.

To give more shared structure between task variations,
we design the worker’s probability wx ∈ [0,1] of making a
mistake of type x to always decrease as the number of active
sub-structures increases, i.e. wx > wx+1. This might seem
counter-intuitive in a scenario with real humans. However,
thanks to these additional dynamics, delaying a sub-structure’s
completion might be an optimal policy. This forces the agent to
adapt its policy to latent human behavior. For a skilled worker,
an optimal agent will greedily complete sub-structures. For a
worker that is likely to make mistakes, the agent acts optimally
by building multiple sub-structures in parallel. Therefore, there
is no globally optimal policy for all workers.

D. Adaptive Tasks

The goal of MEWA is to only use task variations that have
the properties required to ensure only adaptable agents are
optimal. Therefore, we present our method of optimizing the
parameters of task variations for an adaptive environment. We
call a state s critical if there is at least one action a the agent
can take that could lead to a mistake happening. In a critical
state in which there is at least one 1-block structure, the agent
can take one of the two actions:

• A risky action adds the second block to a structure. This
leads to a stochastic environment transition, dependent on
the current worker’s behavior;

• A safe action starts a new structure, if possible. This is a
deterministic transition that leads to another critical state
but with a reduced chance of a mistake happening.



In a critical state in which there is at least one 1-block structure
and one other structure that can be completed in one step, one
of the following two actions is optimal:

• A complete action finishes a structure. This is a deter-
ministic transition that increases the chance of a mistake
happening in the future (because the structure is removed
from the game). If this leads to a sub-goal being com-
pleted, it also increases future rewards, as explained in
Section III-B;

• A postpone action adds the second block to a 1-block
structure. Similarly to a risky action, this could lead to
a mistake happening. Taking the postpone action first,
and only then completing the other structure is a viable
strategy, as it keeps the mistake probability low.

We wish to optimize two aspects of the task: transition
probabilities and the reward function. For every task variation,
we refer to its optimal policy as a task-specific optimal (t-
optimal) policy. We note that a t-optimal policy must have
two properties,

• for every non-critical state, it takes the optimal action,
and

• for every critical state, it takes a fixed number of
– safe actions, then enough risky actions to reach the

next state without a mistake occurring, or
– postpone actions, then a complete action.

A task is considered adaptive when different variations have
different t-optimal policies and the reward function punishes
the usage of any t-optimal policy for variations in which it
is not optimal. We define an average worker as a worker
for which all possible t-optimal policies are optimal. Finding
an average worker for a task would allow us to sample new
workers from the space around it. Therefore, if there is enough
distance between a sampled worker and the average worker,
we can expect the former to have a smaller number of optimal
policies. Moreover, if the sampling is done from different
regions around the average worker, these optimal policies will
be different across workers. Besides the optimal worker, it
is also important to find a reward function that makes the
environment adaptive. If the rewards received during early sub-
goals are too low, the agent will be motivated to complete those
sub-goals as quickly as possible. This leads to complete actions
always being optimal over postpone actions, irrespective of the
worker’s behavior. Rewards that are too high have the opposite
effect, i.e. the agent is not pressured to complete sub-goals
quickly. Therefore, we need to find a reward function that
ensures all actions are relevant.

For a task with N sub-goals, we find the average worker
w = [w1,w2, ...,wN ] and the optimal reward function r =
[r1,r2, ...,rN ] by solving the constrained optimisation problem

minimize f1(w,r)+ f2(w,r) (1)
subject to gk(w)≤ 0, k = 0, . . . ,N −1

hl(r)≤ 0, l = 0, . . . ,N −1,

where f1 and f2 are the functions we are trying to optimise,
while gk and hl are the constraint functions. The constraints en-

sure that all elements in w are valid probabilities and that both
r and w follow the constraints mentioned in Sections III-B
and III-C, respectively. When defining f1(w,r) and f2(w,r),
we only need to consider critical states, since transitions from
other states do not depend on the worker.

The first part of the objective function, f1(w,r), ensures
that, in a critical state s in which risky and safe actions are
possible, both actions are optimal for the average worker.
Given the critical state s in which the i-th sub-goal contains
only one block, the agent must transition (in one or more steps)
to a state s′. In s′, the i-th sub-goal has two blocks and no
mistake has been made. We define the return of transitioning
from s to s′ as

ci(w,r,x,y) = (d(wx,x)+ y)ri −∑
j

r j, (2)

where there are x active sub-structures at state s, the agent adds
y more by taking safe actions, then keeps taking the risky
action until s′ is reached. The right-most sum is taken over
the number of new sub-structures added by the safe actions.
The expected number of steps required to reach s′ by taking
the risky action is given by d(wx,x). As before, wx is the
probability of making a mistake given x sub-structures and
worker w, leading to

d(wx,x) =
1+wx(M−1)

1−wx
, (3)

where M is the number of blocks required to complete a sub-
structure in the current task. Finally, for w to be average, the
number of safe actions y and the final number of extra sub-
structures x should be irrelevant, i.e. they all lead to the same
cost. Moreover, this must hold for all sub-goals. This leads to
the first part of the objective function,

f1(w,r) =
N−1

∑
i=0

N−1

∑
x=0

f ′i (w,r,x)+
x−1

∑
y=0

f ′′i (w,r,x,y),

where

f ′i (w,r,x) = (ci(w,r,x,x)− ci(w,r,x+1,0))2

f ′′i (w,r,x,y) = (ci(w,r,x,y)− ci(w,r,x,y+1))2.

The second part of the objective function, f2(w,r), deals
with critical states in which complete or postpone actions can
be taken. Let i be the index of the sub-goal that must be
completed next. In this type of state, the i-th structure already
contains two blocks. Then, let j be the index of one of the
structures that have exactly one block. We define the cost of
adding the second block to structure j before completing the
i-th sub-goal as

e(w,r,x, i) = d(wx,x)ri, (4)

where is the number of extra structures, besides the i-th
structure, and d(wx,x) is defined in Eq. 3. If w is an average
worker, then it should not matter if the agent adds the second
block to the j-th structure when working on the j-th sub-goal



(i.e. Eq. 2) or on the i-th sub-goal (i.e. Eq. 4). This leads to
defining the second part of the objective as

f2(w,r) =
N−1

∑
j=1

j−1

∑
i=0

N−1

∑
x= j−i

(c j(w,r,x,x)− e(w,r,x, i))2.

Finally, we convert the constrained optimization problem
from Eq. 1 into a loss function [25]. Then, we train a deep
neural network to find the optimal average worker w and
rewards r. This can be done to each task in a wide distribution
to define the optimal w and r of its narrow distribution. We
found that a naive approach of overfitting a network to each
task is sufficient to solve Eq. 1, but this could be extended to
a more general model that solves any task without the need
for retraining [26].

E. Evaluation Method

Our target is to show a lack of adaptation to changes in the
environment, given by a narrow task distribution. Empirically,
we found that a task with N = 4 different colors is enough to
do that. Therefore, we design a narrow distribution over this
single task for evaluating meta-RL agents. A higher N would
increase the performance gap between an adaptive and a non-
adaptive agent, but it would also increase the complexity of
the environment, making it computationally expensive to meta-
train and meta-test agents, or verify that the environment is
adaptive.

For N = 4, each variation of the task can be described by
a 4-component vector of probabilities w ∈ [0,1]4. Given the
average worker wavg and a parameter σ for this task, we split
the distribution of w into three regions. During meta-training,
we sample workers from any of these regions. However, when
constructing the meta-testing set of workers, we only sample
from regions that are at least 2∗σ away from wavg. Avoiding
the regions around wavg makes it simpler to build a set of tasks
that can only be solved optimally by adaptable agents.

For meta-testing, we create a curated set of workers that
are distinct enough to have different optimal policies. We
start by discretizing the worker space [0,1]4 in steps of 0.05,
starting from the 0-vector (i.e. the worker that never makes any
mistake). For each worker, we then run all possible distinct t-
optimal policies and compute their return. These policies are
identical to the ones used to compute the maximum expected
baseline (see Section III-F). The curated set is selected from
these workers, based on two criteria. First, for each worker, the
returns of sub-optimal policies must be significantly lower than
the returns of optimal policies. This makes it easier to identify
agents that use a sub-optimal policy during evaluation. We use
the mean absolute deviation (MAD) to compute the variability
of the policies’ returns. Second, we only select workers that
have a distinct return distribution from the workers that are
already in the curated set. This ensures there exists no globally
optimal policy that can solve all task variations, so non-
adaptive agents will never be optimal. The Mann-Whitney U
test is used to compute the difference between distributions.

We create the curated set of task variations for the narrow
distribution by adding the worker with the highest MAD. We

then perform the Mann-Whitney U test between this worker
and all the others. We consider all workers that have a p-
value ≤ 0.05 and add only the one with the highest MAD to
the curated set. We repeat this process until there are no more
workers that have statistically significant differences from the
ones in the curated set. The last step of the process is to
compute the average normalized return of each policy over the
current set of workers, as shown in Fig. 2. Given the policy
π∗ with the highest average return on all workers, we aim to
minimize its global performance by iteratively adding workers
for which π∗ is sub-optimal. Whenever we reach a point in
which adding a new worker leads to an increase in the average
return, we stop and consider the curated set complete. An
alternative would be that, instead of stopping, we select a new
π∗ and repeat the process. However, we found, empirically,
that stopping early leads to the most diverse set of workers.

For experiments on wide distributions, we create a set of
curated tasks. We sample the parameters of each task as the
number of different colors N ∈ {3,4}, the order of sub-goals,
the number of blocks available to the agent K ∈ {3,4,5} and
the number of blocks required to complete each sub-goal M ∈
{3,4,5}, with M ≤ K. For each task, we then create a narrow
distribution of workers, using the approach described in the
previous paragraph.

F. Baselines

To assess the performance of meta-RL agents in our
environment, we follow the idea of designing accessible
benchmarks [18], by providing a set of three baselines. The
simplest of these is given by a policy that takes actions
at random. A second baseline is given by a random task-
specific policy. Whenever this policy reaches a critical state,
it will randomly select one valid type of action: risky, safe,
complete, or postpone. In non-critical states, this policy takes
the optimal action. Overall, this baseline simulates a policy
that has perfect knowledge of the shared structure of a task

Fig. 2: The normalized returns of all distinct t-optimal policies,
averaged over a set of different workers, for a single task with N = 4
different colors. A policy that reaches a return of 1 is globally optimal
for all workers. The error bars give the minimum and maximum
returns.



(e.g. the correct sub-goal order) but completely ignores the
task-specific structure (i.e. the worker’s behavior).

The last baseline computes the expected return of an optimal
adaptable agent. Computing an oracle policy by brute force or
a Bayes-optimal policy as in [18] is intractable for all but the
simplest tasks in our environment. Instead, we leverage our
knowledge of the environment’s mechanics to reduce the space
of possible optimal policies. We know that only t-optimal
policies can be optimal in a task, so we can safely ignore all
other policies (e.g. policies that complete sub-goals in random
order). We create a set of policies π(a|s,ρ1,ρ2,q), where π

is a t-optimal policy. Given a critical state in a task with N
sub-goals, ρ1 ∈ {0,1, . . . ,N} is the number of safe actions
to take before taking a risky action and ρ2 ∈ {0,1, . . . ,ρ1}
is the number of postpone actions to take before taking a
complete action. In some tasks, given the number of blocks
per color K and the number of blocks required to complete
each sub-structure M, we might have K < M. The optimality
of such actions depends on each specific task and worker. For
q ∈ {0,1}, the t-optimal policy will only use leftover blocks if
q = 1 and there are no other safe actions. We iterate over ρ1,
ρ2, and q to create the set of all possible t-optimal policies for
a specific task. The maximum expected return over a narrow
distribution is computed by running each t-optimal policy on
each worker, selecting the maximum return, and taking their
average. Similarly, for a wide distribution, the same process is
repeated for each task, and the average is taken as the baseline.

IV. EXPERIMENTS

A. Task Adaptiveness

We provide empirical results showing that our worker
distribution, for a task with N = 4 colors, is adaptive. First,
Fig. 2 shows that, for a curated set of task variations, no t-
optimal policy can reach the expected maximum return for all
workers. Therefore, a non-adaptive agent that chooses any of
these policies will never be optimal. Moreover, the maximum
return given by the top error bars shows that each policy is
(almost) optimal for at least one worker.

Second, we show that, for a task using the average worker,
any t-optimal policy is optimal. We use the same task with
N = 4 and the same discretized worker space as in Section
III-E. For each worker, we run each t-optimal policy and
measure the variability of their returns, using MAD. The
average worker has a normalized MAD of only 0.013. This
indicates that any t-optimal policy is optimal for the average
worker. At the same time, the rest of the workers have higher
variability. So, for each of these, there is a subset of t-
optimal policies that are sub-optimal. Fig. 3 presents a visual
explanation of these results. To improve visualization, we only
present the results on a subset of the worker space

B. Performance Results

We present results for three meta-RL algorithms: MAML
[14], PEARL [15] and VariBAD [16]. The literature has shown
these algorithms can achieve high performance in other adap-
tive environments, like Meta-World’s ML1 [17]. For PEARL,

Fig. 3: The MAD of a subset of the discretized worker space [0,1]4.
We choose the subset of vectors where the last two dimensions
are fixed to the average worker. The red bar represents the average
worker.

two changes have to be made before it can be used in our
environment. We modify the soft actor-critic (SAC) algorithm
[27] used by PEARL to work on discrete action spaces [28].
Moreover, we use the version of SAC that automatically tunes
the temperature hyperparameter [29], since manually choosing
the right temperature can be difficult.

We first meta-train the agents on a narrow distribution given
by variations over a single task. We then meta-test these agents
on the curated set of workers. On each worker, the agents
are run for 10 episodes. An adaptable agent is any agent
that improves its performance across episodes. The results
are shown in Fig. 4 (top). We present the average normalized
return per episode. Overall, all algorithms can learn the shared
structure among task variations, e.g. the optimal order of
completing tasks. PEARL shows no signs of adapting over 10
episodes. MAML’s performance decreases as the meta-testing
progresses, reaching a point slightly below the random policy.
VariBAD is the only algorithm that shows signs of adapting
to specific workers, during the first 3 episodes. However, this
is still not enough to reach the performance of the random
task-specific policy, and it is overall far from the maximum
expected return. We measure the adaptability of each algorithm
as the average difference between the last and first episodes.
PEARL has a value of 0.001, which indicates stagnation,
MAML reaches -0.1, while VariBAD reaches -0.06, but shows
signs of adapting during the first 3 episodes, with an adaptabil-
ity value of 0.03. Overall, none of the algorithms manage to
fully solve the task, showing that even simple variations given
by the workers’ probability distributions can be challenging.

Fig. 4 (bottom) shows the results of our experiment for the
agents meta-trained on a wide distribution of several tasks



Fig. 4: The performance of three meta-RL algorithms on the curated
set of tasks for a narrow distribution (top) and a wide distribution
(bottom). For each algorithm in the narrow and wide distributions,
we train with 5 and 3 different seeds, respectively. Performance is
given by the average return, normalized to the maximum expected
baseline, and measured across 10 episodes.

and meta-tested on the corresponding curated set of tasks.
Agents are allowed to adapt to each task-worker pair for 10
episodes. The performance of PEARL and MAML is much
lower than for the narrow distribution. PEARL shows no signs
of adapting, and its performance is only slightly better than
the random baseline. MAML’s performance decreases with the
amount of data. This shows that the agent is at least attempting
to adapt but fails. This behavior is similar to the one observed
in the narrow distribution, but the drop in performance is even
higher. The most surprising result is given by VariBAD. While
the decrease in performance shows a failure in adapting, its
initial performance outperforms the maximum expected return.
We have two possible explanations for this behavior. First,
this might be caused by a limitation in the benchmark, since
we only provide a formal method of creating task variations,
while the task parameters in the wide distribution are randomly
sampled. Second, VariBAD is better suited for handling this
wider distribution, as it performs online adaptation [16]. This
is different from the other two algorithms, which only update
their meta-policy after each episode. Therefore, VariBAD can
adapt within the first episode. Finally, the adaptability values
are lower than in the narrow distribution experiment, with -
0.01 for PEARL, -0.31 for MAML, and -0.17 for VariBAD.

V. DISCUSSION

We have provided a benchmark for developing and evaluat-
ing adaptable agents. Our work was inspired by HRI scenarios,
where unpredictable and dynamic human behavior makes
adaptability essential. Our benchmark allows the random or
manual generation of tasks and task variations of various
complexities. We also provide a method of ensuring that these
tasks are only solvable by adaptable agents. Empirical results
show that current meta-RL algorithms can make progress on
narrow distributions, showing early signs of sample-efficient
adaptation to task variations, or at least of learning the shared
structure of the task. However, even in this case, more work
has to be done to completely solve our proposed distribution.

Similarly to Meta-World [17], we observe that PEARL
generally outperforms MAML, but both algorithms struggle
with wide task distributions. Moreover, in our case, VariBAD
outperforms both PEARL and MAML. The same is true for
Meta-World, with VariBAD almost completely solving the
ML1 narrow task distribution [16]. This reinforces the idea
that the difficulty gap between Meta-World’s narrow and wide
distributions is too large for meta-RL research to progress
smoothly. Finally, it is important to note that VaridBAD was
able to adapt and reach maximal return in two out of three
ML1 tasks in only 1 episode. On the other hand, our results
show that VariBAD is unable to adapt to MEWA within
a single episode, but still improves its performance within
multiple episodes. This offers insights into the capabilities
needed to solve MEWA. An agent must learn a policy that,
during meta-testing, can employ an adaptable exploration
strategy, conditioned on episodes collected from the task the
agent is adapting to.

A limitation of MEWA is that we do not provide a formal
process for defining task parameters for adaptive wide distri-
butions. Moreover, in this work, we decided to prioritize the
complexity of the underlying task dynamics over the complex-
ity of visual-motor elements, but MEWA could be extended to
continuous state and action spaces. We also acknowledge that
a more in-depth analysis of how and why meta-RL algorithms
fail to solve parts of our benchmark will provide more insight
into future directions for adaptable RL algorithms. Finally, we
believe it will be worthwhile to investigate how the structure
shared between tasks affects an agent’s ability to adapt.

Although the meta-RL concept is promising in addressing
challenges in HRI, current SOTA algorithms fail to deliver on
this promise. Our benchmark provides an explicit means to
evaluate new algorithms, focusing particularly on adaptation.
We believe that this will allow future research to develop
meta-RL methods that explicitly target adaptability. This is
in contrast to many of the tasks used in the current literature,
where algorithms that generate a good generalization policy
might still achieve high performance, relative to the optimal
adaptable policy.
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