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Abstract— Combinatorial optimization problems have at-
tracted much interest in the quantum computing community
in the recent years as a potential testbed to showcase quantum
advantage. In this paper, we show how to exploit multilevel
carriers of quantum information—qudits—for the construction
of algorithms for constrained quantum optimization. These sys-
tems have been recently introduced in the context of quantum
optimization and they allow us to treat more general problems
than the ones usually mapped into qubit systems. In particular,
we propose a hybrid classical quantum heuristic strategy that
allows us to sample constrained solutions while greatly reducing
the search space of the problem, thus optimizing the use of
fewer quantum resources. As an example, we focus on the
Electric Vehicle Charging and Routing Problem (EVCRP). We
translate the classical problem and map it into a quantum
system, obtaining promising results on a toy example which
shows the validity of our technique.

I. INTRODUCTION

Optimization problems are ubiquitous in modern science
and engineering, ranging from the design of logistic opera-
tions [1] to the optimization of financial portfolios [2]. For
these problems to be non-trivial, a crucial requirement is the
introduction of constraints into the solutions [3]. Typically
for classical industry-relevant optimization problems, the
number of free parameters handled by classical optimiza-
tion methods quickly meets the exponential computational
threshold and thus they quickly become inefficient.

As a way out, two different strategies are possible: uti-
lizing approximate algorithms [4] or turning to quantum
computation [5]. While the first approach has been pursued
for many decades, the latter field has become very active
in particular in the last 10 years, with two main candi-
dates showing promising results: Quantum Annealing [6]
and Quantum Approximate Optimization Algorithm (QAOA)
[7]–[10]. Recently, researchers from the quantum computing
community have been focusing on the developing of algo-
rithms that make use of qudits (i.e., d−level systems) in order
to tackle problems with tools that can be more versatile and
have a larger information density than regular qubits.

In this paper, we give an example of the beneficial use
of qudits by mapping the highly nontrivial Electric Vehicle
Charging and Routing Problem (EVCRP) into the ground
state computation of an interacting qudit system. This is an
important optimization problem in the transportation industry
that involves finding the most efficient way to charge elec-
tric vehicles while simultaneously determining their optimal
routing. Due to the increasing popularity of electric vehicles
and the need to develop sustainable transportation systems,
this problem is becoming ever more relevant. It is highly
complex, with a large number of constraints that need to
be considered, such as the limited range of electric vehicles
and the availability of charging stations. The importance of
solving the EVCRP lies in its potential to reduce the carbon
footprint of transportation and make it more sustainable. By
finding the most efficient way to charge electric vehicles and
determine their routes, we can optimize the use of resources,
reduce the time needed to charge vehicles, and minimize
their downtime. Furthermore, solving the EVCRP can have
a significant impact on the transportation industry, as it can
lead to the development of more efficient and sustainable
transportation systems. By classical means, this problem
has been studied by using hybrid genetic algorithms [11],
CPLEX solvers [12], and column generation algorithms [13].
Some variants have been studied with hybrid combinations
of annealing and linear programming [14].

For solving the EVCRP, we focus on exploiting a novel
hybrid quantum–classical search space reduction heuristic
method [15] for imposing constraints in the solutions sam-
pled by quantum algorithms. In particular, we design a
Grover based algorithm for sampling partial solutions and
we design a classical heuristic for obtaining an approximate
global solution. This allows us to greatly reduce the search
space of the quantum algorithm so that it can be implemented
on currently available NISQ hardware, finding solutions with
an approximation ratio close to one.

The rest of the paper is structured as follows: in Section II,



we define the classical optimization problem and explain in
detail the mapping to the Hamiltonian used in the quantum
algorithm; in Section III, we first define our heuristic method
for constraint handling and then, in Section IV, we show
some preliminary results for a small problem instance. Sec-
tion V concludes the text with a summary of the article and
a perspective of the future work.

II. DESCRIPTION OF THE EVCRP PROBLEM

The problem we aim at solving in this work is the EVCRP.
Previous formulations of the problem involved too many
variable for it to be tractable with quantum resources [16],
[17], or were oversimplified, allowing for efficient greedy
heuristics [18], [19]. In this work, we have designed a prob-
lem formulation which condenses all the relevant features
of this problem while keeping the number of variables low,
O(3N).

A. Definition of the classical problem

The problem describes the charging of N electric vehicles
over the course of a number T of discrete time steps. At
each time step t ∈ {1, ...T}, each vehicle n ∈ {1, ..., N} is
characterized by three quantities:

• Charge level of the vehicle, CLn,t.
• Flowing energy from the grid to the vehicle, POWn,t.
• Position of the vehicle at the end of step t, POSn,t.

A general solution of the problem is described by the string
of values

z = (CL1,1,POW1,1,POS1,1, . . . ,CL1,T ,POW1,T ,

POS1,T , . . . ,CLN,T ,POWN,T ,POSN,T ) ,

from which one can reconstruct the whole charging process
of the N vehicles during T time steps.

The goal is to use these variables in order to minimize the
value of a target function that represents the overall cost of
the charging process, while making sure that the solutions
fulfill a given amount of constraints imposed by external
factors. In our case, the target function represents the actual
cost (i.e., money spent) of the whole charging process and
is described by the function

C(z) =

N∑
n=1

T∑
t=1

POWn,t ·

{
pct if POWn,t > 0,

pdt if POWn,t < 0,
(1)

where pct is the cost of buying one unit of energy at time
t, and pdt the corresponding cost of selling. While this
function takes into account only the possible Charge state
configurations, the Positions and Charging levels are used
to define the constraints on the problem solution. For this
problem, we consider the following constraints:

1) Initial and final positions of each vehicle are fixed,
POSn,0 = (POSini)n, POSn,T = (POSfin)n.

2) Initial CL is fixed, and the final CL must be above a
threshold value, CLn,0 = (CLini)n, CLn,T ≥ (CLfin)n.

3) A vehicle can only (dis)charge if it does not move,
POWn,t ̸= 0 ⇒ POSn,t−1 = POSn,t.

4) The CL of the vehicle must change when it
(dis)charges, CLn,t − CLn,t−1 = POWn,t.

5) The car loses w(i, j) energy while moving from point
i to j, POSn,t−1 ̸= POSn,t ⇒ CLn,t = CLn,t−1 −
w(POSn,t−1,POSn,t).

6) The CL of the vehicle must be between certain levels,
CLmin ≤ CL ≤ CLmax.

7) At each time step, the sum of the power consumed
or supplied by the cars must be below a threshold,
POW-lim <

∑
n POWn,t < POW+lim.

Here, we just limit ourselves at stating the list of constraint,
while in the next section we explicitly explain how it is
possible to include them in the quantum formulation of the
problem.

B. Mapping to Quantum
We map the problem by defining a Hamiltonian such that

Hc |z⟩ = C(z) |z⟩. In this way, the solution of the problem
can be found by computing the ground state of Hc. We
do that by first defining a set of operators {Ô} and an
orthonormal basis of states {|z⟩} that describe the variables
and configurations defined in the previous section. To be
more specific, we define these operators such that they are
diagonal on the basis {|z⟩} and their eigenvalues correspond
to the classical variables POW, CL and POS:

POWn,t = α → |α(POW,n,t)⟩ (2)
CLn,t = α → |α(CL,n,t)⟩ (3)

POSn,t = α → |α(POS,n,t)⟩ (4)

In general, each operator will have a number of eigenvalues
equal to the number of possible classical variables associated
to it. The natural mapping to the problem is then a composite
qudit space.

In the case we have binary variables, we can promote them
to the Pauli basis with the following transformation, x̂i →
(1+σz

i )/2. However, the codification we are employing for
the quantum variables is in general not binary, so designing
a target Hamiltonian that is implementable can be a difficult
task. In contrast to the Pauli basis for Hermitian operators
for two dimensional Hilbert spaces, for higher dimensional
spaces there is no consensus about the preferred basis [20].
In order to avoid making the description of the Hamiltonian
too basis specific, we have decided to express it in terms of
Dirac delta operators.

If we call (d1, d2, d3) the number of allowed values
of the classical variables (CL,POW,POS), the Hilbert space
described by each of these qudits is Cdi . The total Hilbert
space H = C⊗Nd1 ⊗ C⊗Nd2 ⊗ C⊗Nd3 has dimension
(d1d2d3)

NT and the basis states are written in the form

|z⟩ =
N⊗

n=1

T⊗
t=1

|α(CL,t,n)⟩ ⊗ |α(POW,n,t)⟩ ⊗ |α(POS,n,t)⟩ . (5)

The cost Hamiltonian HC can thus be defined as

Hc =

N∑
n=1

T∑
t=1

 (d2−1)/2∑
j=−(d2−1)/2

j

{
pct if j > 0

pdt if j < 0

}
|j(POW,t,n)⟩ ⟨·|

 .

(6)



For readability, we employ the simplified notation
|ψ(A,t)⟩ ⟨ψ(A,t)| ≡ |ψ(A,t)⟩ ⟨·|, where the label (A, t)
refers to the qudit encoding the information about the
variable A for the time step t. Constraints 1-5 can be
introduced as energy contributions that lower the energy
of the allowed states. Constraint 6 can be introduced by
defining a one-to-one mapping such that we limit the
dimension of the qudits encoding the information about the
CL to be equal to the number of allowed charging levels.

The contributions to the Hamiltonians for each respective
constraint are introduced as follows for the different cars:

H1 =− |(POSini)(POS,0)⟩ ⟨·| − |(POSfin)(POS,T )⟩ ⟨·| , (7)

H2 =− |(CLini)(CL,0)⟩ ⟨·| −
CLmax∑
j=CLfin

|j(CL,T )⟩ ⟨·| , (8)

H3 =−
#POS∑
i ̸=j

|i(POS,t−1); j(POS,t); 0(POW,t)⟩ ⟨·| , (9)

H4 =−
T∑

t=1

CLmax∑
j=CLmin

POWmax∑
k=−POWmax

k ̸=0

|j(CL,t−1); (j + k)(CL,t) ; k(POW;t)⟩ ⟨·| , (10)

H5 = −
T∑

t=1

CLmax∑
i=CLmin

#POS∑
j ̸=k∣∣∣i(CL,t−1); (i− w(j, k))(CL,t) ; j(POS,t−1); k(POS,t)

〉
⟨·| .

(11)

In H4, if j + k is outside the encoded values for the CL,
then we discard the term, and similarly in H5 if i−w(j, k)
is not encoded. We then construct the full Hamiltonian by
summing each term

H = Hc +

5∑
i=1

λiHi (12)

and look for the ground state. Here, the parameters λi >
0 are factors that lower the energy of the feasible states
to ensure that the ground state corresponds to a feasible
solution.

III. SEARCH SPACE REDUCTION HEURISTIC

A seen in the previous section, if we map the full opti-
mization problem to the problem of finding the ground state
of the Hamiltonian in Equation 12, we will need a large
amount of resources. In particular, we will need a number
of qudits that scales exponentially with the number of time
steps and the number of vehicles. This scaling renders the
problem unsolvable for the current NISQ-era devices.

For solving the EVCRP, we will employ a Search Space
Reduction heuristic. This heuristic aims at employing the
limited quantum resources in a more efficient way, by
dividing constrained optimization problems into a two step
problem. The main idea is to classify the constraints into two
types: global and partial constraints. On one hand, partial

constraints act in parallel on a small number of variables.
On the other hand, global constraints have to be enforced on
a large number of variables at the same time. It follows, that
in order to solve the problem, the full solution must fulfill
all the partial constraints. In other words, full solutions can
be built as a concatenation of feasible partial constraints.
This distinction allows us to target the complete problem in
two steps. First, we need to find the set of feasible partial
solutions. Second, we can try to find the optimum for the
problem, or at least a good approximation, by selecting a
combination of feasible partial solution that qualifies as a full
solution. This kind of strategy has been employed previously
for solving the Bin Packing Problem [15], [21].

The main advantage that we obtain from employing this
strategy is that we can benefit from the advantages of
quantum computing on problems whose scale is still man-
ageable in the NISQ era. The noise levels on the current
quantum devices, the small amount of qubits and their limited
connectivity, prevent us from implementing long quantum
circuits tackling medimum-large scale problems. This is why
this hybrid heuristic may offer one solution to this limitation,
as it employs the quantum resources only for the problem
of finding feasible partial constraints. After that, a classical
procedure generates the solution to the full problem.

A. Partial problem sampling

In the EVCRP, the partial/global constraint distinction can
be made in a natural way. The constraints acting on the
different cars (i.e., constraints 1 to 6) can be labeled as the
partial constraints. Then, global solutions can be constructed
as a combination of one of the partial solutions from each of
the vehicles. For the task of sampling these partial solutions,
we review here three possible algorithms.

1) Ground state search: As stated in the previous sec-
tion, classical problems can be mapped to the problem of
finding the ground state of a Hamiltonian. In this case, our
objective is to sample all feasible partial solutions. Since
the information about the cost function is irrelevant for the
feasibility of the solutions, the Hamiltonian we employ is
the sum of the Hamiltonian terms encoding each of the
constraints, this is, the H1 to H5 terms form Equations 7-
11. This Hamiltonian can be then employed as the target
Hamiltonian for various algorithms, whose goal is to search
for its ground state. The most well known algorithms for
doing so are quantum annealing and QAOA, which both have
been extensively studied in the literature.

2) Grover: Even though it seems counterintuitive to
employ the Grover algorithm for solving an optimization
problem, for the search space reduction heuristic we only
need to find feasible partial solutions. Since the answer if a
partial solution is valid is only yes or no, we can generate
an oracle for this task. The generation of a Grover oracle
in general is a complex task, and automatic compilers tend
to provide suboptimal circuits [22], [23]. In this case, it
is even more challenging, since we are working with k-
dimensional qudits. As the task of giving an efficient circuit
for implementing the sampling algorithm is out of the scope



of this work, we will employ the analytic results from [24]
for analyzing its performance. The success probability of
the Grover algorithm for finding one of K solutions in a N
dimensional Hilbert space is

P (N,K, i) = sin

(
(2i+ 1) arcsin

(√
K

N

))
, (13)

where i is the number of Grover iterations.
In [24], a strategy was proposed for finding one solution

without prior knowledge about the number of solutions.
Our problem is slightly different, since our objective is
to sample as many of these solutions as possible. This
means, that each time we obtain a new solution, the size
of the target set decreases by one. For making this sampling
more efficiently, we propose a new heuristic for selecting
the number of j iterations in each run. The new strategy
consists in a deterministic sweep from

√
N iterations to 1

(heuristic decreasing), and vice versa (heuristic increasing).
When hitting the limit, we reset the number of iterations to
the initial position. In Figure 1, we see that the decreasing
strategy outperforms the rest of the strategies for a relatively
small number of feasible solutions. In these cases, is also
worth noting that running the algorithm with a constant
number of iterations,

√
N , also performs well. However, as

we increase the number of feasible solutions, its performance
decreases rapidly.

3) Classical sampling: As for other satisfiability prob-
lems, we have a plethora of classical algorithms for sampling
feasible partial solutions. However, since the constraints gen-
erate a rich structure for the problem, we can always find a
way of employing prior information to speedup the sampling.
To be most efficient, this requires a deep understanding of
the problem and its symmetries. Here, instead of trying to
find an efficient classical method, we employ a naive random
sampling method for setting the baseline for a comparison.

B. Global solution search

The second step of the proposed heuristic is to generate
full solutions to the problem and optimize them according
to the cost function. Since the full solutions involve a
high number of variables, we decide to solve this problem
employing only classical resources. For the EVCRP the goal
is to select one feasible partial solution for each of the cars.
We propose two different strategies for this task.

1) Bruteforce: Assuming that we have correctly sampled
all the partial solutions, we can obtain the optimal solution
to the problem by trying all possible combinations of them.
For small problems, this strategy is affordable. However,
as the number of solutions per car or the number of cars
grow, the number of combinations increases rapidly. For this
reason, it is essential to find a heuristic that can obtain a
good approximate solution employing as few resources as
possible.

2) Greedy tree: The cost function for this problem allows
us to compute it as the sum of the cost of each vehicle.
This allow us to order the partial solutions in terms of
their cost. Let us order these partial solutions in ascending

Fig. 1. Number of sampled partial solutions with a Grover algorithm in
a N ∼ 2 · 108 dimensional Hilbert space vs number of circuit runs. From
top to bottom, we aim at obtaining K = 6, 22, 100 feasible solutions. We
compare 4 different strategies for selecting the number of Grover iterations
for each run. We conclude that the heuristic in which we increase the number
of iterations in each consecutive run outperforms other tested strategies for
the sampling task.

order, assigning the index 0 to the one with lowest cost. If
we ignore the global constraints, the best possible overall
solution would be the one that takes the best solution for
each of the vehicles. In this case, the sum of the indices of
the solutions from which we have built the solution would
be 0. However, when imposing the global constraints, it is
unlikely that this naive solution is allowed. We propose a
tree search strategy where we explore the solutions by levels,
each of them corresponding to the sum of the indices of the
solutions. Even though this strategy cannot assure to output
the optimal solution for every problem, it is likely to be close



Fig. 2. Graph for the routes between the 4 different nodes for the
toy problem, with w = [0, 0, 0, 1; 0, 0, 0,∞;∞, 0, 0, 0; 1,∞, 0, 0]. The
thicker lines between nodes 1 and 4 marks routes which have a cost of 1
unit of energy for traversing them. The rest of the thin lines depict routes
where the energy cost is 0. All the edges can be traversed in a single time
step.

to the optimal one.

IV. TOY PROBLEM

For testing that the proposed heuristic is a valid approach
for solving the EVCRP, we have benchmarked it employing
a synthetic toy problem. At this stage, all the testing has been
done analytically or by numerical calculations.

The problem instance tries to optimize the charging and
routing schedule of N = 4 cars in T = 4 time steps.
The graph where the vehicles move has 4 nodes (POS=
{1, 2, 3, 4}), with some missing connections and a road that
requires the expenditure of energy to traverse it, as shown in
Figure 2. The initial/final charge and position requirements
are shown in Table I. For the power grid requirements
for the global constraint, we set the maximum total power
to POW±lim = ±3. The energy market is defined by the
energy buying price, pc = [3, 5, 4, 5], and the selling price,
pd = [2, 4.5, 3.5, 4]. The allowed values for the rest of the
variables are CL= {1, 2, 3, 4, 5} and POW= {−1, 0, 1}.

TABLE I
INITIAL AND FINAL REQUIREMENTS OF THE POSITION AND THE CHARGE

LEVEL OF THE DIFFERENT VEHICLES FOR THE TOY PROBLEM.

POSini POSfin CLini CLfin

Vehicle 1 2 4 3 5
Vehicle 2 1 3 1 3
Vehicle 3 2 3 1 4
Vehicle 4 4 1 3 4

A. Results

We have run numerical simulations for both of the sam-
pling of feasible partial solutions and the generation of full
solutions from the partial ones.

For the first task, we have run a numerical calculation
for the Grover algorithm. For this, we employed the four
different strategies mentioned in Section III-A.2 for selecting
the number of Grover iterations in each run. Since the goal

of this numerical test was to test the strategies without any
prior knowledge, the program does not have any access to
the number of feasible solutions for the problem. The results
are similar to the ones shown in Figure 1, in which for
the vehicles with a low number of feasible partial solutions
the standard and the decreasing heuristics are equally the
best performing ones. As the number of feasible partial
solutions increases, the performsnce of the standard strategy
decreases. In all cases, the decreasing heuristic displays the
best performance for the task of sampling, regardless of the
number of feasible solutions.

For the second subroutine of our heuristic, we tested
the greedy tree search strategy for this problem, and we
compared it to the optimal solution. For this, we first assumed
that the sampling strategy is able to extract all the feasible
partial solutions. The optimal solution is computed with a
brute-force algorithm, which exhausts all combinations of
partial solutions. For this instance, the solutions range from
a cost of 31 to 48 in jumps of 1. After just a single step,
our heuristic outputs a solution with a cost of 36, which
corresponds to an approximation ratio 1.16, defined as the
ratio between the obtained cost value and the optimal one,
ε = f/fopt. This result shows that this strategy is able to
find competitive results with a reduced number of steps.
We are confident that this strategy will successfully generate
solutions for instances where a brute-force approach is not
an option due to the high number of combinations.

The performance of the search space reduction can not be
conclusively addressed by the success for a single problem
instance. However, in this case, the reduction in the search
space can be directly seen. For the toy problem, the original
search space has a size of order ∼ 1028. The encoding we
have selected for the sampling of partial solutions generates
a Hilbert space of dimension ∼ 108. The number of feasible
partial solutions is {6, 22, 4, 19} for each respective vehicle.
The combination of these partial solutions generates a space
of ∼ 104 different global solutions, from which only ∼
300 are allowed by the global constraint. This reduction
in the search space can be advantageous for tackling real-
size EVCRPs by jointly employing quantum and classical
resources more efficiently.

V. CONCLUSION

In this work, we proposed an enriched version of the Elec-
tric Vehicle charging problem which includes discharging
and routing of the vehicles. This new formulation enlarges
the space of solutions and introduces new constraints into
the problem. A useful characteristic of this new constraint
set is that it allows us to classify the constraints as local or
global, thus permitting us to employ a search space reduction
heuristic. We showed how to encode the partial constraints
into qudit quantum architectures. In particular, we proposed
a sampling of the partial solutions by mapping the problem
into a ground state problem. We also proposed a Grover
algorithm, for which we tested its performance in a noiseless
setup. Then, we obtained the global solution to the problem
through a greedy heuristic. We tested this strategy on a toy



problem, for which we obtain a global solution with an
approximation ratio of 1.16. From here, we conclude that
the proposed heuristic may be a valid strategy for solving
combinatorial optimization problems.

For a future line of research, the next steps should consider
a practical implementation of the quantum subroutine on a
quantum device, in particular also harnessing the ability to
manipulate qudits that has been demonstrated or proposed
for various platforms [25]–[28]. Even though in this work we
have focused on a Grover algorithm for the sampling, future
works should also consider variational quantum circuits and
adiabatic processes. There is also a need for developing a
proper framework for the search space reduction heuristic,
which is still in development. We hope that the techniques
described here can in the future help solving realistic trans-
port and logistic problems by employing quantum resources
efficiently.
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