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Predictive and Robust Robot Assistance for Sequential Manipulation
Theodoros Stouraitis1 and Michael Gienger1

Abstract—This paper presents a novel concept to support
physically impaired humans in daily object manipulation tasks
with a robot. Given a user’s manipulation sequence, we propose
a predictive model that uniquely casts the user’s sequential be-
havior as well as a robot support intervention into a hierarchical
multi-objective optimization problem. A major contribution is
the prediction formulation, which allows to consider several
different future paths concurrently. The second contribution is
the encoding of a general notion of constancy constraints, which
allows to consider dependencies between consecutive or far apart
keyframes (in time or space) of a sequential task. We perform
numerical studies, simulations and robot experiments to analyse
and evaluate the proposed method in several table top tasks where
a robot supports impaired users by predicting their posture and
proactively re-arranging objects.

Index Terms—Physical Human-Robot Interaction; Human-
Aware Motion Planning; Optimization and Optimal Control

I. INTRODUCTION

ASSISTIVE robots can play a crucial role for more than
200 million humans that need assistance with activities

of daily living (ADLs) [1], such as getting out of bed, going to
the restroom, preparing a meal, etc. Towards addressing this
societal challenge [2], the areas of physical Human-Robot-
Interaction (pHRI) [3] and rehabilitation robotics [4] have
developed approaches for ergonomic [5], safe [6], and person-
alised [7] support. Key challenges studied are capturing human
motion [8], anticipating human behaviour [9], modelling robot
behaviour influence to the human behaviour [10], and coping
with variations [11], [12] of human behavior due to factors
like disabilities, partial observability, etc.

In this paper, we study these challenges in the context
of manipulation. Our focus is on temporally extended ADLs
that require sequential manipulation capabilities. As a typical
example, consider an impaired human (immobilized left arm)
preparing a beverage, as shown in Fig. 1 and Fig. 2. This task
requires bimanual operations, and due to the injury the human
has rely on the robot support. To provide optimal support, the
robot needs to predict the human’s actions (discrete decisions)
and their outcome (continuous states) [13], assess the possible
human postures [14], and intervene to assist. Key to this
scenario is that the prediction needs to consider a set of
possible futures, as accurate predictions of the human’s actions
might not be possible.
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Fig. 1. Illustration of the presented concept in a supported pour-bottle-
into-glass task. A robot intervenes to move the glass (transparent view) to a
location on the table that enables an impaired user to comfortably pour the
content of a bottle into it. The supported human (solid view) is enabled to
perform the task optimally given an ergonomic metric. In the non-supported
case, the (transparent) human needs to get into an uncomfortable posture.

In this work, we assume that the action schedule (task-level
coordination [15]) is known, and we focus on interventions
that (i) adjust continuous geometric quantities, e.g. change the
pose of the mug, (ii) parallel actions, e.g. while the human
picks the bottle the robot fetches the mug. Following the
”assist-as-needed” principle1, we view the robot interventions
as preparatory actions [16] that enable or ease subsequent
actions and motions of the impaired human. This translates
into a method that has as backbone a physics-based prediction
mechanism, which allows us to investigate the effects of
possible (robot) interventions. The prediction mechanism can
be considered as part of combined task and motion planning
(TAMP) [17], where the task schedule (linear or tree sequence
of modes in the form of constraints) is given. Adapting online
the sequences of modes [18], [19] is beyond the scope of this
work. Thus, we ask ourselves the question ”how to turn an
action schedule into a prediction of the human’s plan while
considering; (a) set of possible futures, and (b) the influence
of intervention by a robot?

We focus on the low-level geometric choices in keyframes,
rather than computing trajectories as in Trajectory Optimiza-
tion methods. Keyframes represent important transitions within
the action sequence such as contact transitions or the start of a
new task-level trajectory. They describe the subgoal structure
of the task. Based on keyframes we developed an efficient
constraint resolution method that; (i) can consider both a linear
and a tree-like sequence of modes, (ii) holds robot actions and
their effects, (iii) scales to large sequences of high dimensional
systems, like the DoFs of the human body, and (iv) is
reactive in the sense that predictions can be updated within
few hundreds of milliseconds. We call this, reactive Tree-

1”assist-as-needed” indicates that assistance should be minimal to motivate
the voluntary contribution of the impaired human (patient).
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Fig. 2. Illustration of a sequential manipulation where the robot assists a human to prepare a beverage by pushing the milk and rotating the mug.

Consistent-Constraint (TCC) resolution method. The action
schedule defines a set of constraints, and TCC predicts a
sequence (linear or tree) of keyframes that satisfy them. The
interdependecies between these keyframes are formed with
spatio-temporal constraints that create links between bodies in
task space, such as objects, end-effectors, etc. Interventions
are represented with open variables that are optimised to
satisfy secondary objectives, such as postural preferences. The
contributions of our work are:

• The reactive Tree-Consistent-Constraint (TCC) method
that can simultaneously compute a set of possible futures
based on temporal and concurrent dependencies.

• A computation formalism based on Damped Least
Squares (DLS) to cast cooperative sequential manip-
ulation as a single underactuated system where robot
assistance (i.e. interventions) lies in the null-space of
manipulation sequences.

• Demonstrating the capabilities of TCC to predict and
optimize keyframes of uncertain human manipulation
sequences including assistive robot interventions.

In Section II, we review the related work, in Section III we
formally set the problem and in Section IV, we present our
method. In Section V we evaluate the proposed method and
demonstrate its capabilities in real world setups.

II. RELATED WORK

A. Human-aware prediction, planning and control

An extensively studied prediction area is ground-level 2D
trajectories [20]. In contrast to that, we focus on predicting
articulated full body motions in manipulation sequences. Prior
model-based approaches demonstrate local adaptation of the
robot posture that accounts for the overloading human joint
torques [5], [21]. Others learned models to predict human
motion and to adapt the robot plans. In [22] human-robot
interaction primitives are used to select and coordinate the
robot movement with the recognized human actions, while
in [6], [23] safe (in terms of collision) concurrent (human
and robot) reaching motions are demonstrated. These works
studied prediction of articulated bodies, yet they only consider
short-term interactions without sequential dependencies, i.e.
interdependencies in a series of actions.

Most relevant to our work are cooperative TAMP meth-
ods [13], [24] that plan decisions and motions of both the
human and the robot (articulated bodies) towards finding
offline the optimal robot manipulation plans. In our approach
predictions can be updated on-the-fly, as in [24], yet ours also
enables simultaneous consideration of a set of possible future
sequences, rather than a single linear sequence.

B. Spatio-temporal constraints

Prior work has proposed various constraint formulations
to efficiently synthesize whole-body motion plans. These
motions exhibit complicated dependencies across concurrent
tasks (same time-slice) [25], and along the horizon (between
keyframes) [18]. This led to the question: ”How to model
concurrent and sequential dependencies with constraints?”

Explicit geometric constraints (distances, friction cone, etc)
have been used in [26] to form and solve a multi-robot
co-manipulation problem. Task-space-region-chains [25] were
proposed to link together a set of workspace-goal-regions
(similar to task-intervals [27]) and form a manifold where
RRT-based planners can search for whole-body manipulation
paths. Both approaches can consider concurrent dependencies,
e.g. closed kinematics chains, multiple robots postures, etc.
Yet, they did not consider sequential representations of several
connected postures.

Temporal dependencies—a crucial modelling aspect of se-
quential motions—were analytically modelled by linking con-
secutive footsteps given symmetric gait patterns in [28]. The
Contact-Consistent Elastic Strips framework [29] combined
the concept of task-intervals [27] or task-space-region [25]
with contact-consistent constraints that couple the consecutive
robot poses to generate multi-contact locomotion plans. More
generally temporal dependencies can be encoded as constancy
constraints [18] either by pair-wise coupling constraints or
by sharing of DoFs across time-slices [30]. We use task-
intervals [27] and we broaden the notion of constancy con-
straints to capture both temporal [18] and concurrent depen-
dencies. This enables us to optimize manipulation planning
trees, rather than linear sequences.

III. PROBLEM STATEMENT

Our goal is to investigate the influence of robot assistive
actions in sequential manipulation tasks that include a set of
objects and are performed by an impaired human. To do that,
we break-down the problem into two focal points.

Following the multi-modal motion planning (MMMP) no-
tation, we denote the configuration space (C-space) of K
movable objects2 as O = O1 × ... × OK ⊆ SE(3)K , the C-
space of the human is H ⊆ Rα. Hence, the configuration space
of the prediction problem is P = H × O ⊆ SE(3)K × Rα,
in which we are searching for paths (to be executed by a
human) that have a known initial configuration p0 ∈ P and
comply with constraints of the sequential manipulation task.
These consider task-scenario specifications—e.g. impairment,
connected objects, stable contacts, constant grasps, etc—and
temporal transitions—e.g. whether an object can move or

2The superscripts on Os, θs and Bs are indexes and not exponents.
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not, whether an object can slide in a hand or not, etc—
such that the path is feasible. The former partitions the
configuration space, while the latter shapes how the partitions
of the configuration space are linked together. We represent
specifications and transitions with constraints as TP(·) ≤ 0,
where TP(·) : Pγ −→ Rγ and γ is the total number of
constraints (more details are provided in Section IV).

Many possible futures: A sequential manipulation task is
conditional on the preferences of the human that performs
it. For example, a human might prefer to first pick up the
milk and then the mug (see Fig. 2) or vice versa, or a human
might prefer to power-grasp the mug, rather than picking it
up from the handle using a pinch-grasp. We describe these
preferences by the latent variable θ, which is one out of a
finite set of many predefined preferences2 Θ = {θ1,θ2, ...θι},
also referred to as modes in MMMP. The human preferences
are not likely to be known in advance, hence a prediction of
N future manipulation steps should be able to consider many
preferences concurrently.

First focal point: Develop a prediction method that predicts
a set S of feasible future paths in P . This set is

S =
{
h1:N ,ok

1:N : TP(p0,h1:N ,ok
1:N ; Θ) ≤ 0

}
, (1)

where h1:N and ok
1:N are linear sequences of configurations

for the human and the movable objects, respectively.
Influence of interventions: Let us consider that an assistive

agent (robot)—with C-space Q ⊆ Rβ—can also manipulate
the same movable objects. Including the robot agent results
in an extension of the configuration space to X = P × Q ⊆
SE(3)K×Rα+β , with total number of dimensions represented
by dx ∈ R. Thus, we extend TP(·) to TX (·) ≤ 0 with
TX (·) : X γ −→ Rγ , such that it can also encode robot specific
constraints. Using the above we can now define a prediction
set S ′ of feasible future paths that are influenced by the robot’s
interventions, as

S ′ =
{
h1:N ,ok

1:N : TX (x0,h1:N ,ok
1:N ,q1:N ; Θ) ≤ 0

}
, (2)

where x0 ∈ X is a known initial configuration, and our goal
is to optimize the robot’s interventions such that S ′ has lower
cost than S according to a metric of the human state.

Second focal point: Find a single linear sequence of robot
configurations q1:N that minimizes a metric for all possible
future paths of the human. This can be expressed as

min
q1:N

c (h1:N ) (3a)

s.t. ∀ h1:N ⊂ S ′ (3b)

where S ′ contains all the possible future paths of the human
which according to (2) depends on the robot plan q1:N ,
i.e. robot interventions. Cost function c(·) is a metric of
the human state, e.g. comfort, ergonomics, effort, etc. Note
that (3) is a Robust Optimization (RO) problem as we seek
to find a solution that minimizes a metric for all possible
futures. Specifically, this is a multiforecast model predictive
optimization formulation (see sec. 9.9.3 in [31]).

task constraints constancy constraints

Fig. 3. Illustration of the constraints used to describe the first three keyframes
of Fig. 2 with the robot and its actions being omitted for clarity. Task
constraints are used only within keyframes and constancy constraints are used
between keyframes, hence they are illustrated with arrows to link timeframes
and diamonts to indicate which dimensions remain constant.

IV. METHOD

To achieve the two focal points stated above, we propose
a model-based optimisation approach that has the two follow-
ing key aspects. First, the constraints TX (·) ≤ 0 are task
constraints for each keyframe and constancy constraints that
encapsulate a notion of invariance between keyframes. Fig. 3
shows these types of constraints being used to describe a
sequence of manipulation actions. Second, we developed a
barrier method that uses a Levenberg–Marquardt update to
resolve all the constraints concurrently (even across parallel
future paths). Solve an optimization problem with all con-
straints shown in Fig. 3 results in the corresponding keyframes
of Fig. 2 (three first). This allows us to regard all possible
futures (via the constraints) as primary objectives and treat
the robot’s assistance as secondary objectives and hence, find
a single linear sequence of robot interventions that improves
the human state for all possible futures. Next, we describe
these two aspects in detail.

A. Spatio-temporal constraints

To ease the description that follows, we introduce L number
of bodies that belong to the kinematic chains of the human or
the robot (functions with domain H and Q)3, and we denote
their C-space2 as B1, ..., BL ⊆ SE(3).

Task constraints: We use task constraints to analytically
model each manipulation step (time-slice). These can be
written as g (xi) ≤ 0, where g(·) : X −→ Rγg with γg ∈ R and
i indicates the current keyframe in a sequence. The explicit
form, in terms of input arguments, of g(·) is

g({ok
i },hi,qi, {bl

i}) ≤ 0, (4)

where k ∈ [1, ..K] is the index to an object, l ∈ [1, ..L] is the
index to a body, and ok

i ∈ Ok,hi ∈ H,qi ∈ Q, and bl
i ∈ Bl

are configuration vectors. With the explicit form we formu-
late task constraints that describe manipulation actions, e.g.
grasping and pushing actions—g(ok

i ,b
l
i), and relations in

task space between objects and bodies, e.g. collision between
objects—g(ok

i ,o
k′

i ). With task constraints we also enforce
kinematic and dynamic functions of multi-bodied systems, e.g.
forward/inverse kinematics of the human g(hi, {bl

i}) and the
robot g(qi, {bl

i}). Task constraints are also used to represent
human impairments, e.g.use of cane for support, limited joint
ranges at the knee, etc. Each keyframe can have many task

3Note, that Bs are redundant, they are not represented explicitly in our
method and are only used here to ease the description of constraints.
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Algorithm 1: From task to constancy constraints
Input: T ; /* Set of task constr. */

1 foreach i ∈ [1, ..., N ] do
2 j ← par(i) ; /* Get parent index */

// For any object or any body
3 foreach ω ∈ [o1, ..., oK ] ∨ [b1, ..., bL] do

// Check if parent & child have same task
constr.

4 if g(ωi) == g(ωj) then
5 remove g(ωj) from T ;

6 add f̄(ωi, ωj) in T ;
7 end

// For any object or any body
8 foreach β ∈ [o1, ..., oK ] ∨ [b1, ..., bL] do

// Check if relative task constr. between
objects and/or bodies is constant

9 if g(ωi, βi) == g(ωj , βj) then
10 remove g(ωj , βj) from T ;

11 add f̄(ωi, βi, ωj , βj) in T ;
12 end
13 end
14 end
15 end
16 return T ; /* Updated constr. set */

constraints that together specify critical points of the sequence
(see Section I) or mode switches (a.k.a. transition manifolds)
in MMMP or TAMP terminology [32] (a.k.a. jumps in hybrid
dynamical systems).

Constancy constraints: We use constancy constraints to
capture dependencies between keyframes, such as fixed pose
between a hand and a bottle in three keyframes (i) grasping
a bottle, (ii) holding it to pour into a mug and (iii) place it
on the table, i.e. constancy constraints describe which motion
dimensions between different keyframes remain constant.

Generally, a system’s evolution within a mode (a.k.a. sys-
tem dynamics or flow in hybrid dynamical systems) can be
described using running constraints [18]. Their discrete form
is f(xi,xi+1,ui) ≤ 0, with ui representing the control
input. In case certain dimensions of a linear sequence remain
constant (e.g. stable grasps, contacts, etc) or bounded (e.g.
in-hand motions; an object sliding in the hand), these can
be simplified to constancy constraints f̄(xi,xi+1) ≤ 0 that
encode temporal indifferences between consecutive in time
keyframes [18]. Yet, when considering tree-like sequences
(many possible concurrent futures), there is also the need to
capture dependencies that occur between different keyframes
of the same time-slice. Thus, we define constancy constraints
as

f̄(xi,xj) ≤ 0, (5)

where f̄(·) : X × X −→ Rγf̄ with γf̄ ∈ R specify a pair-
wise coupling between i and j indexes of any two keyframes
(i ̸= j) even of the same time-slice.

Sequential invariance: Consider a keyframe where a human
holds a bottle with the right hand, this keyframe can be
followed by a keyframe where the human places the bottle
on the table while still holding it with the right hand, but not
by a keyframe where the human holds the same right hand a
glass. In such a case, some dimensions of X (see Section III)
between adjacent4 keyframes remain the same—invariant—
e.g. the distance between the right hand and the bottle (hold-
ing). Hence, such invariant dimensions can be enforced with
constancy constraints based on Algorithm 1.

4Adjacent keyframes are specified via parent-child relationship.

Minimal description: We ensure that task and constancy
constraints are described using a minimal set of coordinates,
e.g. an object placed upright on the table requires a 1-dof
height and a 1-dof inclination constraint, and not a 6-dof pose
constraint. Further, constraints are modelled as inequalities to
allow task coordinates to vary within some given bounds, e.g.
the placement of an object on a table may be anywhere within
the extents of the table surface.

By exploiting the two above properties, we attain the
maximal null space for each keyframe and we link the
keyframes’ null spaces along the sequence (linear or tree) to
consider favorably interdependencies between keyframes and
holistically optimize objectives across keyframes. This enables
our method to reach better minima for the whole sequence as
shown in Section V-A.

B. Tree-Consistent-Constraint Problem

By assembling a sequence of task and constancy constraints
as described above, we can specify the schedule of manipu-
lation tasks (a.k.a. skeleton [13]) with which we can predict
how the human might execute the sequential task. We treat
the prediction of the sequential task as primary objective,
e.g. will the human pick the bottle or the mug, and the
assistance as secondary objective (inspired by the ”assist-as-
needed” principle), e.g. where should the robot push the bottle.
Based on this strict hierarchy of objectives, we realize the RO
problem (predict and assist) defined in (3) as

lexmin
x1:N

{c1 (x1:N ) , c2 (x1:N )} (6a)

s.t. f̄ (x1:N ,x′1:N ) + c1 (x1:N ) = 0, (6b)
g (x1:N ) + c1 (x1:N ) = 0, (6c)

which is a lexicographic multi-objective problem [33], i.e. a
problem with strict priority of objectives. f̄(·) and g(·) can be
stacked together as TX (·) (see Section III with γ = df̄ + dg).
The cost term c1(·) is the primary objective that is minimized
first and it enacts as the barrier function to replace the inequal-
ities (5) and (4) with equalities (6b) and (6c). Here, it is also
used as an innate metric of motion (e.g. velocity minimization)
that is often used in motion generation [34], e.g. a human pos-
ture is minimally changed between a standing keyframe and
the following keyframe where the bottle is grasped. The cost
term c2(·) includes secondary objectives that are minimized
only after the c1(·) and is an expectation over all possible
sequences (see eq. 9.7 in [31]). Its metric functions depend on
comfort, ergonomics, etc, which is implicitly influenced by the
robot interventions. By solving (6) we can obtain a sequence
(linear or tree) of N configurations x1:N ∈ RN×dx . This
folds within; predictions of multiple futures of the human and
objects states (see (1)), and simultaneously a single sequence
of optimal robot interventions for all possible futures (see (3)).

Solver: To solve (6), we treat it as a non-linear least-squares
problem5 with hierarchy and we construct its feasible region
using a barrier function based on displacement intervals [27].

5Non-linear least-squares is a commonly used unconstrained optimization
formulation of IK and estimation (e.g. SLAM [35]) problems in robotics.
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By linearizing the non-linear constraint functions using a Tay-
lor expansion, we can obtain the Jacobian6 of the constraints
J, and we impose the strict hierarchy by projecting secondary
objectives in the null space of the primary ones [36]. Following
this strategy the problem in (6) can be efficiently solved with
a series of Levenberg–Marquardt updates, based on

∆x1:N = J#
(
∆TX +∇cT1 J

#
)︸ ︷︷ ︸

prediction term

+ AP∇cT2︸ ︷︷ ︸
assistance term

,
(7)

where
J# = (JTWx1:N

J+ λI)−1JTWx1:N
, (8)

is the pseudoinverse Jacobian of all constraints of all
keyframes, Wx1:N

∈ Rdx×dx is a weight matrix, P =
(I − J#J)W−1

x1:N
is a projector on the null space of J,

and A is a selection matrix that filters per dimension the
interventions resulting from c2(·) (secondary objective in (6)).
∇c1(x1:N ) ∈ Rγ acts as the barrier function and is the
gradient of c1(·) (primary objective in (6)) with respect to
x1:N . Scalar λ is a damping parameter that allows to switch
between Gauss-Newton (small λ) and gradient descent updates
(large λ).

In this way, we can guarantee that the prediction of all
possible futures is attained first, which corresponds to the
first focal point in Section III. The assistance term (second
focal point in Section III) lies in the null space of the
(multiple) predictions, hence, the interventions are optimal for
all possible futures concurrently (expectation over futures),
which satisfy the RO problem stated in (3).

V. EVALUATIONS AND EXPERIMENTS

In this section, we first study the importance of the pro-
posed constraint formulation (see Section IV-A) in terms of
interventions by performing an ablation study in two scenarios.
These scenarios also demonstrate the ability of the method to
consider both linear and tree sequences. Further, we show the
our method’s capability to personalize the predicted human
action based on various factors such as impairments, injuries,
strength, etc. Finally we realize the assistive capabilities of
the method in a table-top scenario with a bimanual robot
that provides personalized support to improve the ergonomic
posture of a human while preparing a beverage. See the
attached video for simulations and experiments of the above
described capabilities.

Implementation setup: Our method generate keyframes
sequences for a beverage pouring task, omitting continuous
trajectories. All evaluations are conducted on a 64-bit Intel
Quad-Core i5 3.80 GHz computer with 16GB RAM. The
concepts are implemented in the Rcs C++ library7.

A. Comparative studies in simulation

Here, we compare three methods against ours to investigate
how different formulations of constraints TX (·) ≤ 0 influence
optimality when using the solver in (7):

6The constancy constraints f̄(·) make the Jacobian non-banded but sparse.
7https://github.com/HRI-EU/Rcs

(a) Linear sequence in simulation. From left to right, keyframes; (2) pick
a bottle, (3) pour into glass, (4) place bottle on table, and (5) pick glass,
while using the right hand only, as the left holds the cane for support.
Intervention: relocate glass before keyframe (3).

No intervention First Average Coupled

1

2

3

4

5

(b) REBA.

0.08

0.10

0.12

0.14

0.16

(c) Static effort
((N ·m)2).

0.040

0.042

0.044

0.046

0.048

0.050

0.052

(d) Spine loading
((N ·m)2).

Fig. 4. Average metrics on keyframes 3-5 (post-intervention) for the four
methods on the task shown in (a).

• (i) No intervention: Only prediction of the human’s future
actions is realized without any intervention. Essentially,
we solve the problem defined in (1).

• Heuristic-based: These method optimizes the configu-
ration of each keyframe separately without considering
transitions from one keyframe to another. Then, for
all free dimensions that are common between linked
keyframes, strategy (ii) First applies the configuration
of the first keyframe to all consecutive ones. Strategy
(iii) Average computes the average configuration of the
keyframes and applies them to all linked keyframes.

• (iv) Coupled: Our approach that solves (3) and (6) to
concurrently predict the human’s future actions and find
the optimal intervention across linked keyframes.

For all methods we use the following optimization criteria
(across keyframes) that are:
• Human posture: A sum-of-square (SOS) minimization of

all human joints to a preferred configuration (posture).
This term penalizes joint limit violations and the preferred
posture has REBA score equal to 1.

• Static effort: A SOS minimization of all human static
joint torques for a given load at the right hand of the
human. This incentivizes to avoid stretching the arm.

• Spine loading: A SOS minimization of the spine joint
torques with respect to a given load at a head of the
human. This incentivizes to avoid bending.

The scenarios are; first, a linear sequential manipulation task
shown in Fig. 4(a), where a human uses a cane for support.
The glass location in keyframes 3 (pouring) and 5 (picking)
are the same, hence linked with constancy constraint. Yet,
due to different orientation and height of the pouring and the
picking actions, the optimal human postures and glass poses in
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Right hand branch

Left hand branch

(1) (5)

(4)

(2)

(3)

(a) Tree sequence in simulation. Pick the mug with right or
left hand using power-grasp and hand it over to the free hand
to pinch-grasp the handle. Intervention: relocate glass to a
common pose for both keyframes 2 and 4.

No intervention First Average Coupled

2.5

3.0

3.5

4.0

4.5

5.0

5.5

(b) REBA.

0.042

0.044

0.046

0.048

0.050

0.052

0.054

0.056

(c) Spine loading
((N ·m)2).

1.0

1.5

2.0

2.5

3.0

(d) Joint limit
violations (rad).

Fig. 5. Average metrics on keyframes 2-5 (post-intervention) for the four
methods on the task shown in (a).

keyframes 3 and 5 differ. The robot’s intervention takes place
between keyframe 2 and 3. The location of the glass (green)
is modified so that the above criteria are optimized.

Second, a tree sequential manipulation task is shown
in Fig. 5(a), where a human is on a wheelchair and either
power-grasps the mug with the right hand to handed it over
to the left for a pinch-grasp from the handle, or power-grasps
the mug with the left to pinch-grasp it from the handle with
the right. The task is motivated from scenarios where; (i)
the grasping actions is ambiguous (power-grasp with left or
right hand) and (ii) the power-grasp orientation of the first
determines the feasibility of the pinch-grasp (second action).
The robot’s intervention takes place between keyframe 1 and
both 2 and 3. The location of the mug (gray) is modified so that
the objectives of both futures (right and left hand branches) are
optimized, i.e. both branches can power-grasp the mug with
orientations that allow pinch-grasp from the handle in the next
action.

The metrics uses to evaluate the methods are averaged
across keyframes, (i) REBA score where we subtract 1 as it
is the minimum, (ii) Static effort, (iii) Spine loading, and (iv)
joint limit violations. We sample 10 different poses (position
and orientation) of the human (with the cane) and of the
wheelchair. We report mean and standard deviations with the
bar plots shown in Fig. 4 and Fig. 5 for each scenario.

As it can be observed, ours (Coupled) outperforms the no
intervention method, which demonstrates that the interven-
tions of our method improve the human state. The Coupled

Right hand branch

Left hand branch

(1) (5)

(4)

(2)

(3)

Fig. 6. Divergent tree sequence, where the right and the left hand branched
are independent. Intervention: relocate glass for the right and the left branch
separately. See keyframes 2 and 4.

method also performs preferably to the two heuristic methods,
which illustrates that having the constraint structure, described
in Section IV-A, forms a null-space that can be exploited
to reach better optima by our solver (see Section IV-B).
The optimality of two heuristic methods depends on the
scenario and the metric, which motivates the development of
a consistent method, like the Coupled (ours).

B. Simulation based case studies

1) Utility of constancy constraints within a time-slice:
Fig. 6 shows a tree sequence with two possible futures along
with the graph connectivity of the linked keyframes. This
indicates that the two independent branches of the graph (right
and left hand) have different optimal poses of the mug. If the
wrong future is assumed, then the intervention is not optimal.
In contrast, the coupled method (see Fig. 5(a)) finds a common
optimal pose for the mug for both futures (right or left hand
branches). This is enabled by the constancy constraint (see
the diamond) that links keyframes 2 and 4.

2) Personalized predictions: Fig. 7(a) shows a nominal
prediction where the robot’s intervention takes place between
keyframe 2 and 3. Fig. 7(b) shows the same sequence, however
with a different human impairment; an immobilized (broken)
right elbow. This impairment leads to a strong bending motion
of the upper body to reach the bottle and the glass to
compensate for the immobilized elbow. Fig. 7(c) is a result
of an analytically modelled impairment (e.g. weak left leg)
that makes the human lean strongly onto the cane.

In both cases, the impairment consideration leads to a
different support intervention which positions the glass in
keyframe 3 at a different location to the one in Fig. 7(a). These
cases demonstrate the capability of our method to perform
personalised predictions and interventions.

C. Robot experiments

Fig. 8 illustrates the system operating interactively in a
dynamically sensed environment. The location of the table,
bottle, and glass are detected using fiducial markers. The
posture of the human is determined by a 3d posture tracking
system (Azure Kinect DK) with 5Hz. This enables us to com-
pute the REBA score of the sensed human. The sensed human
posture is mapped onto keyframe 1 and it is assumed to be the
preferred pose. The predicted human postures (rest keyframes)
are updated on-the-fly by solving the TCC problem. One
iteration of the optimization takes about 50−70 msec, leading
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(a) Nominal prediction with a subject requiring a cane with
the left hand for stabilization.

(b) Impaired subject same as (a) and with immobilized
(broken) right elbow.

(c) Impaired subject same as (a) and requiring a large
stabilizing force on the cane with the left hand.

Fig. 7. Simulation of predicted postures based on human impairments.

to convergence in 1-2 seconds. In Fig. 8(a), the human is in an
upright posture, while in Fig. 8(b) the human posture reflects
a back injury (leaning forward). As in the simulations above,
the predicted keyframes show personalised predictions and the
effect of the robot’s intervention; to relocate the glass between
keyframe 2 and 3.

Further, we validate the utility of the proposed approach to
indeed improve the posture of the human. As shown in Fig. 9,
based on the sensor-based predictions and intervention, a robot
assists a human during the execution of a pour-bottle-into-glass
task by pushing the glass to the preferable pose. In contrast
to the assisted case, in Fig. 9(a) the human needs to bend
forward extensively to complete the task. Further robot support
intervention cases can be observed in the video.

VI. SUMMARY AND DISCUSSION

We have proposed a novel concept to support impaired
users in daily physical object manipulation tasks with a robot.
Our concept is based on a prediction model that uniquely
casts the user’s sequential behavior as well as a robot support
intervention into a hierarchical multi-objective optimization
problem. This allows to compute an optimal robot support
intervention that rearranges objects in the scenario so that
the impaired human is optimally supported. We have shown
in simulation studies that our concept is effective, both in
terms of the human’s comfort metric and in computational
efficiency to enable on-the-fly updates of the predictions and

the interventions. Real-world experiments highlight the ability
to provide support in dynamically changing situations.

Future work will focus on relaxing the assumptions related
to the sequence of the task, on data-driven models of human
impairments and on utilization of Augmented Reality to en-
hance the interpretability of the assistive robot [37].
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and O. Khatib, “Progress and prospects of the human–robot collabora-
tion,” Autonomous Robots, pp. 43/5/957–975, 2018.

[4] T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, “Review of assistive
strategies in powered lower-limb orthoses and exoskeletons,” Robotics
and Autonomous Systems, pp. 64/120–136, 2015.

[5] W. Kim, J. Lee, L. Peternel, N. Tsagarakis, and A. Ajoudani, “Anticipa-
tory robot assistance for the prevention of human static joint overloading
in human–robot collaboration,” IEEE robotics and automation letters,
pp. 3/1/68–75, 2017.

[6] J. Mainprice and D. Berenson, “Human-robot collaborative manipulation
planning using early prediction of human motion,” in International
Conference on Intelligent Robots and Systems (IROS), Nov 2013, pp.
299–306.

[7] D. F. N. Gordon, C. McGreavy, A. Christou, and S. Vijayakumar,
“Human-in-the-Loop Optimization of Exoskeleton Assistance Via On-
line Simulation of Metabolic Cost,” IEEE Transactions on Robotics, pp.
38/3/1410–1429, 2022.

[8] B. Fang, F. Sun, H. Liu, C. Liu, and D. Guo, Learning from Wearable-
Based Teleoperation Demonstration. Singapore: Springer, 2020.

[9] H. S. Koppula, A. Jain, and A. Saxena, “Anticipatory planning for
human-robot teams,” in Experimental Robotics. Springer, 2016, pp.
453–470.

[10] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense,
interacting crowds,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010, pp. 797–803.

[11] Z. Erickson, H. M. Clever, G. Turk, C. K. Liu, and C. C. Kemp,
“Deep haptic model predictive control for robot-assisted dressing,” in
2018 IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 4437–4444.

[12] S. Li, T. Stouraitis, M. Gienger, S. Vijayakumar, and J. A. Shah, “Set-
based state estimation with probabilistic consistency guarantee under
epistemic uncertainty,” IEEE Robotics and Automation Letters, pp.
7/3/5958–5965, 2022.

[13] B. Busch, M. Toussaint, and M. Lopes, “Planning ergonomic sequences
of actions in human-robot interaction,” in IEEE International Conference
on Robotics and Automation (ICRA), 2018, pp. 1916–1923.

[14] L. van der Spaa, M. Gienger, T. Bates, and J. Kober, “Predicting and
optimizing ergonomics in physical human-robot cooperation tasks,” in
International Conference on Robotics and Automation (ICRA), 2020, pp.
1799–1805.

[15] M. C. Gombolay, R. A. Gutierrez, S. G. Clarke, G. F. Sturla, and J. A.
Shah, “Decision-making authority, team efficiency and human worker
satisfaction in mixed human–robot teams,” Autonomous Robots, pp.
39/3/293–312, 2015.

[16] L. Y. Chang, G. J. Zeglin, and N. S. Pollard, “Preparatory object rotation
as a human-inspired grasping strategy,” in 8th IEEE-RAS International
Conference on Humanoid Robots, 2008, pp. 527–534.

[17] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
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432 5

(b) Assisted. REBA score during pouring and picking the glass varies between 2 and 3.
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