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Alleviating Search Bias in Bayesian Evolutionary
Optimization with Many Heterogeneous Objectives

Xilu Wang, Yaochu Jin, Fellow, IEEE, Sebastian Schmitt, and Markus Olhofer

Abstract—Multi-objective optimization problems whose objec-
tives have different evaluation costs are commonly seen in the
real world. Such problems are now known as multi-objective op-
timization problems with heterogeneous objectives (HE-MOPs).
So far, however, only a few studies have been reported on
addressing HE-MOPs, and most of them focus on bi-objective
problems with one fast objective and one slow objective. In
this work, we aim to deal with HE-MOPs having more than
two black-box and heterogeneous objectives. To this end, we
develop a multi-objective Bayesian evolutionary optimization
approach to HE-MOPs that can alleviate search biases resulting
from the different numbers of function evaluations allowed
for the cheap and expensive objectives, which is achieved by
designing a new acquisition function that penalizes the search
bias towards the fast objectives, thereby achieving a balance
between convergence and diversity. In addition, to make the
best use of the different amounts of training data while avoiding
increasing the computational cost, an ensemble consisting of two
GPs is constructed for each cheap objective, one trained on
the data collected before the Bayesian optimization starts, and
the other on those evaluated during the Bayesian evolutionary
optimization. Empirical studies on widely used multi-/many-
objective benchmark problems whose objectives are assumed
to be heterogeneously expensive demonstrate that the proposed
algorithm is able to find high-quality solutions for HE-MOPs
compared with the state-of-the-art methods.

Index Terms—Multi/many-objective optimization, different
evaluation costs, heterogeneous objectives, surrogate-assisted evo-
lutionary algorithm, Bayesian optimization.

I. INTRODUCTION

SURROGATE-ASSISTED evolutionary algorithms
(SAEAs) are powerful tools for optimizing

computationally expensive multi-objective problems (MOPs),
where several conflicting objective functions must be
simultaneously optimized and the evaluations of the
objectives are highly time-consuming. While conventional
multi-objective evolutionary algorithms (MOEAs) assume
that candidate solutions can be accurately evaluated, SAEAs
typically construct computationally efficient surrogate models
to approximate the expensive real objective functions, and
then the surrogates are used together with the real objective

Xilu Wang is with the Faculty of Technology, Bielefeld University,
33619 Bielefeld, Germany. Part of the work was done when she was with
the Department of Computer Science, University of Surrey, Guildford, GU2
7XH, United Kingdom. Email: xilu.wang@uni-bielefeld.de.

Yaochu Jin is with the Faculty of Technology, Bielefeld University,
33619 Bielefeld, Germany. He is also with the Department of Computer
Science, University of Surrey, Guildford, GU2 7XH, United Kingdom. Email:
yaochu.jin@uni-bielefeld.de. (Corresponding author)

Sebastian Schmitt and Markus Olhofer are with the Honda Research
Institute Europe GmbH, Carl-Legien-Strasse 30, D-63073 Offenbach/Main,
Germany. Email: {sebastian.schmitt;markus.olhofer}@honda-ri.de.

functions to guide the evolutionary optimization, known as
model management [1]. Various classification or regression
models are commonly used as surrogates in SAEAs, including
support vector machines [2], radial basis function networks
[3], and Gaussian processes (GPs), also known as Kriging
which is a special case of GPs [4]. Among them, the GP is
a popular choice for modelling expensive objective functions
due to its ability of capturing the model’s beliefs over
the unknown objective function, providing both estimated
objective values and the uncertainty of the estimations. The
estimations provided by GPs can be utilized to design an
acquisition function to select the next new data point to be
evaluated by the real objective functions, guiding the search
of the optimum. An SAEA with a GP as the surrogate model
and an acquisition function to select new samples is known
as Bayesian optimization BO [5].

SAEAs typically assume that the evaluation of each ob-
jective function takes the same period of time. Consequently,
the selection operator of an MOEA can be conducted and
the evolutionary search can proceed to the next generation.
This assumption, however, can be violated in practice, e.g.,
the evaluation of aerodynamic and structural mechanics per-
formance of an airplane wing design [6]–[8] or a car shape
[9], [10] involves computationally intensive computational
fluid dynamics, where several hours of evaluation time are
typical for a single fitness evaluation. Additionally, some types
of evaluations can be an order of magnitude slower than
others, for example, crashworthiness assessment is much more
resource- and time-consuming than computationally intensive
computational fluid dynamics. Such MOPs exhibit so-called
heterogeneous objectives [11] and, in particular, we consider
heterogeneously expensive MOPs (HE-MOPs) in this paper,
where non-uniform evaluation times in expensive MOPs give
rise to the heterogeneity.

Most recently, new MOEAs have been proposed to effec-
tively address HE-MOPs. Most of the algorithms, however, are
limited to considering a class of bi-objective HE-MOPs having
one computationally cheap (fast) objective function f c and one
computationally expensive objective function fe (also called
delayed or slow objective). Existing methods for handling HE-
MOPs can be roughly categorized into two groups, i.e., non-
surrogate based and surrogate based methods, which are briefly
reviewed below.

Non-surrogate based methods: Allmendinger et al. [12]
first introduced HE-MOPs and proposed a ranking-based
MOEA to allow solutions with missing objective function
values caused by fe to guide the search. A missing objective
value caused by a pending evaluation is assigned with a pseu-
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dovalue. Subsequently, new selection strategies are proposed
based on the ranking subject to missing objective values. In
a follow-up work by Allmendinger et al. [13], MOPs with
non-uniform latencies are defined more formally based on the
framework of MOEAs, and three general schemes are pro-
posed to handle heterogeneous objectives, including Waiting,
Fast-first and Interleaving schemes. While Waiting directly
applies an MOEA to HE-MOPs by waiting for the completion
of expensive evaluations, Fast-first employs a single-objective
evolutionary algorithm (SOEA) to consume the additional
fitness evaluations available for f c during the waiting of
expensive evaluations.Unlike Fast-first, more elaborated strate-
gies are introduced in Interleaving schemes (i.e. brood and
speculative interleaving) to utilize the limited evaluations by
integrating the search results of each objective. Although the
non-surrogate based methods shed light on possible directions
for handling HE-MOPs, a major remaining issue is that the
obtained solutions may be still far from Pareto optimal due to
the limited evaluation budget available. In addition, how well
they can scale to more complex problem settings with more
objectives has not been explored.

Surrogate based methods: More recently SAEAs have
been extended to HE-MOPs, which is motivated by the fact
that SAEAs have emerged as powerful methods for the opti-
mization of MOPs with expensive evaluations. Chugh et al.
[14] proposed a heterogeneous Kriging-assisted evolutionary
algorithm, called HK-RVEA. HK-RVEA adopted an SOEA
and genetic operators to generate solutions for f c when the
initial population and the new samples are submitted for
evaluations on both objectives, respectively. To make use of
the additional evaluations on f c, Wang et al. [15] devel-
oped a parameter-based transfer learning strategy based on
a GP-assisted evolutionary algorithm (T-SAEA). In T-SAEA,
common decision variables related to both f c and fe are
determined first using a filter-based feature selection, then
the corresponding parameters in the GPs can be shared.In a
follow-up work, Wang et al. [16] proposed an instance-based
transfer learning method (Tr-SAEA) to address the heteroge-
neous bi-objective problems. Domain adaptation techniques
are adopted to generate synthetic samples for fe, and a GP-
based co-training method is introduced to augment the training
data for surrogate models of fe using the unlabeled synthetic
data. Unfortunately, Tr-SAEA only learns the mapping in the
objective space and requires an additional optimization method
to obtain the corresponding solutions in the search space.
Alternatively, in [17] a co-surrogate is adopted to model the
relationship between f c and fe. Subsequently, transferable
instances are identified from the search of f c to speed up
the optimization of fe. Interestingly, trust region methods,
instead of evolutionary algorithms, with the use of surrogates
have also been successfully applied to HE-MOPs [18]. Multi-
objective heterogeneous trust region algorithms are easily
scalable to any number of objectives; however, they hinge on
strong assumptions: the objective functions are black-box and
twice continuously differentiable, and the cheap ones are given
analytically and derivatives are easily available [18].

This work extends SAEAs to HE-MOPs with more general
and more practical problem settings, i.e., HE-MOPs with more

than three objectives (called HE-many-objective problems,
HE-MaOPs) and different combinations of computationally
cheap and expensive objectives. We propose to reduce the
search bias resulting from the heterogeneous evaluation time
of the objectives and limit the computational time for training
GPs with an increased amount of data on the cheap objectives.
The key contributions of the proposed search bias penalized
BO, termed as SBP-BO, can be summarized as follows:

1) To make use of the different amount of available data
evaluated on cheap and expensive objectives, an ensemble
consisting of two GPs is constructed for each cheap objective,
while one GP is used to approximate each expensive objective.
Before optimization starts, while the initial population is eval-
uated on all objective functions, the cheap objectives can be
explored using an SOEA, resulting in abundant extra solutions
on the cheap objectives. For each cheap objective, one GP is
trained and updated with the solutions evaluated during the
Bayesian evolutionary optimization, while the other is trained
with the data evaluated during the initialization only without
re-training, thus making full use of all data available while
avoiding highly intensive computation.

2) To alleviate the search bias towards the fast objectives and
achieve a good balance between exploitation and exploration, a
new acquisition function is proposed by introducing a penalty
of search bias. The acquisition function can not only evaluate
the quality of a solution in terms of convergence and diversity,
but also promotes the exploration on the expensive objectives.

The rest of paper is organized as follows. Section II provides
a problem description, followed by an introduction to multi-
objective BO including GPs and acquisition functions. Then,
the proposed SBP-BO is introduced in Section III. Section IV
provides details about the experimental settings and Section
V presents the experimental results to demonstrate the effec-
tiveness of SBP-BO. Finally, we draw conclusions and discuss
future research.

II. BACKGROUND

A. Problem Description

Before we tackle the challenges posed by the presence
of computationally heterogeneous objectives, we present the
problem description at first. We consider expensive multi-
and many-objective optimization problems with heterogeneous
objectives (HE-MOPs and HE-MaOPs) in the following form:

minx f(x) = (f1(x), f2(x), . . . , fm(x))
s.t. x ∈ X (1)

where x = (x1, x2, · · · , xd) is the decision vector with d
decision variables, X denotes the decision space, the objective
vector f consists of m (m > 2) objectives and for MaOPs
the number of objectives m is larger than 3. The evaluation
time of each objective is denoted by t = (t1, t2, · · · , tm),
where we assume the objectives are ordered in terms of
their computational complexity, ranked from the fastest with
i = 1 to the slowest i = m, i.e. t1 ≤ t2 ≤ · · · ≤ tm.
The objective functions are black-boxes that can be evaluated
by either time-consuming numerical simulations, or costly
physical experiments. Building surrogate models based on the
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data collected via numerical simulations or experiments has
been shown to be an efficient approach to such black-box
expensive optimization problems [1]. In this work, we assume
that the evaluation of each objective function can be done in
parallel, and the computation time for building surrogates and
applying the genetic operators of the evolutionary algorithm
is negligible compared to that for evaluating the true objective
functions. Therefore, we characterize the heterogeneity of the
objectives by the number of affordable evaluations of an
objective fi relative to the slowest objective, fm, which can
be calculated given the evaluation time as the ratio ri = b tmti c
[11], [13]. Here, b.c denotes the floor operation.

For convenience, we introduce a notation to divide the m
objectives into two groups based on the value of ri. The i-th
objective is called cheap, denoted as f c, if ri > rthres; the
objective is called expensive, denoted as fe, if ri ≤ rthres,
where rthres is a threshold separating the cheap objectives
from expensive objectives. For real-world problems that have
a natural separation between cheap and expensive objectives
[19], the threshold can be defined straightforwardly. In case
there is no intuitive separation between cheap and expensive
objectives, the threshold can be defined according to the user’s
preference. It should be pointed out that the partitioning of the
objectives has no direct influence on the effectiveness of the
proposed algorithm, which does not make any assumptions on
the ratios. Together with the idea of constructing surrogates for
all objectives, this makes the proposed algorithm generic and
applicable to a wide range of problems.

B. Multi-objective Bayesian Optimization

Multi-objective Bayesian optimization (MOBO), an exten-
sion of BO to MOPs, has been successfully applied to simul-
taneously optimizing expensive black-box MOPs [14], [20].
MOBO typically first trains a GP using data collected from
previous evaluations to approximate each objective function of
an MOP. A brief introduction to GPs is presented in Section
I in the Supplementary material. Based on the way in which
BO and evolutionary algorithms work together, MOBO can
be further divided into two groups, evolutionary Bayesian
optimization (EBO) and Bayesian evolutionary optimization
(BEO) [21]. In BEO the evolutionary algorithm is the basic
framework where the acquisition function is adopted as a
criterion for model management, while in EBO Bayesian
optimization is the basic framework in which the acquisition
function is optimized using an evolutionary algorithm. In the
following, we will briefly review the existing work on MOBO.

A straightforward way to address expensive MOPs using
BO is to decompose an MOP into multiple single-objective
problems, so that existing acquisition functions for single-
objective optimization can be directly applied to MOPs. Some
decomposition-based MOEAs (e.g., MOEA/D [22] and RVEA
[23]) that decompose an MOP into a set of single-objective
subproblems, have been extended to address expensive MOPs
with GPs for function approximation and the expected im-
provement as the acquisition function [14], [24]. Instead, some
quality indicators that are originally developed to assess the
quality of the approximation of Pareto front solution sets have

been employed as a scalar measure to reduce an MOP to a
single-objective optimization problem. An early and popular
performance indicator based algorithm is S-Metric-Selection-
based Efficient Global Optimization (SMS-EGO) [25], which
is based on the S metric or hypervolume (HV) metric [26].
Moreover, there have been ample extensions of information-
based acquisition functions for tackling expensive MOPs based
on the information theory. For example, predictive entropy
search [27] has been extended to MOPs by maximally reduc-
ing the entropy of the posterior distribution over the Pareto
set, called PESMO; however, it is computationally expensive
to approximate and optimize PESMO.

While various many-objective evolutionary algorithms have
been proposed [28], [29], only a few attempts have been
made to address expensive MaOPs. A representative method,
a Kriging-assisted RVEA (K-RVEA), was proposed to handle
MaOPs [14]. With the help of RVEA, K-RVEA decides to
prioritize the diversity or convergence according to the number
of the active adaptive reference vectors. Recently, Liu et al. [4]
adopted GPs as surrogate models and proposed an amplified
upper confidence bound to emphasize the uncertainty. To
achieve a good balance of exploration and exploitation, one set
of fixed and evenly distributed reference vectors and one set of
adaptive reference vectors are used to perform convergence-
related and diversity-related optimization, respectively. Due
to the scalability issue of GPs, Guo et al. [30] proposed
an efficient dropout neural network to replace the GPs when
solving expensive many-objective problems.

In this work, the proposed acquisition function is based on
the lower confidence bound (LCB) acquisition function [5]
AFLCB to evaluate the quality of a solution, owing to its
computational efficiency. LCB tries to balance exploration and
exploitation by maximising the uncertainty and minimising
the mean value simultaneously. Considering an m-objective
minimisation problem {fi(x)}mi=1, the predictions of a candi-
date solution x is derived from the GP of each objective. The
vectors of the predicted mean and variance of x are denoted
as σ(x) = {σi(x)}mi=1 and µ(x) = {µi(x)}mi=1, respectively.
The LCB for the candidate solution x is defined as

AFLCB(x) = µ− k · σ (2)

where k is a parameter to manage the trade-off between
exploration and exploitation. Note that AFLCB(x) is a vector
with a length of m and minimised by an MOEA.

III. PROPOSED ALGORITHM

In this section, the proposed search bias penalized Bayesian
optimization (SBP-BO) algorithm for solving HE-MOPs and
HE-MaOPs is introduced. In the following, we will introduce
the notations and the framework step by step, and then present
the details of the two key components, i.e., the construction
of GPs and the design of acquisition function.

A. Basic Ideas and the Overall Framework

The framework of SBP-BO is presented in Fig. 1, where
the differences between conventional MOBO and the SBP-BO
are highlighted. The main steps of the SBP-BO are described
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An HE-MOP or HE-MaOP to be solved 

Start

Fig. 1. The overall framework of SBP-BO.

below, and the pseudo code containing more details is given
in Algorithm 1:
• Step 1: Initialization. An initial population P with n in-

dividuals is evaluated on m real objective functions using
Latin Hypercube sampling that produces the data set D =
(P,YP). During the evaluation of the expensive objectives,
each cheap objective f cj , j = 1, · · · , p can be evaluated n·rj
times. This is done by using an SOEA to optimize each
objective f cj , and the corresponding data is saved as Dc′

j .
• Step 2: Initial construction of GPs. SBP-BO constructs GPs
GP = [GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ] for each objective
using the data D evaluated on all objectives. For each cheap
objective f cj , j = 1, · · · , p, an extra GP GP c

′

j is trained
on the additional data set Dc′

j , allowing us to construct an
ensemble with two members GP cj and GP c

′

j .
• Step 3: Selection of new samples. Similar to the standard

GP-assisted SAEA, SBP-BO adopts a baseline MOEA to
optimize the HE-MOP/HE-MaOP for a certain number of
generations, in which the ensemble surrogate predicts the
value of each cheap objective f cj , j = 1, · · · , p for the
candidate solutions, while GP ei predicts the value of the
expensive objectives fei , i = 1, · · · , q. In our case, the
RVEA [23] is adopted as the baseline MOEA, where a
reference vector guided selection is introduced to select the
next generation according to the angle-penalized distance.
Subsequently, all individuals in the optimized population are
evaluated by the proposed acquisition function that accounts
for heterogeneous function evaluation times. Again, the ref-
erence vector guided selection is employed to identify a set
of promising solutions, in which u new query points X and
u · rj −u additional query points Xa

j are randomly selected
to be evaluated on all objectives and on cheap objectives f cj ,
respectively. Consequently, the newly evaluated solutions X
are added to dataset D.

• Step 4: Update of GPs. SBP-BO follows a strategy used

Algorithm 1 The framework of SBP-BO
Input: FEe

max: the maximum number of the expensive objective function
evaluations; r: the ratio of the evaluation times between the expensive
and cheap objectives; u: the number of new samples for updating the
GPs; wmax: the maximum number of generations before updating GPs;

Output: Optimal solutions in D;
1: Initialization: Use the Latin Hybercube Sampling method to sample

an initial population P ; P is evaluated on all objective functions,
obtaining the objective values YP ; set D = (P ,YP ) and train GPs
GP = [GP c

1 , · · · , GP c
p , GP e

1 , · · · , GP e
q ] for each objective using D

that evaluated on all objectives; run an SOEA to optimize fc
j , j =

1, · · · , p and save data in Dc′
j , then GP c′

j for each cheap objective
fc
j is trained on Dc′

j ; set FE = |D|, w = 1 and Niter = 1.
2: while FEe 6 FEe

max do
3: //Using the surrogate in the RVEA//
4: Create the initial population;
5: while w 6 wmax do
6: Generate offspring using the simulated binary crossover and

polynomial mutation;
7: Use the ensemble to predict cheap objective values and the

GP e
1 , · · · , GP e

q to predict the expensive objective values on the com-
bined population;

8: Use the reference vector guided selection to select the next
generation;

9: Perform the reference-vector-adaptation;
10: w = w + 1;
11: end while
12: Use the proposed acquisition function to evaluate the optimized

solutions found by RVEA;
13: Use the reference vector guided selection to determine u new solutions

X and u · rj − u additional new solutions Xa
j , j = 1, · · · , p to be

evaluated on all objectives and on each fc
j , j = 1, · · · , p, respectively.

Consequently, the newly solutions are saved in the corresponding datasets
Dnew = (X,Y ) and Da

j = (Xa
j ,Y

c
j ), respectively;

14: Add Dnew to D and select training data Dt from data set D
evaluated on all objectives;

15: GP = [GP c
1 , · · · , GP c

p , GP e
1 , · · · , GP e

q ] is updated: GP e
i , i =

1, · · · , q is updated with Dt, while GP c
j , j = 1, · · · , p is updated with

Dt and Da
j .

16: Update FEe = FEe + u, Niter = Niter + 1;
17: end while
18: Return the optimized solutions;

in [3], [31] to manage the training data: A predefined
maximum number L of training data is set to 11d− 1 + 25
[31], where d is the number of decision variables. When
the number of data samples in D is less than L, e.g., in the
beginning of the optimization, all solutions in D are used to
train the GPs, i.e. GP = [GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ].
If D contains more samples than L, a subset Dt will
be selected from the training data archive to limit the
computation time, where the quality of the GPs and the op-
timization performance are considered. Since the solutions
in D have been evaluated on all objectives, existing training
data management methods for GP-assisted MOEAs, such as
K-RVEA and MOEA/D-EGO, also can be used. While the
GPs for fei GP

e
i , i = 1, · · · , q are updated with the selected

L training data samples Dt, each GP cj , j = 1, · · · , p is
trained using both Dt and the extra new samples Xa

j .
Note that GP c

′

j , j = 1, · · · , p remain unchanged during
the optimization, which are trained once with the offline
data generated in Step 1 only, thus avoiding increasing the
computational cost.

• Repeat Step 3 and Step 4 until the allowed computation
budget is exhausted.
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B. Ensemble Surrogate for Cheap Objectives

As described above, an ensemble surrogate including two
GPs, GP cj and GP c

′

j , are constructed for each cheap objective
f cj , j = 1, · · · , p. The predicted mean value of f cj on a new
sampled solution x provided by the ensemble is a weighted
combination of the predictions of GP cj and GP c

′

j . Motivated
by product of experts [32], confident predictions should have
more influence on the combined prediction than the less
confident ones. Hence, the weight is calculated based on the
level of uncertainty of each GP’s prediction, and the ensemble
prediction is

µcj(x) = αj µGP c
j
(x) + βj µGP c′

j
(x)

αj =
σGP c′

j
(x)

σGP c′
j

(x) + σGP c
j
(x)

βj =
σGP c

j
(x)

σGP c′
j

(x) + σGP c
j
(x)

(3)

where µGP c
j

and σGP c
j

are the predictions of GP cj , and µGP c′
j

and σGP c′
j

are the predictions of GP c
′

j . As mentioned earlier,

training two separate GPs on D and Dc′ makes the update
of the GPs more efficient and computationally more effective.
Specifically, while GP = [GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ]
are updated with newly sampled data selected according
to the acquisition function, we do not re-train GP c

′
=

[GP c
′

1 , · · · , GP c
′

p ] during the optimization. Moreover, the
method for selecting training samples used to retrain GP =
[GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ], as presented in Step 4, lim-
its the maximum training time while allowing for building an
effective model using relevant samples.

This training scheme makes it possible to adopt an ex-
isting strategy for selecting training data to update GP =
[GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ] in the context of HE-MOPs.
Specifically, the number of training data is typically capped to
limit the computational complexity of constructing the surro-
gates, which is a common practice in GP-based evolutionary
algorithms [3], [14], [31]. For standard MOPs, it is desirable
to select a subset so that the quality of the surrogates can be
improved as much as possible, and the resulting surrogate-
assisted search can maintain a balance between convergence
and diversity. Note that each solution is evaluated on all
objectives in standard MOPs, so that the balance between con-
vergence and diversity can be estimated by selection criteria
in MOEAs, such as nondominated sorting and the crowding
distance. However, this is not the case for HE-MOPs since
many solutions are partially evaluated. Consequently, it is
difficult to select a subset that can balance convergence and
diversity. To tackle this challenge, we train two GPs (GP cj and
GP c

′

j ) using solutions evaluated on all objectives and solutions
evaluated on fast objectives, respectively. Hence, the existing
strategies for selecting training data [3], [31] can be directly
applied to HE-MOPs as we update GP cj only.

C. Search Bias Penalized Acquisition Function

In order to alleviate the search bias towards the cheap ob-
jectives resulting from the heterogeneous evaluation times, we

propose to include a penalty term in the acquisition function
for alleviating the search bias, which prioritizes the expensive
objectives in minimizing the acquisition function. This penalty
term is multiplied by the adaptive acquisition function reported
in Eq. (2), resulting in a search bias penalized acquisition
function (AFSBP ). Having obtained the optimized population
by RVEA using the GP ensemble, the mean and variance of the
objective values of all individuals are predicted by the GPs at
first. Given a candidate solution x in the optimized population,
the proposed acquisition function can be computed analytically
as follows:

AFSBP (x, Niter) = AFLCB(x) ◦ SBP(x, Niter) (4)

where Niter is the current iteration number of the BO loop,
SBP(x, Niter) is the penalty term to be described below in
detail, AFLCB(x) denotes the acquisition function of Eq. (2),
and ◦ denotes component-wise multiplication. As a result, each
individual in the population can be evaluated according to
AFSBP , obtaining a vector with length m. Hence, minimising
AFSBP is still an MOP, and therefore the reference vector
guided selection in RVEA is adopted in this work.

Let µ(x) = {µi}mi=1 denote the predicted mean value of the
objective vector with length m on the candidate solution x in
the optimized population, and the maximum and minimum
value of the predicted mean of the optimized population
will be identified and denoted as µmax = {µmaxi }mi=1 and
µmin =

{
µmini

}m
i=1

, respectively. In order to calculate the
penalty terms for x, first we normalize the objective vector
into the same range, i.e, [0,1]

µ̄(x) = (µ(x)− µmin)./(µmax − µmin), (5)

where again ./ indicates component-wise division. Hence,
µ̄(x) = {µ̄i}mi=1 is a vector with length m, and the cor-
responding penalty term SBP = {SBPi}mi=1 for the data
sample x is also defined as a vector including the penalty
term for each objective.

For the i-th objective, the penalty term SBPi is calculated
as

SBPi(µ̄i, Niter) = 1− π (µ̄i, Niter) (6)

where π (µ̄i, Niter) is calculated using an exponential distri-
bution function,

π (µ̄i, Niter) = λ (Niter) e
−λ(Niter)µ̄i (7)

with
λ(Niter) =

1

wiNiter + 1
, (8)

where wi = ri∑m
i ri

encodes the relative number of affordable
evaluations of objective i. This penalty is intuitively motivated
by the exponential distribution in modeling situations in which
certain events occur at a constant probability per unit length
[33]. Due to the fact that fast objectives can be explored
more often than slow objectives in HE-MOPs, we construct
different exponential distribution functions π (µ̄i, Niter) for
each objective function based on the evaluation times of
different objectives to alleviate search biases. For example,
the exploration on a fast objective is expected to occur at a
lower probability than that on slow objectives. This is achieved
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by generating different λ(Niter) values with respect to the
evaluation times and the number of iterations. Hence, a large
number of affordable function evaluations, i.e. a larger value
of ri, of an objective function fi will result in a higher value
of wi, and accordingly a smaller value of λ. Since 0 ≤ µ̄i ≤ 1
and 0 ≤ λ ≤ 1, this leads to more uniformly distributed
and smaller values for π and therefore results in a larger
penalty value on the corresponding fast objectives. Therefore,
the acquisition function will prefer new samples that not
only balance the local exploitation and global exploration, but
also reduce the search bias by prioritizing the exploration for
selecting slow functions. Similarly, as optimization progresses
and Niter increases, the penalty term will approach a value of
1 for all objectives, gradually reducing the disadvantage over
the fast objectives in the acquisition function.

To take a closer look at the proposed SBP, we consider
an example minimization HE-MOP with r = (5, 1) having
a cheap and an expensive objective function (denoted as
f c and fe, respectively). Contour plots of h1(Y , Niter) =
SBPc(Y c,Niter)
SBPe(Y e,Niter)

and h2(Y , Niter) = SBPc(Y
c, Niter) +

SBPe(Y
e, Niter) with respect to f c, fe and Niter are given

in Fig. 2. For Niter = 1 shown in Figs. 2(a) and (b), the search
bias penalty varies a lot in different regions of the objective
space: (1) the penalty on fe is always smaller than that on
f c; (2) there is a significant difference with respect to the
penalty between the regions with smaller objective values and
the regions with lager objective values. As the selection of
new samples is a minimization MOP, this indicates that the
SBP allows a smaller objective value to be preferred over a
large one. Moreover, including such a penalty term into an
acquisition function will guide the selection of new samples
towards exploring fe. As a result, the SBP will encourage
the search towards fe and mitigate the intrinsic search bias
due to heterogeneous objectives. As the optimization proceeds,
the difference between the cheap and expensive objectives will
gradually shrink, as illustrated in Fig. 2(c) and 2(d), indicating
a decreasing influence on the search bias. Finally, the penalty
is almost equal across the whole objective space, as shown in
Figs. 2(e) and 2(f). This allows SBP-BO to find out a set of
satisfying solutions that cover the whole Pareto front.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

1) Test Problems: Although there are no test problems
available that have inherently heterogeneous objectives, any
existing multi-/many-objective benchmark problem can be
adopted as HE-MOPs/MaOPs, assuming the evaluation times
of the objectives are substantially different. Therefore, we
have selected three widely used test suites of scalable multi-
objective test problems, i.e., the DTLZ [34], UF [35] and WFG
[36] test suites, and extend them to simulate HE-MOPs and
HE-MaOPs. For all the test instances used in the experimental
studies, the number of decision variables is set to 10. We set
the last objective as the most expensive objective and vary the
ratio ri of the remaining objectives and the threshold rthres
to generate different HE-MOPs and HE-MaOPs.

(a) Niter=1 (b) Niter=1

(c) Niter=10 (d) Niter=10

(e) Niter=100 (f) Niter=100

Fig. 2. Contour plots of h1(Y , Niter) =
SBPc(Y

c,Niter)
SBPe(Y e,Niter)

((a), (c) and (e))
and h2(Y , Niter) = SBPc(Y c, Niter) + SBPe(Y e, Niter) ((b), (d) and
(f)) with r = (5, 1).

2) Performance Indicators: The modified inverted gen-
erational distance (IGD) [37], the IGD+ indicator [38],
and the hypervolume (HV) [39] are adopted as the perfor-
mance indicator to evaluate the quality of the obtained non-
dominated solutions in terms of convergence and diversity.
Let Z =

{
z1, z2, . . . ,z|Z|

}
be a given reference solution

set, where |Z| is the number of reference solutions, and
A =

{
a1,a2, . . . ,a|A|

}
be an obtained approximation to the

Pareto front. The HV calculates the volume of the objective
space dominated by an approximation set A, and the larger
the HV value is, the better the quality of the approximation
set. IGD+ is calculated as follows:

IGD+(A,Z) =
1

|Z|

|Z|∑
j=1

min
ai∈A

d+ (ai, zj) . (9)

The distance d+ is the distance between a reference solu-
tion z = (z1, z2, · · · , zm) and an objective vector a =
(a1, · · · , am). Here, m is the number of objectives. d+ is
defined as:

d+(a, z) =

√√√√ m∑
k=1

(max {zk − ak, 0})2 (10)
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The smaller the IGD+ value is, the better the quality of the
non-dominated solution set.

Each algorithm under comparison is performed on each
benchmark problem for 20 independent runs. The Wilcoxon
rank sum test at a significance level of 0.05 is adopted to
compare the results obtained by SBP-BO and other algorithms
under comparison. To reduce the probability of making a
type I error, the Holm-Bonferroni correction is adopted. The
corresponding statistical results are presented in Tables I-V and
Tables SI-SVIII in the Supplementary material, where symbols
”(+)”, ”(–)”, and ”(≈)” indicate that the compared algorithm
performs significantly better than, significantly worse than,
or as well as the proposed algorithm, respectively. Note that
we use notation ‘S’ to indicate tables and figures in the
Supplementary material in order to avoid confusion.

3) Algorithms Under Comparison: To the best of authors
knowledge, SBP-BO is the first algorithm designed for ad-
dressing HE-MOPs and HE-MaOPs. For comparison, one
of state-of-the-art heterogeneity-handling methods, HK-RVEA
[40], is slightly adapted to the proposed problem setting.
Specifically, the SOEA in HK-RVEA optimizes each cheap
objective using the different number of additional evaluations
in the initialization. The genetic operators are used to generate
additional samples for each cheap objectives while waiting
for the expensive evaluation on new samples.As existing
surrogate-assisted heterogeneity handling methods, e.g., T-
SAEA [15], Tr-SAEA [16] and TC-SAEA [17], cannot address
HE-MOPs or HE-MaOPs with more than two objectives, we
compared them with SBP-BO on heterogeneous bi-objective
optimization problems reported in [17]. Note that we did not
include non-surrogate assisted algorithms for two reasons: 1)
it has been shown that surrogate-assisted methods outperform
non-surrogate assisted methods [14], [31], [41]; 2) most exist-
ing non-surrogate assisted methods work only for bi-objective
problems with one fast and one slow objective. Since SBP-BO
is based on GP assisted RVEA, a representative GP-assisted
MOEA, K-RVEA [14], is also adopted as a surrogate assisted
Waiting method to examine the performance of the proposed
algorithm.

To further investigate the efficacy of the proposed surrogate
ensemble and the search bias penalized acquisition function,
we perform the following ablation studies:

4) Parameter settings: We use RVEA as the MOEA and
a real-coded genetic algorithm that uses the simulated binary
crossover and polynomial mutation as the SOEA. In addition,
we use the DACE toolbox [42] to construct the GPs. All
experiments are performed in MATLAB R2019a on an Intel
Core i7-8750H with 2.21 GHz CPU. The parameter settings
used in the experiments are summarized as follows:
• The initial population size for all the compared algorithms

is 11d−1 [31] where d is the number of decision variables.
• The maximum number of generations before updating the

GPs (wmax) is set to 20 [14], [43].
• The number of new solutions selected for evaluations on all

objectives at each BO iteration is set to u = 3 [16].
• The parameter in the LCB is set to k = 2 [44].
• The maximum number of function evaluations for the slow

objectives (FEemax) is set to 200 for heterogeneous bi-

objective problems, and 300 for HE-MOPs/MaOPs [41].

B. Experimental Results

1) Comparison with state-of-the-art methods: Each algo-
rithm is performed on the test problems with m = 3, 5, 10
objectives, respectively. For simplicity, only one slow objec-
tive is included while all other objectives are considered as
fast objectives with the same evaluation time, resulting in
r = (rc, rc, · · · , rc, 1). Tables I-II and Tables SI-SII present
the experimental results in terms of the IGD+ and HV values
obtained on each test instance with rc = 5 and rc = 10,
respectively. The threshold rthres is set to 1 for simplicity,
and we will test different r and rthres in the next subsection.

Firstly, the results presented in Table I show that the pro-
posed SBP-BO significantly outperforms K-RVEA and HK-
RVEA on 28 out of 48 test instances, respectively, indicating
the effectiveness of the proposed strategies for handling HE-
MOPs/HE-MaOPs. Secondly, it is interesting to see that both
K-RVEA and HK-RVEA show significantly better perfor-
mance than SBP-BO on DTLZ7 with m = 10. A possible
explanation for this might be that in K-RVEA and HK-RVEA
a fixed reference set is used to evaluate whether diversity
or convergence should be prioritized in the selection of new
samples. In this way, the exploration can be guaranteed, so
that K-RVEA and HK-RVEA are able to account for the
disconnected Pareto front of DTLZ7. According to the results
on WFG1-WFG9 summarized in Table I, SBP-BO achieves the
best performance in terms of IGD+ metric on 21 test instances,
followed by K-RVEA with 4 best results. Note that K-RVEA
show better performance than the proposed algorithm on
WFG1 with m = 10 and WFG9 with m = 10. Recall that both
WFG1 and WFG9 are difficult for optimization algorithms
to achieve a good diversity. WFG1 is designed by using the
most complex transformation function to add complexity to a
underlying problem, making it hard an optimization algorithm
to converge to the true Pareto front. Similarly, WFG9 features
a troublesome transformation function and is also a multi-
model and nonseparable problem. Lastly, by comparing K-
RVEA using the Waiting method with HK-RVEA and SBP-BO
we can confirm the effectiveness of using a GP ensemble and
the proposed acquisition function. While HK-RVEA generally
shows similar performance with K-RVEA, SBP-BO exhibits
better performance than K-RVEA on most test problems. Simi-
larly, the results in terms of the HV values in Table II show that
Tr-SAEA significantly outperforms K-RVEA and HK-RVEA
on 24 and 29 test instances, respectively. Interestingly, the HV
values on DTLZ1, DTLZ3 and DTLZ6 indicate that all the
algorithms fail to satisfactorily approximate the Pareto front
due to the ruggedness and complexity of the fitness landscape.

The results presented in Table SI are consistent with those in
Table I, further supporting the benefit of using a GP ensemble
to make use of the additional data on the fast objectives and
the search bias penalized acquisition function. It is noteworthy
that with rc increasing from 5 to 10, the proposed algorithm
maintains its advantage for solving HE-MOPs and HE-MaOPs
by properly making use of the information obtained from
the optimization of the fast objectives. This observation can
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be validated by the HV values in Table SII, where SBP-BO
significantly outperforms K-RVEA on 29 test instances. Note,
however, that the proposed algorithm may fail to maintain a
good diversity of the obtained solutions on some test problems,
such as DTLZ5 and WFG3 which have degenerate Pareto
fronts. Hence, although the proposed SBP acquisition function
promotes the search towards the slow objectives, it may lead
to a poor diversity of the solutions on some problems.

To gain a deeper insight into the quality of the final solution
sets obtained by K-RVEA, HK-RVEA and SBP-BO, Figs. S1-
S3 in the Supplementary material show the nondominated so-
lution set with the median IGD+ value among 20 runs obtained
by K-RVEA, HK-RVEA and SBP-BO on DTLZ2, DTLZ4,
WFG2 and WFG6 with m = 3, 5, 10, respectively. Take Fig.
SI as an example, the proposed SBP-BO shows promising
performance in terms of both convergence and diversity on
the selected three-objective test problems, compared with K-
RVEA and HK-RVEA. For example, it is clear that SBP-
BO finds a better approximation of the true Pareto front on
DTLZ2 when compared with the other algorithms, indicating
its good balance between diversity and convergence. It is
worth noting that while HK-RVEA covers a small part of
the true Pareto front, SBP-BO is able to achieve a set of
well distributed solutions. This observation further supports
the advantage of the proposed SBP for reducing the search bias
towards to the cheap objectives. Regarding HE-MaOPs, similar
observations can be made, as illustrated in Figs. S2-S3, where
the solutions on the estimated Pareto front are shown in the
parallel coordinate plots. These observations can be explained
from the perspective of the use of additional data and the
reduction of search bias by the SBP acquisition function.

To explore the performance of SBP-BO as the evolution pro-
ceeds, the IGD+ values obtained by each algorithm over the
number of real fitness evaluations (FEs) on test problems with
rc = {5, 10} and the corresponding statistically significant
differences are summarised in Tables SIII-SIV, respectively, in
the Supplementary material. As can be seen from the tables,
the proposed SBP-BO shows significantly better performance
than K-RVEA on DTLZ2, WFG3, WFG5 and WFG6 with
FEe = 150, indicating the fast convergence of SBP-BO.
Although HK-RVEA shows better performance than K-RVEA,
SBP-BO can significantly outperform HK-RVEA on DTLZ2,
WFG4, WFG6 and WFG7 with FEe = 200. Subsequently,
Figs. S4-S5 plot the boxplots of the IGD+ values obtained
by each algorithm on DTLZ2, DTLZ4, WFG2 and WFG6
with different number of FEs over 20 runs, confirming the fast
convergence achieved by SBO-BO. Moreover, we demonstrate
the search process of each algorithm in terms of IGD+ values
in Figs. S6-S7, where the error bars indicate the variance of
IGD+ values over 20 runs. According to Figs. S5-S6, similar
conclusion can be made.

2) Influence of different r and rthres on the optimization
performance: Each objective in an HE-MOP/HE-MaOP re-
quires a distinct period of time to be evaluated, it is therefore
expected to test the proposed algorithm on problems with
different r = (rc1, r

c
2, · · · , rcp, re1, · · · , req), where p and q

are the number of cheap and expensive objectives. In this
subsection, the heterogeneity handling ability of SBP-BO is

TABLE I
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY K-RVEA,
HK-RVEA, AND SBP-BO WITH FEe

max = 300 AND r = (rc, . . . , rc, 1)
WHERE rc = 5

Problem m K-RVEA HK-RVEA SBP-BO

3 7.88e+1 (1.16e+1) ≈ 9.07e+1 (1.42e+1) – 6.60e+1 (1.10e+1)
5 3.96e+1 (1.21e+1) – 4.41e+1 (3.50e+0) – 2.45e+1 (8.88e+0)DTLZ1
10 3.31e-1 (1.42e-1) – 1.97e-1 (8.40e-2) – 1.58e-1 (2.31e-2)

3 7.52e-2 (1.02e-2) – 5.98e-2 (1.05e-2) ≈ 3.75e-2 (1.27e-3)
5 1.79e-1 (1.88e-2) – 1.38e-1 (9.34e-3) – 9.76e-2 (6.07e-3)DTLZ2
10 2.38e-1 (1.32e-2) ≈ 2.73e-1 (4.02e-2) – 2.04e-1 (9.70e-3)

3 2.13e+2 (3.73e+1) ≈ 2.35e+2 (3.55e+1) ≈ 1.82e+2 (4.57e+1)
5 1.25e+2 (3.49e+1) – 1.64e+2 (3.70e+1) – 9.17e+1 (2.53e+1)DTLZ3
10 7.96e-1 (3.52e-1) ≈ 8.05e-1 (3.58e-1) ≈ 6.12e-1 (1.48e-1)

3 2.59e-1 (7.57e-2) – 3.41e-1 (1.30e-1) – 1.71e-1 (1.29e-1)
5 2.73e-1 (5.59e-2) ≈ 3.26e-1 (6.29e-2) – 2.89e-1 (9.04e-2)DTLZ4
10 2.58e-1 (1.77e-2) ≈ 2.68e-1 (3.08e-2) ≈ 2.57e-1 (2.60e-2)

3 6.76e-2 (1.15e-2) – 6.52e-2 (9.38e-3) – 2.78e-2 (2.87e-3)
5 2.90e-2 (6.77e-3) – 1.90e-2 (3.57e-3) ≈ 1.88e-2 (3.55e-3)DTLZ5
10 6.22e-3 (7.70e-4) ≈ 7.31e-3 (1.43e-3) ≈ 7.22e-3 (9.88e-4)

3 3.03e+0 (6.09e-1) ≈ 3.15e+0 (4.09e-1) ≈ 2.85e+0 (4.83e-1)
5 1.77e+0 (3.28e-1) ≈ 1.90e+0 (3.09e-1) ≈ 1.03e+0 (4.89e-1)DTLZ6
10 3.85e-2 (7.26e-3) – 2.69e-2 (8.73e-3) – 2.47e-2 (7.67e-3)

3 1.09e-1 (2.63e-2) – 6.64e-2 (1.04e-2) – 5.85e-2 (1.89e-2)
5 4.79e-1 (2.94e-1) – 3.12e-1 (7.50e-2) ≈ 3.12e-1 (3.48e-1)DTLZ7
10 9.08e-1 (3.88e-2) + 9.36e-1 (2.65e-2) + 9.54e-1 (1.70e-1)

3 1.64e+0 (4.10e-2) ≈ 1.74e+0 (1.15e-1) ≈ 1.66e+0 (1.34e-1)
5 2.11e+0 (7.70e-2) + 2.22e+0 (8.27e-2) ≈ 2.23e+0 (6.82e-2)WFG1
10 2.81e+0 (1.32e-1) ≈ 2.81e+0 (1.26e-1) ≈ 2.79e+0 (1.46e-1)

3 2.91e-1 (2.74e-2) – 2.20e-1 (2.22e-2) – 1.46e-1 (2.81e-2)
5 3.93e-1 (6.16e-2) – 2.82e-1 (3.07e-2) – 1.90e-1 (2.89e-2)WFG2
10 3.96e-1 (1.38e-1) – 3.98e-1 (1.45e-1) – 3.11e-1 (8.55e-2)

3 4.12e-1 (5.12e-2) – 4.53e-1 (5.97e-2) – 2.10e-1 (3.02e-2)
5 4.29e-1 (8.76e-2) – 3.43e-1 (3.57e-2) ≈ 3.48e-1 (8.35e-2)WFG3
10 5.59e-1 (6.59e-2) – 5.35e-1 (7.26e-2) ≈ 5.36e-1 (7.64e-2)

3 3.92e-1 (2.82e-2) – 3.84e-1 (2.41e-2) – 3.22e-1 (2.28e-2)
5 7.73e-1 (4.30e-2) – 8.55e-1 (6.66e-2) – 6.86e-1 (3.89e-2)WFG4
10 3.25e+0 (8.96e-1) – 3.45e+0 (8.52e-1) – 2.21e+0 (3.82e-2)

3 3.78e-1 (6.53e-2) – 2.59e-1 (1.69e-2) ≈ 2.29e-1 (5.32e-2)
5 7.96e-1 (6.80e-2) – 7.12e-1 (3.17e-2) – 6.19e-1 (4.10e-2)WFG5
10 2.12e+0 (4.55e-1) – 1.97e+0 (4.58e-1) ≈ 1.78e+0 (3.69e-1)

3 6.77e-1 (5.71e-2) – 5.04e-1 (7.46e-2) – 3.16e-1 (8.37e-2)
5 1.18e+0 (1.41e-1) – 9.28e-1 (8.25e-2) – 7.41e-1 (4.45e-2)WFG6
10 1.29e+0 (3.37e-2) ≈ 1.28e+0 (5.73e-2) ≈ 1.03e+0 (2.96e-2)

3 4.98e-1 (4.06e-2) – 5.44e-1 (3.21e-2) – 4.25e-1 (2.11e-2)
5 8.74e-1 (6.09e-2) ≈ 1.03e+0 (8.34e-2) – 8.28e-1 (5.22e-2)WFG7
10 3.49e+0 (4.68e-1) ≈ 3.63e+0 (5.24e-1) – 3.33e+0 (4.32e-1)

3 6.57e-1 (5.50e-2) – 5.64e-1 (2.90e-2) – 4.73e-1 (5.86e-2)
5 1.49e+0 (4.32e-2) – 1.40e+0 (6.33e-2) – 1.20e+0 (2.85e-2)WFG8
10 1.47e+0 (2.47e-1) ≈ 3.57e+0 (1.10e+0) – 1.58e+0 (6.99e-1)

3 5.76e-1 (7.03e-2) ≈ 5.72e-1 (1.15e-1) ≈ 5.91e-1 (1.36e-1)
5 1.13e+0 (2.54e-1) – 1.31e+0 (1.95e-1) – 8.74e-1 (2.54e-1)WFG9
10 3.71e+0 (8.56e-1) + 5.16e+0 (6.40e-1) ≈ 4.69e+0 (8.73e-1)

+/–/≈ 3/28/17 1/28/19

tested on three-objective and ten-objective problems with dif-
ferent numbers of expensive objectives (q), different ratios of
function evaluation times between objectives (r), and different
threshold values (rthres). Firstly, SBP-BO is examined on
three-objective test functions with two sets of r values, i.e.,
one set having r = (5, 5, 1), r = (7, 3, 1), and r = (9, 1, 1),
and the other having r = (15, 5, 1), r = (10, 10, 1), and
r = (19, 1, 1). The statistical results in terms of IGD+ are
presented in Tables SV-SVI. Secondly, ten-objective problems
with r = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) and rthres = 1, 3, 5
are used to test the impact of rthres on the optimization
performance, and the statistical results are presented in Table
III. Lastly, the impact of different r is further investigated on
ten-objective problems with rthres = 3, where r is set to r1 =
(10, 8, 8, 7, 5, 4, 3, 2, 2, 1), r2 = (10, 9, 8, 6, 3, 2, 2, 2, 1, 1),
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TABLE II
MEAN (STANDARD DEVIATION) HV VALUES OBTAINED BY K-RVEA,

HK-RVEA, AND SBP-BO WITH FEe
max = 300 AND r = (rc, . . . , rc, 1)

WHERE rc = 5

Problem m K-RVEA HK-RVEA SBP-BO

DTLZ1 3 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0)
5 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0)
10 3.38e-1 (2.90e-1) – 5.57e-1 (5.42e-2) – 6.32e-1 (9.90e-2)

DTLZ2 3 4.52e-1 (2.80e-2) – 5.01e-1 (4.75e-2) – 5.32e-1 (6.36e-3)
5 6.28e-1 (1.71e-2) – 6.46e-1 (8.58e-2) – 7.68e-1 (8.05e-4)
10 8.71e-1 (1.28e-2) – 8.24e-1 (8.95e-2) ≈ 9.62e-1 (3.28e-3)

DTLZ3 3 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0)
5 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0)
10 1.12e-1 (3.28e-3) – 8.08e-2 (0.00e+0) – 3.06e-1 (8.28e-2)

DTLZ4 3 5.93e-2 (6.35e-2) – 1.25e-2 (4.94e-2) – 2.44e-1 (1.06e-1)
5 3.64e-1 (1.43e-1) + 3.33e-2 (3.43e-2) – 2.44e-1 (3.10e-2)
10 8.50e-1 (3.08e-2) ≈ 7.58e-1 (3.05e-2) – 8.43e-1 (1.64e-2)

DTLZ5 3 1.31e-1 (8.71e-3)≈ 1.27e-2 (3.17e-2) ≈ 1.46e-1 (1.01e-2)
5 1.11e-1 (3.43e-3) ≈ 1.14e-1 (2.93e-2) ≈ 1.10e-1 (1.14e-3)
10 9.76e-2 (5.36e-3) ≈ 9.69e-2 (1.71e-2) ≈ 9.81e-2 (6.75e-4)

DTLZ6 3 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0)
5 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0)
10 9.00e-2 (4.94e-4) ≈ 9.48e-2 (4.94e-4) ≈ 9.46e-2 (7.81e-4)

DTLZ7 3 2.49e-1 (3.85e-3) – 2.54e-1 (3.09e-3) – 2.63e-1 (1.70e-3)
5 2.17e-1 (7.59e-3) ≈ 2.21e-1 (9.13e-4) ≈ 2.22e-1 (9.71e-5)
10 2.49e-1 (3.85e-3) + 1.76e-1 (3.60e-3) ≈ 1.70e-1 (3.70e-3)

WFG1 3 2.11e-1 (3.16e-2) – 2.12e-1 (1.89e-2) – 2.38e-1 (2.14e-2)
5 2.24e-1 (3.88e-2) – 1.48e-1 (4.96e-2) – 2.57e-1 (3.88e-2)
10 2.11e-1 (3.16e-2) – 2.12e-1 (1.89e-2) – 2.38e-1 (2.14e-2)

WFG2 3 7.76e-1 (2.12e-2) ≈ 7.30e-1 (4.60e-2) – 7.92e-1 (4.14e-2)
5 7.05e-1 (5.45e-2) – 7.77e-1 (3.30e-2) – 8.70e-1 (3.47e-2)
10 6.14e-1 (1.13e-2) – 6.28e-1 (3.49e-2) – 6.96e-1 (4.79e-2)

WFG3 3 2.22e-1 (1.63e-2) – 1.89e-1 (1.52e-2) – 3.72e-1 (1.85e-2)
5 6.54e-3 (6.66e-3) – 6.07e-3 (7.73e-3) – 7.47e-3 (8.47e-3)
10 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0) ≈ 0.00e+0 (0.00e+0)

WFG4 3 3.78e-1 (1.51e-2) ≈ 3.57e-1 (1.39e-2) – 3.95e-1 (1.26e-2)
5 5.35e-1 (4.21e-2) – 4.75e-1 (1.92e-2) – 5.93e-1 (2.35e-2)
10 4.80e-1 (2.08e-2) ≈ 4.79e-1 (2.98e-2) ≈ 4.82e-1 (4.82e-2)

WFG5 3 3.97e-1 (3.59e-2) ≈ 3.69e-1 (2.21e-2) ≈ 3.95e-1 (4.01e-2)
5 4.50e-1 (2.89e-2) – 4.59e-1 (2.28e-2) ≈ 4.76e-1 (2.47e-2)
10 4.15e-1 (1.15e-2) ≈ 4.10e-1 (2.16e-2) ≈ 4.28e-1 (3.60e-2)

WFG6 3 2.26e-1 (1.68e-2) – 2.15e-1 (9.52e-3) – 2.68e-1 (2.97e-2)
5 3.06e-1 (5.71e-2) – 3.29e-1 (2.31e-2) – 3.81e-1 (3.41e-2)
10 2.54e-1 (2.13e-2) – 3.62e-1 (1.86e-2) – 3.99e-1 (3.04e-2)

WFG7 3 3.07e-1 (1.64e-2) ≈ 2.85e-1 (9.16e-3) – 3.17e-1 (2.19e-2)
5 4.38e-1 (3.17e-2) – 4.23e-1 (2.15e-2) – 4.59e-1 (2.30e-2)
10 4.76e-1 (4.56e-2) ≈ 4.32e-1 (2.29e-2) – 4.98e-1 (3.08e-2)

WFG8 3 2.81e-1 (1.54e-2) – 2.63e-1 (1.52e-2) – 3.18e-1 (1.80e-2)
5 3.28e-1 (1.31e-2) – 3.49e-1 (2.12e-2) – 3.78e-1 (1.82e-2)
10 4.24e-1 (1.39e-2) – 3.80e-1 (1.39e-2) – 4.76e-1 (2.90e-2)

WFG9 3 2.68e-1 (3.84e-2) + 2.34e-1 (3.88e-2) ≈ 2.48e-1 (1.95e-2)
5 3.43e-1 (3.12e-2) – 3.24e-1 (3.12e-2) – 3.93e-1 (2.76e-2)
10 3.72e-1 (4.01e-2) ≈ 3.21e-1 (1.04e-2) – 3.63e-1 (2.15e-2)

+/–/≈ 3/24/21 0/29/19

and r3 = (9, 7, 3, 3, 3, 2, 2, 2, 1, 1), respectively. The results
are summarized in Table IV. Accordingly, the results in terms
of the HV values are presented in Tables SVII-SVIII.

Although it is unclear what influence the exact form of r and
the exact value of rthres will have on the optimization process,
we can make the following observations. First, the instance
with r = (9, 1, 1) will cause a strong search bias towards
the objective whose rc1 = 9 compared with r = (5, 5, 1) or
r = (7, 3, 1), making the problem more difficult to solve.
Consequently, the instance with r = (19, 1, 1) will render the
strongest search bias among all r situations for three-objective
problems studied in this work. Secondly, regarding the ten-
objective test instances, a larger rthres will result in a stronger
search bias towards the cheap objectives. Consequently, prob-
lems with rthres = 5 become more challenging to solve than

those with rthres = 1. Moreover, we have a similar expectation
that an optimization algorithm can achieve better performance
on ten-objective problems with a smaller q (i.e., r1) than those
with a larger one (i.e., r3).

The IGD+ values in Tables SV-SVI achieved by HK-RVEA
and the proposed algorithm accord with our earlier observa-
tions that compared with HK-RVEA, SBP-BO shows similar
or significantly better performance on all test problems except
DTLZ7, with different r. This observation provides evidence
for confirming SBP-BO’s ability for solving various HE-
MOPs. Besides, it is interesting to note that changing r from
(5, 5, 1) to (9, 1, 1) generally causes a reduced performance
for both HK-RVEA and SBP-BO on most test problems,
which is expected. Similar conclusions can be drawn from
Table IV, confirming the effectiveness of SBP-BO in handling
HE-MOPs/HE-MaOPs. According to the results in Table III,
SBP-BO significantly outperforms HK-RVEA on seven test in-
stances, while HK-RVEA always shows the best performance
on DTLZ1. We can also observe that the performance of
SBP-BO and HK-RVEA degrades as rthres increases. These
observations can be confirmed by the HV values in Tables
SVII-SVIII.

To further illustrate the influence of different r on the
performance of the optimization algorithms considered in this
work, the approximations of the true Pareto front on DTLZ5
with r = (5, 5, 1) and r = (9, 1, 1) obtained by HK-RVEA and
SBP-BO are shown in Figs. 3-4, where FEemax is set to 300
and 1000, respectively. From these results, our observations
can be summarized as follows:

• Consistent with the aforementioned hypothesis, the search
bias is more likely to occur on problems when r = (9, 1, 1)
in the different function evaluation ratios considered be-
tween objectives, rendering an MOEA inefficient. An illus-
trative example is given in Fig. 3 when FEemax = 300. SBP-
BO can achieve better diversity on DTLZ5 with r = (5, 5, 1)
compared with that on DTLZ5 with r = (9, 1, 1). Similar
observations can be made from Fig. 4, where FEemax =
1000.

• The proposed SBP-BO can find a set of solutions with good
quality on all considered test instances, while HK-RVEA
suffers from the heterogeneous objectives. As depicted in
Fig. 3, the solution set obtained by HK-RVEA only covers
some subregions, especially those around the two end points
of the true Pareto front of DTLZ5, which is a curve for
that problem. We note that the proposed SBP-BO shows
its advantage for handling HE-MOPs, which is achieved
by an efficient use of the additional data on the cheap
objectives with the help of the ensemble GP surrogate and
the alleviation search bias by means of the proposed acqui-
sition function. It is clear that SBP-BO finds a satisfying
Pareto front approximation with respect to both diversity
and convergence when FEemax = 1000, confirming that the
proposed SBP acquisition function can reduce the search
bias introduced by heterogeneous objectives.

3) Results on bi-objective heterogeneous problems: In this
subsection, we compare SBP-BO with three transfer-learning
(TL) based heterogeneity-handling methods, i.e., T-SAEA
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(a) HK-RVEA (b) SBP-BO

(c) HK-RVEA (d) SBP-BO

Fig. 3. The final solution set with the median IGD+ values found by HK-
RVEA and SBP-BO on DTLZ5 with FEs

max = 300 and r = (5, 5, 1) ((a)
and (b)) and r = (9, 1, 1) ((c) and (d))
, respectively.

(a) HK-RVEA (b) SBP-BO

(c) HK-RVEA (d) SBP-BO

Fig. 4. The final solution set with the median IGD+ values found by HK-
RVEA and SBP-BO on DTLZ5 with FEs

max = 1000 and r = (5, 5, 1) ((a)
and (b)) and r = (9, 1, 1) ((c) and (d)), respectively.

TABLE III
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY

HK-RVEA, AND SBP-BO ON TEN-OBJECTIVE PROBLEMS WITH
r = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) AND DIFFERENT rthres AND

FEe
max = 300

.

Problem rthres HK-RVEA SBP-BO

1 2.37e-1 (7.60e-2) + 5.54e-1 (8.84e-2)
DTLZ1 3 3.17e-1 (1.61e-1) + 6.15e-1 (2.12e-1)

5 3.26e-1 (1.42e-1) + 6.58e-1 (1.39e-1)

1 2.52e-1 (1.73e-2) ≈ 2.51e-1 (1.09e-2)
DTLZ4 3 2.64e-1 (1.65e-2) – 2.59e-1 (1.78e-2)

5 2.71e-1 (3.94e-2) ≈ 2.71e-1 (2.25e-2)

1 3.45e-1 (2.26e-1) – 1.56e-1 (2.81e-2)
WFG2 3 6.18e-1 (1.96e-1) – 2.01e-1 (9.94e-2)

5 1.53e+0 (9.21e-1) – 2.15e-1 (1.58e-1)

1 1.21e+0 (5.28e-2) – 1.94e-1 (4.23e-2)
WFG6 3 1.49e+0 (1.89e-1) – 2.28e-1 (2.06e+0)

5 2.77e+0 (1.66e+0) – 2.71e-1 (9.56e-1)

+/–/ ≈ 3/7/2

TABLE IV
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY HK-RVEA,

AND SBP-BO ON TEN-OBJECTIVE PROBLEMS WITH rthres = 3,
r1 = (10, 8, 8, 7, 5, 4, 3, 2, 2, 1), r2 = (10, 9, 8, 6, 3, 2, 2, 2, 1, 1) AND

r3 = (9, 7, 3, 3, 3, 2, 2, 2, 1, 1), AND FEe
max = 300

.

Problem r HK-RVEA SBP-BO

r1 3.56e-1 (1.33e-1) – 2.73e-1 (1.00e-1)
DTLZ1 r2 2.66e-1 (1.01e-1) ≈ 2.51e-1 (1.16e-1)

r3 3.29e-1 (1.65e-1) ≈ 2.91e-1 (9.60e-2)

r1 2.79e-1 (1.70e-2) – 2.37e-1 (2.15e-2)
DTLZ4 r2 2.67e-1 (2.70e-2) ≈ 2.57e-1 (2.36e-2)

r3 2.80e-1 (4.18e-2) ≈ 2.71e-1 (2.70e-2)

r1 1.41e+0 (7.11e-1) – 8.35e-1 (6.09e-1)
WFG2 r2 7.30e-1 (4.76e-1) + 8.16e-1 (5.26e-1)

r3 1.48e+0 (5.47e-1) – 8.23e-1 (3.60e-1)

r1 3.44e+0 (1.66e+0) – 2.66e-1 (1.45e-1)
WGF6 r2 2.71e+0 (9.07e-1) – 3.18e-1 (3.76e-2)

r3 4.01e+0 (9.13e-1) – 2.75e+0 (2.56e-2)

+/–/ ≈ 1/7/4

[15], Tr-SAEA [16] and TC-SAEA [17], on the same bi-
objective heterogeneous problems with the same parameter
setting reported in [17]. Specifically, as presented in the
Supplementary material, DTLZ1 to DTLZ7 and two modified
counterparts (DTLZ1a and DTLZ3a) of DTLZ1 and DTLZ3,
and UF1 to UF7 from the UF test suite [35], are used as
test instances. The statistical results in terms of the IGD+

and HV values obtained by each algorithm on test instances
with rc = 5 and rc = 10 are summarized in Table V and
Tables SIX-SXI. According to the IGD+ results, at least one
of the TL-based methods significantly outperforms SBP-BO
on 10 out of 16 problems for rc = 5, 10, while SBP-BO
is only significantly better than all TL approaches on three
problems for rc = 5 and two problems for rc = 10. Similar
observations can be made from the HV values, while all
algorithms fail to approximate the true Pareto front on the
hard-to-convergence instances, i.e., DTLZ1 and DTLZ3. The
performance difference is understandable since in the TL-
based approaches information on the correlation of the two
objectives is acquired, which allows for an estimation of the
expensive objective from the search experience on the cheap
objective. Such information is not used in SBP-BO and the
selection of new samples is only guided by the heterogeneous
evaluation times in SBP-BO.

However, the extension of the TL-based approaches to
problems with more than two objectives is nontrivial. Mul-
tiple models for transferring knowledge between each pair
of objectives will need to be trained, which increases the
computational complexity substantially. More importantly, it
is an open question how to utilize the information from these
models in a consistent manner, as, for example, information on
one objective will be provided by multiple models that might
contain contradicting information.

4) Ablation studies Further experiments are performed here
to provide a deeper understanding of the performance of SBP-
BO by testing the effectiveness of each component. The IGD+

values obtained by SBP-BO and its variants are presented in
Tables SXII and SXIII in the Supplementary material. The
following observations can be made:

• According to Tables SXII and SXIII, we can see that the
proposed algorithm yields the best IGD+ values on 23 out
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TABLE V
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY T-SAEA,

TR-SAEA, TC-SAEA AND SBP-BO FOR BI-OBJECTIVE PROBLEMS WITH
FEe

max = 200 AND r = (rc, 1) WHERE rc = 5

.

Problem T-SAEA Tr-SAEA TC-SAEA SBP-BO
DTLZ1 21.7 (11.9) – 20.7 (5.38) – 20.1 (8.16) – 17.2 (4.52)
DTLZ1a 1.06 (1.00) – 0.21 (0.07) – 0.36 (0.04) – 0.15 (0.03)
DTLZ2 0.05 (0.03) ≈ 0.03 (0.01) ≈ 0.02 (0.00) ≈ 0.04 (0.01)
DTLZ3 203 (100) ≈ 327 (82.1) ≈ 132 (79.3) ≈ 214 (62.3)
DTLZ3a 5.34 (37.5) + 3.39 (1.87) + 2.30 (0.66) + 13.1 (5.56)
DTLZ4 0.60 (0.13) – 0.16 (0.07) + 0.44 (0.13) – 0.36 (0.12)
DTLZ5 0.05 (0.02) ≈ 0.03 (0.03) ≈ 0.03 (0.00) ≈ 0.04 (0.00)
DTLZ6 2.56 (1.21) + 0.72 (0.09) + 2.62 (1.95) + 5.36 (0.43)
DTLZ7 1.15 (0.91) + 0.03 (0.01) + 0.05 (0.08) + 5.41 (0.56)
UF1 0.19 (0.02) + 0.19 (0.01) + 0.19 (0.02) ≈ 1.12 (0.14)
UF2 0.14 (0.02) + 0.12 (0.01) + 0.13 (0.02) + 0.57 (0.03)
UF3 0.19 (0.08) + 0.49 (0.01) ≈ 0.42 (0.03) + 1.01 (0.05)
UF4 0.23 (0.02) – 0.22 (0.00) – 0.19 (0.01) – 0.17 (0.00)
UF5 2.49 (0.44) + 2.43 (0.28) + 2.42 (0.38) + 4.91 (0.36)
UF6 1.01 (0.25) + 1.32 (0.39) + 0.81 (0.19) + 5.43 (0.69)
UF7 0.37 (0.06) + 0.32 (0.11) + 0.33 (0.05) + 1.12 (0.08)
+/–/≈ 9/4/3 9/3/4 7/4/4

of 48 test instances for rc = 5 and rc = 10, confirming
the effectiveness of the ensemble model and the search bias
penalized acquisition function.

• The effectiveness of the proposed way of utilizing the
additional data in SBP-BO can be validated by comparing
SBP-BO with SBP-BO-C and SBP-BO-R. From Table SVII,
SBP-BO significantly outperforms SBP-BO-C and SBP-BO-
R on 37 test problems. This is consistent with the findings
in [15]: how to utilize the additional data obtained from
the search of cheap objectives plays a vital role in the
optimization of HE-MOPs/HE-MaOPs. One weakness of the
commonly used methods for training data selection based
on clustering or randomly selection is that they cannot use
all available data. This issue becomes more challenging
for HE-MOPs where abundant training data are available
for the fast objectives, making the algorithm inefficient for
addressing problems with heterogeneous objectives. Similar
observations can be made from Table SXIII. Note that there
is no limitation on the available FEs for the relatively cheap
objectives and thousands of cheap FEs are consumed in
SBP-NoGPc. It is interesting to see that SBP-BO is able to
significantly outperform SBP-NoGPc on 30 and 31 out of
48 test instances for rc = 5 and rc = 10, respectively. The
comparison between SBP-BO and SBP-NoGPc indicates
that the algorithm can benefit from the use of surrogates
on the cheap objectives. A possible explanation is that
surrogates may smooth out some local optima and thus
accelerate the search, which was discussed intuitively in [45]
and empirically verified in [46].

• Compared with BO-LCB, the proposed algorithm shows sig-
nificantly better performance on 22 out of 48 test instances,
and similar performance on the remaining test problems,
according to the results in Table SXI. It is worthy of noting
that for HE-MOPs/HE-MaOPs with rc = 10, the advantage
of SBP-BO becomes a little less clear compared with BO-
LCB, as can be observed from the results in Table SXI.
SBP-BO is worse than BO-LCB on one test instance, but
it only outperforms BO-AFF on 15 out of 48 instances.
The results indicate that the algorithm can benefit from the
use of the search bias penalty on some problems. However,
since it is highly tricky to measure the search bias, it is

challenging to apply an appropriate degree of penalty. This
is might be the reason why SBP-BO and BO-LCB show
similar performance on most test problems.

V. CONCLUSION

In this paper, we address heterogeneously expensive multi-
/many-objective optimization problems, which have not re-
ceived much attention in the evolutionary optimization com-
munity. We focus on exploiting the different amounts of data
for the cheap and expensive objectives in constructing surro-
gates and reducing the search bias towards the cheap objectives
within the Bayesian optimization framework. Specifically, to
make full use of the available data for the cheap objectives
while avoiding increasing the computational cost, an ensemble
of GPs is constructed for each cheap objective to make use
of both the solutions evaluated on all objectives and on the
cheap objectives only. To reduce the bias towards the cheap
objectives, we introduce a penalty term based on the hetero-
geneity in computational complexity of the objectives into
the acquisition function, guiding the selection of new samples
by taking the search bias into consideration. Although MOPs
and MaOPs with heterogeneous objectives are ubiquitous in
real-world applications, little work on BEO considering the
computational heterogeneity has been reported in the literature.
Different from most state-of-the-art algorithms that are limited
to bi-objective optimization problems, the proposed algorithm
is more generic in that it is applicable to problems with
more than two objectives, where each objective can have a
different evaluation time. Thus, the proposed work constitutes
a valuable step forward towards solving real-world problems.

Encouraged by the promising results of the present work,
we are interested in further investigating the efficient use
of additional data on the cheap objectives, e.g., by properly
guiding the single objective search. Meanwhile, the experi-
mental results of the current work suggest that the proposed
algorithm is less effective on nonseparable, multi-modal and
disconnected problems, implying that more powerful search
operators are required. Finally, this work adopts a simplified
way to measure the search bias resulting from heterogeneous
objectives, which leaves much room for further improvement
in alleviating the search bias.
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[45] M. Hüsken, Y. Jin, and B. Sendhoff, “Structure optimization of neural
networks for evolutionary design optimization,” Soft Computing, vol. 9,
no. 1, pp. 21–28, 2005.

[46] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surrogate-
assisted evolutionary computation,” IEEE Transactions on Evolutionary
Computation, vol. 14, no. 3, pp. 329–355, 2009.



13

Xilu Wang received the B.Sc. and M.Sc. from
Harbin Institute of Technology in 2016 and Xidian
University in 2018, respectively, and received the
Ph.D. degree at University of Surrey, UK, in 2022.

She is currently a Research Assistant with Faculty
of Technology, Bielefeld University, Germany. Her
research interests include evolutionary algorithms,
multi-objective optimization, surrogate-assisted evo-
lutionary optimization, Bayesian optimization and
federated optimization.

Yaochu Jin (Fellow, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees from Zhejiang University,
Hangzhou, China, in 1988, 1991, and 1996, respec-
tively, and the Dr.-Ing. degree from Ruhr University
Bochum, Germany, in 2001.

He is an Alexander von Humboldt Professor for
Artificial Intelligence endowed by the German Fed-
eral Ministry of Education and Research, with the
Faculty of Technology, Bielefeld University, Ger-
many. He is also a Distinguished Chair, Professor
in Computational Intelligence, Department of Com-

puter Science, University of Surrey, Guildford, U.K. He was a “Finland
Distinguished Professor” of University of Jyväskylä, Finland, “Changjiang
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