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Abstract. Research on multi-agent interaction involving both mul-
tiple artificial agents and humans is still in its infancy. Most recent ap-
proaches have focused on environments with collaboration-focused
human behavior, or providing only a small, defined set of situations.
When deploying robots in human-inhabited environments in the fu-
ture, it will be unlikely that all interactions fit a predefined model of
collaboration, where collaborative behavior is still expected from the
robot. Existing approaches are unlikely to effectively create such be-
haviors in such "coexistence" environments. To tackle this issue, we
introduce a novel framework that decomposes interaction and task-
solving into separate learning problems and blends the resulting poli-
cies at inference time. Policies are learned with maximum entropy re-
inforcement learning, allowing us to create interaction-impact-aware
agents and scale the cost of training agents linearly with the number
of agents and available tasks. We propose a weighting function cov-
ering the alignment of interaction distributions with the original task.
We demonstrate that our framework addresses the scaling problem
while solving a given task and considering collaboration opportuni-
ties in a co-existence particle environment and a new cooking envi-
ronment. Our work introduces a new learning paradigm that opens
the path to more complex multi-robot, multi-human interactions.

1 Introduction
Human-Robot Interaction (HRI) is a trending research topic [12, 31]
as there is an increased push toward robots that work alongside hu-
mans. Applications of HRI work in the scientific literature vary and
include topics such as teaching [2, 10], assistance [8, 19, 40] or en-
tertainment [1]. Often modelling of the interaction aims for an ex-
plicit collaboration with a human or a group of humans to achieve a
common goal [7, 30]. However, when sharing an environment with
multiple humans, a robot may not interact with only a single, dedi-
cated user. Other humans or robots may be bystanders that coexist in
the same environment without being directly involved in the current
task of the robot [32]. How to (co-)operate when facing other peo-
ple while performing a task is an important question that needs to be
addressed in HRI.

Consider the situation of a robot for assisted living within a group
of older adults. The robot should be able to perform supportive tasks
for a given person, while other humans with independent intentions
are sharing the same space. For example, the robot could be asked
by one person to prepare a sandwich while at the same time another
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Figure 1: Classification of multi-agent environment structures. Co-
existence environments constrain performance of multiple agents to
be interdependent but not exclusive. Cooperative environments and
some competitive environments are considered sub-sets.

person starts cooking something for herself. The robot and the cook
both require access to some shared resources, like the fridge, while
they do not share a common goal. However, a robot that does not
acknowledge the right of a bystander to approach its own goals will
likely not be accepted by society but neither will one that ignores its
given task while other humans are close-by.

We term such situations "coexistence" environments. Figure 1 de-
picts the relation to other types of environments used in the literature.
In coexistence environments agents have an impact on other agent’s
performance, most likely through sharing space or resources, while
both agents are able to theoretically reach their goals. If impact in-
volves an explicit interdependence to reach a certain goal, this can
be called a cooperative scenario. Competitive environments feature
an explicit resource conflict. If this conflict results in sub-optimal
solutions for at least one agent, it can still be considered a coexis-
tence environment. However, zero-sum games, which result in only
one agent being able to reach its goal at all will not allow the coexis-
tence of the agents. Coexistence environments can also be related to
the Ad-Hoc Teamwork (AHT) field where agents have to collaborate
with unknown teammates [21]. Both AHT and coexistence environ-
ments share common assumptions, including no prior coordination
between agents, no control over teammates, and no zero-sum compe-
tition. However, an important difference between the two is that AHT
environments have a defined "optimal" solution, which is the joint
reward. On the other hand, in coexistence environments, defining an
optimal solution is not as straightforward. From an outside perspec-



tive, fairness may be considered the optimal solution, whereas, from
an egoistic perspective, social investment may be the way to go. De-
spite these differences, it’s worth noting that AHT can still be consid-
ered a subset of cooperative environments, while coexistence defines
a more general setting.

In this work, we propose a novel learning framework to solve co-
existence environments. Our approach entails obtaining two distinct
sets of policies: one set for completing tasks and another set for
influencing other agents while they perform their respective tasks.
Additionally, we derive an entropy based mechanism for blending
these policies. In addition to showcasing the scalability of this ap-
proach for numerous agents with diverse intentions, we analyze the
advantages of employing this approach towards enhancing task per-
formance, while simultaneously minimizing any negative impact on
the agent’s own performance.

2 Related Work

Coexistence environments provide a number of challenges, such as
modeling other agent’s policies and intentions, evaluating the impact
of own actions, integrating others in the learning of a policy or in-
teracting with unknown agents, working with many different tasks,
and scaling with the combination of single agent tasks. Many of the
individual aspects have been addressed by prior work.

An example of modeling other agents in the environment explicitly
is the I-POMDP [11] framework. Decision frameworks using this
model engage in explicit reasoning about humans [9, 16] and use the
mental model of others to improve their own outcomes. Our approach
does not require a model of the environment during execution and
uses the model of others to find the best solution for the population
while solving the agent’s own task.

Integrating others in the learning of a policy is a main part of
Multi-Agent Reinforcement Learning (MARL) where all agents are
explicitly trained together [25, 38]. One possibility in MARL is to
train a set of agents by extracting joint action values as a complex
non-linear combination of single agent values to act on decentralized
local observations [27, 33, 39]. The resulting policy will however
be restricted to a specific set of tasks for the agents. In [37], agents
are trained in a centralized learning, decentralized execution regime
and compute a credit score by taking other’s perspective. This work
deals with cooperative scenarios, where the function estimation pro-
cess needs to train on each goal combination explicitly.

Maximum entropy methods have been shown to produce policies
that are robust to minor changes in the environment or other agents’
behaviors [35, 14, 34, 13]. Combining energy based policies as a
product of experts has also be shown as an effective measure to solve
problems that include multiple sub-tasks [15, 18]. Previous work
has also considered Multi-Agent systems that have to solve multiple
tasks [24]. They introduce a monolithic learning regime to learn over
multiple tasks using a single policy without providing task identities.
This approach scales well for cooperative tasks only.

Ad-Hoc teamwork is a single agent learning problem where the
agent has to be capable to cooperate on the fly with other agents
without prior coordination. [21] A popular approach is to compute
Bayesian posteriors over predefined teammate types, which then are
subsequently used in other models, such as reinforcement learners
[3, 4]. Another approach uses transfer learning with the goal to reuse
knowledge across agents to enable faster adaptation to new agent
types [5, 28, 6]. [20] learn a teammate’s task from a set of predefined
tasks in addition and learn to cooperate in any of them. However, this
does not factor in the possibility of changing the task of the learning

Figure 2: Architecture of our Action Aligned Interaction Learner.

agent and only learns joint policies that do not scale beyond a few
select tasks.

The framework of [26] models action impact on policies using
Graph-Based Policies (GPL) to adapt to open environments. How-
ever, GPL only considers the impact of other agents’ action on the
own reward but not how much impact one has on everyone else in
the environment.

Almost all approaches in the current literature are restricted to
a joint goal formulation of all agents. Our framework addresses
the problem of learning to coexist in environments with a variable
amount of agents that each perform their own tasks.

3 Action Aligned Interaction Learning

We propose to model a coexisting agent that navigates the world
using separate task and impact policies (Figure 2). After deriving
how to learn those policies we propose a method to unify them while
weighting the relative importance of own and other’s goals.

We define the problem where each policy attempts to solve a
stochastic game given as the tuple
⟨N, S, {Ai}i∈{1,...,N}, P, {ri}i∈{1,...,N}, γ⟩. N refers to the num-
ber of agents where N = 1 is the standard single-agent MDP. S is
the set of states of the world. Ai is the set of actions available to
agent i with A := A1 × · · · × AN . P : S × A → ∆(S) defines for
a time step t ∈ N the transition probability to go from state s ∈ S
to state s′ ∈ S in the next time step. rit : S × A × S → R is
the reward function that returns a scalar value to the i-th agent for a
transition from (s, ai,a−i) to s′ in a given timestep t. For formula-
tions where only the action of the ego agent is relevant, we abbreviate
our notation to a classic single-agent MDP formulation and omit to
mention other agents. We define the policy function that outputs an
action given a world state as π : S → A. We also use ρπ(st) and
ρπ(st, at) to denote the state and state-action marginals of the tra-
jectory induced by a policy π(at|st). Individual success is defined
as Ri =

∑
t r

i
t, while coexistence success can be measured through

the sum of rewards
∑N

i Ri of all agents in a given episode. For ab-
breviation and clarity purposes, when talking about distributions in
the following section, it is implied that the distribution of a policy is
given by π ∼ π(·|s)|s ∈ S.

An agent can only control its own actions as well as receive its own
individual reward. We refer to policies learned to solve a given task as
"task policies" and policies that are learned to improve the interaction
with another agent with a given task as "impact policies". Multiple
individually learned task policies will be kept in a task model store, to
be activated based on the current task and likewise for impact poli-



cies. Once an agent is deployed, their task and all relevant impact
policies are recombined into a single policy to solve the compound
system (Figure 2) using an entropy-based blending mechanism.

3.1 Learning Task Policies

We learn our task and impact policies based on the maximum entropy
reinforcement learning (MaxEnt RL) framework [14, 41]. MaxEnt
RL adds an entropy term to the reward and maximizes the entropy
over the policy distribution over each time step in addition to the
traditional reward. The optimal policy function for MaxEnt RL with
finite horizon T is

π∗
MaxEnt = argmax

π

T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))], (1)

where temperature parameter α controls the importance of the en-
tropy in relation to the reward. By using this adapted objective, the
policy automatically explores more of the state-space. The expected
future return includes the future entropy for taking an action a in state
s and following policy pi. The optimal policy π can be estimated by
a Q-function as an energy-based model (EBM) [14]

π∗(a|s) ∝ exp
(
1

α
Q∗(a, s)

)
, (2)

with the Q-function taking on the role of negative energy. In this
work, we employ the Q-values as a basis for drawing samples from
a Boltzmann distribution, which offers the advantage of being able
to derive the distribution we are sampling from analytically. We are
aware that the adoption of this method constrains our work to discrete
action settings. The method is able to deal with large state spaces
like any other Q-learning-based method relying on deep neural net-
works, where the network represents the energy function through the
Q-values. Following [14] we define our optimal soft Q and soft V
functions as

Q∗
soft(st, at) =rt+

E(st+1,...)ρ̃π

[
T∑

t=1

γt(rt+1 + αH(π∗(·|st+1)))

]
with γ ∈ [0, 1) as the temporal discount factor, and

V ∗
soft(st) = α log

∑
a∈A

exp

(
1

α
Q∗

soft(st, a)

)
. (3)

Our optimal policy is then given by

π∗
MaxEnt(at|st) = exp

(
1

α
Q∗

soft(st, at)− V ∗
soft(st)

)
.

Using the notion of target and online network [23], parameterized
respectively by θ̄ and θ, the objective function that our Q-function
neural network optimizes becomes

JQ(θ) = E
[
1

2
(Qθ̄

soft(st, at)−Qθ
soft(st, at))

2

]
. (4)

We compute the target value as

Qθ̄
soft(st, at) = rt + γEst+1p̃s [V

θ̄
soft(st)], (5)

where V θ̄
soft(st) is evaluated with the target parameters θ̄ according to

Equation (3). Using real samples from the policy in past rollouts, one
can apply gradient descent to optimize the objective in (4).

3.2 Learning Impact-Aware Interaction Policies

Formally, we define the impact I to be the value/reward an action of
one agent i provides for another agent j.

Iij(st, a
i
t) = Eπ[R

j
t+1]− Eπ[R

j
t ],

For an action a taken by agent i in state s, the impact is the change in
expected return for agent j between the original state and the subse-
quent state. As such we can rewrite the impact in terms of the value
function

Iij(st, a
i
t) = V j(st+1)− V j(st). (6)

Computing the impact requires estimating the value function of the
given task of agent j. We assume that agents know how to solve
approximately the task of the other agent themselves, that is, they
have learned a task policy for it. We then take the perspective of
the other agent and make use of our internal Q-model to estimate
the values using (3) with the internal Q model corresponding to the
task that agent j is currently pursuing. If the state representation is
specific to the agent’s point of view, we transform the state. Using
this impact measure, the agent learns an impact-aware policy in the
maximum entropy fashion, where the reward is now given by I to
guarantee compositionality with the base task policy. We formulate
our impact training objective as

Jc(π) =

T−1∑
t=0

E(st,at)∼ρ[I(st, at) + αH(π(·|st)].

From that formulation, it is straightforward to derive a soft Bellman
operator as with the task policies

Qi(s, a)←− I(s, a) + γEs′∼p(s′|s,a)[V (s′)]. (7)

To eliminate the need to train with others, the agent uses self-play
to learn the impact models. During deployment, the model selects
the task-corresponding policy and, for each agent in the scene, the
impact-aware policy matches the respective agents’ goal. For now,
we assume to have full knowledge of these goals to isolate the ef-
fects of the separation of task and interaction objectives. Note, that
the framework also allows to probabilistically combine policies ac-
cording to the estimated likelihood of different possible goals.

3.3 Recombination of Policies

The final building block of our model is the combination of the re-
sulting Q-values from impact and task policies. Combining policies
is also known as policy blending and prior work has shown that
compositionality arises naturally when using maximum entropy re-
inforcement learning [13] and that this approach is also known as a
product of experts [15, 18]. Policy blending enables a clear separa-
tion between the policies that are directed toward other agents and
those that are directed toward one’s own goal. This is a crucial fac-
tor in enabling scalability to a greater number of agents and a wider
range of task combinations. We propose to compose an agent’s final
policy with Q-function QC based on the (weighted) sum of a given
task policy QT and the impact policies QI :

QC = wtQt + (1− wt)
∑
i∈I

wi∑
j∈I wj

Qi. (8)

The objective of the weighting of q-values is to reduce the negative
impact of incorporating interaction-aware elements into the task pol-
icy. We motivate our entropy-based weighting approach and present



Figure 3: Two example scenarios in the Particle Environment with
two agents. Filled areas are the primary target area of the agent of
the respective color. Hollow areas define an influence area, where
the agent of the respective color wants to locate other agents. Left:
Primary areas of agents align with the influence area of the other
agent. Right: Target and influence areas do not overlap.

the resulting bounds on the regrets we obtain. The weighting scheme
prioritizes the task distribution when following the policy is criti-
cal and assigns bigger weights to the interaction policies, if we can
blend them in without incurring significant costs. We propose to use
the complement of the entropy H ∈ [0, 1] to weigh the task distribu-
tion πt and the compound interaction distribution πc. First, we intro-
duce a lower bound of the policy blending process using an arbitrary
weight w ∈ [0, 1], extending the proof of [13].

Lemma 1. Let Q∗
1 and Q∗

2 be the soft Q-functions corresponding
to the optimal policies for reward functions r1 and r2, respectively.
Define Q∑ ≜ wQ∗

1 + (1 − w)Q∗
2, where w is a weight parameter.

Then, the optimal soft Q-function Q∗
C for the combined reward func-

tion rC ≜ wr1 + (1 − w)r2 satisfies the following inequalities for
all s ∈ S and a ∈ A:

Q∑(s, a) ≥ Q∗
C(s, a) ≥ Q∑(s, a)− C∗(s, a),

where C∗ is the fixed point of

C(s, a)←− γEs′∼p(s′|s,a)

[
Dw(π1(·|s′)||π2(·|s′)) + max

a′∈A
C(s′, a′)

]
and Dw is the Rényi divergence of order w ∈ [0, 1].

Proof. See Appendix.

Corollary 1. Following Lemma 1 we can deduce that the regret of
using policy π2 instead of policy π1 is proportional to the Rényi di-
vergence K(π1, π2) ∝ Dw(π1||π2).

We propose to compute the weight wt of the task policy depending
on the entropy

wt = 1− |A|
H|A|(πt)

|A| . (9)

The entropy of a policy encodes the uncertainty of which action to
take. We assign a small weight to distributions with high uncertainty
and a large weight to those with low uncertainty. Entropy is a sensible
choice for blending two policies as the regret is proportional to the
entropy.

Lemma 2. The expected Jensen-Shannon distance to a fixed pol-
icy πt for a policy πc drawn by a Dirichlet process DP with a non-
informative prior is proportional to the negative entropy of the policy
πt.

Eπc∼X,X∼DP(G,α) [JSD(πt||πc)] ∝ −H(πt),

where the base distribution G is chosen to be uniform and α ∈ R+.

Algorithm 1 Training Procedure for Task or Impact Policies

Initialize random parameters θ
Assign target parameters θ̄ ←− θ
D ←− Empty replay buffer
Assign goal g
for each epoch do

for each t do
Sample actions for each agent at,n ∼ πn(st)
Sample the next state st+1 ∼ ps(st+1|st,at)
Save transition to replay memory
D ←− D ∪ (st,at, rt, st+1)
Update network parameters
if t mod update_interval = 0 then

Update target parameters θ̄ ←− θ
end if
Sample minibatch m := st, at, rt, st+1

if g is ego task then
Compute Qsoft and Vsoft according to 5 and 3

else
Compute Qsoft and Vsoft according to 7 and 3

end if
Compute∇J(θ) according to 4
Update parameters θ using ADAM

end for
end for

Proof. See Appendix.

This establishes that we have a regret term that is bound by the
Rényi divergence of the two policies and we can show that in the
expectation the JSD is proportional to the entropy of the task policy
and is an upper bound of the regret K, establishing

K(πt, πc) ≤ Eπc∼X,X∼DP(G,α) [JSD(πt||πc)] ∝ −H(πt),

By utilizing the relationship between the entropy of the task policy
and the amount of blend-in of the compound interaction policy, we
can ensure that incorporating it does not increase the regret. The en-
tropy of the distribution H|A|(π) is computed based on the number
of actions and the max entropy is normalized to one.

Since the regret of using the compound policy is influenced by the
distance of the task distribution to the interaction policies, we use
the pairwise Jensen-Shannon Distance (JSD) as the weights of the
interaction policies in the blending process. We define the weight wi

for policy πi as the JSD to the task distribution

wi = JSD(πt||πi). (10)

These weights are then used in (8).
Finally, to ensure equal contribution every distribution of Q-values

has to be normalized to guarantee weight-based contribution to the
compound policy. To summarize, we compute the Q-values of the
given task for each action, then compute the Q-values for each action
with respect to the impact on each other agent. We obtain the weight-
ing of Q-values using the entropy and JSD between the task action
distribution and the impact action distribution. Finally, combine the
Q-values as a weighted sum and sample an action from the resulting
action distribution.

3.4 Training Procedure

We propose the soft Q-Impact learning algorithm for learning in dis-
crete action settings with multiple agents working on different in-



Figure 4: Reward of an agent during task learning (left) and impact
learning (right) on 35 different tasks. Plotted is the mean with stan-
dard deviation.

dependent goals. The algorithm trains a set of ego task policies and
uses them to simulate a second agent in self-play to learn a sepa-
rate impact policy for each task it has previously learned. During
impact learning the agent performs actions but uses the reward of the
second agent for training. Through the impact reward formulation in
Equation (7) the agent optimizes its positive impact. The Q-networks
are updated using sampled mini-batches of experience from a replay
bufferD [22] as is standard in deep Q-learning. Additionally, our up-
date rule uses a target network that is periodically updated [23]. For
optimization of the Q-networks, the ADAM optimizer [17] is used.
After training has finished, we test the framework by simulating our
agent in coexistence with agents trained on their given task with an
independent method and measure its individual performance as well
as the team’s performance. We summarize our training procedure in
Algorithm 1.

4 Experiments
The experiments are designed to answer the following research ques-
tions: (1) Can the agent learn impact-aware policies? (2) Can the
agent combine task and interaction policies to solve the given task
and help others? (3) Is the framework robust to setups with opposing
goals? (4) How does the framework scale with the number of tasks
and agents? (5) Does the algorithm scale to complex sparse tasks?

We test our framework in coexistence environments and start by
introducing the navigation multi-particle environment and the dif-
ferent scenarios we trained and tested on, as well as explaining the
baselines we have used. In a new variant of cooking-gym [36] named
cooking-zoo, we show the scalability of our method to complex envi-
ronments and tasks. We analyze the model’s performance in compar-
ison to the ablations of our methods and these baselines in both envi-
ronments. We publish the new cooking environment to encourage fu-
ture research in coexistence environments and to provide a complex
simulation with social aspects that can model general-sum games1.

4.1 Multi-Particle Navigation Environment

We created a multi-particle environment with continuous observa-
tion space and discrete action space in a fully observable world as
depicted in Figure 3. In contrast to existing environments, the reward
structure of our specific multi-particle setup has the properties of a
coexistence environment. It supports independent goals that can be
reached without specific actions of others and provides explicit influ-
ence on the rewards of others, modeling a general-sum game.

1 https://github.com/DavidRother/cooking_zoo

Figure 5: Single agent and team performance as accumulated reward
of the Interaction learner with (AAIL) and without (NAIL) action
alignment in comparison to a single-agent reward learner (SL) and
a joint reward learner (JL). Left: goal-aligned scenario. Right: non-
goal-aligned scenario. Errorbars show the standard error.

We define the world as a normalized square with agent positions in
[0, 1]. The state of an agent consists of its x and y coordinates as well
as its velocity. The state observation of a given agent is the concate-
nation of all agent states (|O| = 4×N with N being the number of
agents). The action space consists of five acceleration actions (rest,
up, down, left, right) of which one can be chosen at any time step.
The goal is to reach the space within a specific cell, row, or column
in a regular 5x5 grid covering the environment. In addition, there is
a second area influencing the reward of the corresponding agent de-
pending on the distance of other agents to it. The reward function is
the negative absolute distance of the agent toward its target area plus
the negative distance of all other agents toward its influence area

ri(x,y, T
x
i , T

y
i , I

y
i , I

y
i ) =−

√
(T x

i − xi)2 + (T y
i − yi)2

−
∑

j∈N,j ̸=i

√
(Ixi − xj)2 + (Iyi − yj)2,

where T describes the closest point of the target area to the agent
and I is the closest point to the respective other agent of the influ-
ence area. An episode is concluded once all agents have reached their
target area or after 1000 time steps have elapsed.

The environment can be categorized as having mixed objectives
because the reward has an interactive as well as a single-agent com-
ponent. We call environment instantiations where the best position
of the agent in each state maximizes both team and single-agent re-
ward as "goal-aligned scenarios" (Fig. 3 left) and otherwise "non-
goal-aligned scenarios" (Fig. 3 right). In goal-aligned scenarios, the
target area and the influence area of all other agents have to overlap.
The interaction mechanism allows the incorporation of many differ-
ent desirable aspects for testing an ad hoc framework, namely the
independence in the reachability of a goal and the direct influence on
the total reward between agents. Also, since we can specify different
goals, being either a cell, row, or column, we get 35 different naviga-
tion tasks that model various degrees of disagreement in the optimal
position concerning each agent. Combined with an interaction task
we get a collaborative task space of 35×35 = 1225 combinations to
test with only two agents, scalable to 5 agents with 52521875 com-
binations.

4.2 Results

As baselines we use a Single-agent Learner (SL), that is the task
policy alone, effectively neglecting effects on the other agent, and a
Joint Learner (JL), trained explicitly on the sum of rewards of both
agents. JL needs to be trained anew with an individual Q-network for
each task combination of own and other tasks. We deploy our algo-
rithm in two modes: The first mode uses simple averaging to combine



Figure 6: Average direction of acceleration of learned policies for a
given scenario. Policies based on learning the ego task (QC ), the
impact on the other agent’s task (QI ) and the combination of both
using The Non-Aligned Impact Learner (NAIL) and our proposed
weighting (AAIL).

the task and impact Q-functions and is termed Non-Aligned Interac-
tion Learner (NAIL). This highlights the effects of the architecture
versus the weighting. The second is termed Action Aligned Inter-
action Learner (AAIL), which uses weights based on equations (9)
and (10). We train the impact-aware agents on all 35 tasks and cor-
respondingly 35 impact tasks, resulting in 70 different Q-networks,
covering all task combinations the environment has to offer. The JL
baseline would need 52521875 individual networks to cover the same
variety.2 The other agents in the environment were trained on the in-
dividual task only and come from different populations such that no
agent had the possibility for joint training with other agents. We con-
firm a statistically significant difference in each scenario with 200
test runs using the Wilcoxon Signed-Rank test. The training perfor-
mance over all 35 individual tasks can be seen in Figure 4, showing
convergence for both task and impact policies.

The first test we conduct is performed in a goal-aligned scenario
with two agents, with the twist that the target goal area of the con-
trolled agent, in this and all following experiments named agent 1,
is larger than the influence area of the other agent. We expect to see
that all agents can solve the task, however, team performance should
be lowest for the SL baseline. Figure 5 left depicts results for one
sample task combination.

It shows the respective accumulated rewards of the individual
agents as well as the team reward. The Action Aligned Impact
Learner (AAIL) and the Non-Aligned Impact Learner (NAIL) show
similar performance r(p ∼ 0.16). The Joint Reward Learner (JL) is
close in performance but statistically different with p < 6.3e − 12
and the single-task learner (SL) is by far the worst (p < 2.0e− 19).
The weighting of Q-values does not make a significant difference

2 It might also be possible to learn a single network with the task encoded
as input but to avoid interference between tasks we do implement single
networks for each goal.

Figure 7: Single agent and team performance as an accumulated re-
ward for one scenario with 5 agents (averaged over 200 runs).

between AAIL and NAIL as the target and influence areas overlap.
AAIL and NAIL are able to find the best behavior in this case while
already showing benefits over SL-trained agents demonstrating that
blending the different policies worked. The second experiment we
conduct is the non-goal-aligned case. The target and influence areas
do not overlap in these scenarios. The agent has to navigate toward
their own goal but may choose to do so in the best possible way for
the other agent. We expect SL to perform similarly to the first set of
scenarios, JL should perform best since it is directly trained on the
team reward of both agents and AAIL should have a slight perfor-
mance loss due to the contradictory nature of actions to navigate ei-
ther the target or influence area but still manage to complete the task.
NAIL should in contrast face massive problems in successfully nav-
igating to either the target or influence area since the policies might
favor acceleration in opposing directions in the worst case. Results
are shown in Figure 5 right. The joint learner performs best, followed
by the single-task learner and AAIL. As expected only NAIL does
not manage to solve the task. It is noteworthy that for NAIL the per-
formance of the second agent does not plummet as much, despite
NAIL never reaching its target area to end the episode early, indicat-
ing that NAIL overvalues the input of the impact distribution. AAIL
still finishes the task but lacks in performance behind SL and JL and
is statistically different with p << 1e− 10 from both. This is due to
the previously mentioned discrepancy between the impact-aware and
ego task policies. We visualize the average direction an agent wants
to accelerate in Figure 6. It can be seen that the naive combination
of task and impact-aware policies leads to an overweighting of the
latter. This happens as the absolute Q-values of policies do not nec-
essarily scale the same, resulting in an inherently unbalanced policy
combination. For AAIL it is visible that the task policy dominates
but the contributions of the impact-aware policy are not completely
negated. We can conclude that policy blending is integral to the suc-
cess of combined policies when dealing with opposing goals.

In our third experiment, we test the scaling capabilities of our al-
gorithm by placing five agents into the environment, one of which
is controlled by the evaluated algorithms in their respective test
runs. The goals in this scenario are not aligned. We expect the joint
learner to perform the best followed by AAIL, and SL being the
worst. Results are presented in Figure 7. Surprisingly JL is the worst-
performing algorithm with p < 1.4e − 11, however only when
looking at the scores of the other agents in the environment. This is
due to the complexity of the reward function with four other agents
present, not only preventing JL from finding the best possible solu-
tion but being even worse than SL towards other agents on average.
The confidence that AAIL is statistically different from SL is given
with p = 0.048. In general, this demonstrates the capabilities of the
overall framework to scale beyond two agents with many different
tasks.



Figure 8: The cooking Environment.

4.3 Cooking Environment

The second environment we used is a new cooking environment, in-
spired by the game Overcooked as well as previous work using an-
other cooking environment [36]. The previous work was limited to
a single joint goal, modeling only strictly cooperative tasks, whereas
our environment allows each agent to have separate recipes. We offer
a fixed vector length input representation of the state space between
different layouts of the environment. Our environment supports the
latest versions of the gymnasium 3 and pettingzoo 4 libraries, en-
abling easy usage of common RL frameworks. We support a reward
scheme with rewards for sub-goals and only for complete dishes as
well as a configurable time penalty.

Kitchens in our environment consist of movable components and
static stations (such as counters, knife stations, and blenders). Agents
can move in all four directions or stay still and they move simultane-
ously. An episode is concluded once all agents have delivered their
recipe or after 400 time steps have elapsed. The state space consists
of a vector describing the state of all objects and their relative posi-
tion to the agent. We chose to give rewards only for complete dishes
(20) and subtract a time penalty for each step (0.01). To cook a dish
an agent has to prepare the correct ingredients with the correct tool.
Then the ingredients have to be placed on the same plate and the plate
has to be placed on a square marked with a star. In our experiment we
assign two spatially separated agents to two different recipes, each
requiring two ingredients as depicted in Figure 8. The right agent
needs the carrot from the left agent, whereas the left agent has its
ingredients available without needing help. We test if our agent man-
ages to deliver the carrot to the other agent and cook his own dish in
comparison to the task-policy agent.

4.4 Results

We use the AAIL agent and an SL agent for our evaluation in the
cooking environment alongside trained Proximal Policy Optimiza-
tion (PPO) agents [29] for the other cook and report in the shown
setup over 100 runs in Figure 9. When the agents act independently
in the interaction-free scenario we expect the SL agent to be as good
as the AAIL agent, while the performance of the second agent should
be unaffected. The results in Figure 9 show the dish completion ratio
of the AAIL algorithm and the SL agent in the same scenarios. The
AAIL agent completes the dish slightly less often (4%) than the SL
counterpart. But the PPO agent profits massively from the impact-
aware AAIL agent. We can see that the agent does deliver the carrot
only after having cooked its own recipe, which results in a slightly

3 https://gymnasium.farama.org/
4 https://pettingzoo.farama.org/

Figure 9: Ratio of finished recipes over 100 runs for both agents in the
environment using AAIL in contrast to SL for the left agent, which
has to interact. Agent 1 is controlled by AAIL/SL and Agent 2 is
controlled by PPO.

lower reward for the own agent on average (∼ −0.78±1.32). The in-
corporation of the interaction distribution is considered after the dish
has been done, as the task distribution does not assign high proba-
bility mass to single actions, resulting in the interaction distribution
taking over. However, because of the noise in this unseen state space
of the task policy, it is evident that the success ratio of the right agent,
even if greatly improved, is still far from optimal.

5 Conclusion & Future Work
In summary, we were able to learn separate tasks and impact policies
(Research Question 1). The impact policies worked with more than
one other agent and increased the overall performance of the group
(2). Furthermore, the regret of using a compound policy was low in
scenarios, in which helping and fulfilling the own task was not com-
patible (3). Through our action alignment, we show that our system
manages to keep the regret drastically lower than with a simple policy
averaging. Despite never seeing the test distribution of tasks with spe-
cific other agents, our framework managed to achieve good results in
all tested scenarios, including the very challenging cooking environ-
ment. We demonstrated the extrapolation ability through the recom-
bination of policies to new task combinations, allowing our system
to scale much more favorably than a joint training approach (4). Ex-
periments in a new cooking environment demonstrated an ability to
scale to a complex sparse environment. (5).

This paper introduced a formulation and methodology to system-
atically learn a disentanglement of tasks and interactions with other
agents separately from each other. Our approach combines maximum
entropy reinforcement learning with a Multi-Agent system model
and a new method to combine policies. It was demonstrated to solve
a navigation environment and a cooking environment in simulation
without ever seeing the test scenarios during training. The flexible
approach allows to scale in the number of tasks in the environment
and the number of agents and lays the foundation for architectures
suited for more complex domains. An extension of this work could
test the approach with different types of co-existing agents, and in
particular with human players, and consider epistemic uncertainty.
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