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Abstract—Building energy management usually involves a
number of objectives, such as investment costs, thermal com-
fort, system resilience, battery life, and many others. However,
most existing studies merely consider optimizing less than three
objectives since it becomes increasingly difficult as the number
of objectives increases. In addition, the optimization of building
energy management relies heavily on time-consuming energy
component simulators, posing great challenges for conventional
evolutionary algorithms that typically require a large number
of real function evaluations. To address the above-mentioned
issues, this paper formulates a building energy management
scenario as a 10-objective optimization problem, aiming to find
optimal configurations of power supply components. To solve
this expensive many-objective optimization problem, six state-
of-the-art multi-objective evolutionary algorithms, five of which
are assisted by surrogate models, are compared. The experi-
mental results show that the adaptive reference vector assisted
algorithm is proven to be the most competitive one among the
six compared algorithms; the five evolutionary algorithms with
surrogate assistance always outperform their counterpart without
the surrogate, although the kriging-assisted reference vector
assisted evolutionary algorithm only performs slightly better than
the algorithm without surrogate assistance in dealing with the
10-objective building energy management problem. By analyzing
the non-dominated solutions obtained by the six algorithms,
an optimal configuration of power supply components can be
obtained within an affordable period of time, providing decision
makers with new insights into the building energy management
problem.

Index Terms—Evolutionary many-objective optimization,
building energy management, real-world applications, surrogate-
assisted evolutionary algorithms

I. INTRODUCTION

The concept of reducing energy consumption to combat
global warming has attracted increasing attention. In large
building complexes such as campus and office buildings, a large
amount of energy consumption is the everyday inevitability.
Thus, managing the production, storage, and consumption
in these complexes is of great importance. Investing into
renewable energy like Photo Voltaic (PV) systems is, in
this light, one of many options for improving the cost and
emission performance of a facility. For facilities, like the
Honda Research Institute, the investment in PV or battery
systems has to consider a multitude of factors like investment
costs, greenhouse gas emissions, profitability, grid stability,
equipment (battery) lifetime, or system resilience. However,
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these objectives are usually conflicting. Moreover, with the
involvement of different stakeholders, their preferences and
trade-off for the factors should likewise be considered. Thus, the
obtained solutions may not be applicable for implementation if
some important objectives are not considered. As a result, many-
objective optimization of the building energy management will
be a highly desired alternative. A common approach to solving
multi-objective problems (with two or three objectives) and
many-objective problems (with more than three objectives) is to
use multi-objective evolutionary algorithms (MOEAs), such as
the non-dominated sorting genetic algorithm II (NSGA-II) [1],
non-dominated sorting genetic algorithm III (NSGA-III) [2],
multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [3], and reference vector assisted evolutionary
algorithm (RVEA) [4], just to name a few.

Many researchers have proposed using canonical MOEAs
to simultaneously optimize conflicting objectives within the
context of building energy management to identify an optimal
configuration of power supply components. For instance,
the study in [5] endeavores to strike a balance between
energy consumption cost and user satisfaction in home energy
management. Meanwhile, the research in [6] proposes a strategy
to shift the cooling load from peak to off-peak hours, thereby
reducing energy costs to a certain extent without compromising
thermal comfort. It should be noted that the majority of
building energy management studies optimize no more than
three conflicting objectives, since it is challenging for traditional
optimization algorithms to strike a balance among more than
three objectives.

As pointed out in [7], optimizing dwellings could take up
to 12 days if MOEAs are used simply with the objective
values from simulators such as EnergyPlus. This approach is
not cost-effective for real-world applications, particularly for
managing energy demand a day ahead, as discussed in [8].
Also, unpredictable environmental factors, such as weather
changes, require the building energy management to react
quickly. Thus, it is highly desired that the optimization of
the building energy management is computationally efficient.
During the past two decades, surrogate-assisted evolutionary
algorithms (SAEAs) have shown to be highly successful in
handling computationally expensive problems whose function
evaluations can take from minutes to days to evaluate. While a
few SAEAs have been proposed for expensive multi-objective
problems (MOPs) and many-objective problems (MaOPs), it
remains challenging to apply them to real-world applications.
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The first challenge is problem formulation, i.e., whether the
formulation is reasonable or whether all essential factors are
included for finding a solution for real implementation. Note
that an inappropriate formulation could increase the difficulties
of handling the problem. As discussed in [9], only by using a
proper problem formulation, kriging-assisted reference vector
guided evolutionary algorithm (K-RVEA) [10] could achieve an
optimal solution that is much better than the baseline solution
on the optimization of an air intake ventilation system.

Another challenge is that it can be hard to decide which
algorithm should be adopted for a specific problem, especially
for black-box problems whose properties are unknown. It
is therefore highly desirable to conduct a comparative study
of different algorithms when solving real-world applications.
In addition, only a few simulation based expensive real-
world applications with variable simulator runtime or many-
objective properties have been reported in the past decade. In
particular, a hybrid electric vehicle control problem with seven
objectives [11], an automotive engine calibration problem with
10 objectives [12], and the design of radar waveforms with
10 objectives [13] are proposed, but each function of these
three problems is relatively fast for evaluation. The proposed
BEM problem in this work consists of 10 objectives with each
function evaluation time ranging from seconds to minutes. It has
the special property that the time for each function evaluation
is different, and each function evaluation is expensive, so it is
ideal for evaluating the performance of cost-aware Bayesian
optimization. It should be noted that the performance of most
cost-aware Bayesian optimization approaches such as [14]–[16]
is merely tested on the single- or multi-objective optimization
of the hyperparameters of neural networks because of a lack
of real-world applications with variable simulator runtime for
different function evaluations.

Considering the above-mentioned challenges and require-
ments, the contributions of this work are summarized as
follows.

• This work identifies the need of the many-objective
optimization for the BEM problem and proposes a 10-
objective building energy management problem, carefully
engineered around nine decision variables. This novel
solution is tailored for a practical, real-world application
on a German building complex, encompassing 10 meticu-
lously designed objective functions. As an extension to our
previous work [17] in which four conflicting objectives,
i.e., investment cost, yearly energy costs, CO2 emissions,
and system resilience, are considered, we present six
additional exemplary objectives that a decision-maker may
take into account in identifying an optimal configuration
of power system components.

• This work exemplifies a successful application of five
multi-objective evolutionary algorithms with surrogate
assistance (we call it multi-objective SAEAs hereafter for
simplicity), and one without, i.e., traditional MOEA, to op-
timize the 10-objective BEM problem. By comparing these
six algorithms, it is demonstrated that the five adopted
multi-objective SAEAs could significantly improve the
performance and efficiency, confirming the benefits of

multi-objective SAEAs in handling time-consuming real-
world applications.

• The proposed real-world many-objective BEM application
with different evaluation costs can be used in the future
for testing SAEAs or cost-aware Bayesian optimization
algorithms.

The rest of this paper is organized as follows. Section II
describes the related work on building energy management.
Section III presents the formulation of BEM. Section IV studies
the performance of the BEM system obtained by five multi-
objective SAEAs and one MOEA. Section V concludes the
paper.

II. RELATED WORK

A. Work on Building Energy Management

The optimization of building energy management using
SAEAs can be divided into two main categories, i.e., single-
objective and multi-objective optimization. In the first group,
the conflicting objectives are transformed into a single-objective
optimization problem by weighting different objectives [6], [8],
[18], [19] or treating some objectives as the constraints [20].
For instance, in [8] and [20], optimization is both conducted
based on an artificial neural network using genetic algorithms.
However, in [8], a single objective function is formulated by
weighting energy cost and loading shifting, while in [20], it
is formulated by using energy consumption as the objective
function with thermal comfort as one of constraints.

In the second group, the conflicting objectives are simulta-
neously handled using MOEAs. For instance, in [21], four
conflicting objectives, i.e., initial investment cost, running
costs, CO2 emissions, and system resilience are considered
with the expectation of finding a suitable trade-off in terms of
finance, environment, and system. All function evaluations are
conducted using the SimulationX simulator. In [7], considering
direct optimization based on the building energy simulation
software EnergyPlus using NSGA-II is time-consuming, thus,
parallel computing is adopted to reduce the computational cost.
Some studies propose training a surrogate model, such as an
artificial neural network, to replace real function evaluations
from a simulator to reduce the computational cost. For instance,
in [22], by training an artificial neural network to replace the
real function evaluations, the trade-off between energy demand
and thermal comfort can be efficiently achieved using canonical
NSGA-II, multi-objective particle swarm optimization [23],
and multi-objective genetic algorithm [24] as the optimizer,
respectively. Same as in [22], NSGA-II is also used as the
optimizer in [25], however, it aims at simultaneously meeting
economic and environmental targets.

While leveraging a surrogate model in lieu of actual function
evaluations that can enhance efficiency, some SAEAs designed
for optimizing the BEM problem overlook the essential
aspect of model management strategy, focusing solely on the
constructed model. This oversight is evidenced in studies such
as Delgarm et al. [22] and Xue et al. [25]. It is believed
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that the model management strategy is of great importance to
balance the exploitation and exploration during the search
process as the initially built surrogate model may not be
accurate. Only a few researchers study the improvement of the
performance of building energy management by considering
model management strategies. In [26], [27], all solutions
obtained by the multi-objective particle swarm optimizer are
evaluated by the EnergyPlus simulator at each round of
surrogate update. In [28], kriging variance is used in the model
management strategy to obtain a set of well-diversified and
converged solutions. Note that the above-mentioned studies
only consider the balance of two conflicting objectives in
building energy management. In summary, only a few studies
have been conducted on building energy management. As far
as we know, very few of them have studied a many-objective
scenario, of which only a maximum number of five objectives
has been considered. However, many-objective optimization of
the BEM is essential for solutions to be finally implemented
in the real world.

B. Surrogate-Assisted Evolutionary Algorithms

In most evolutionary algorithms, it is assumed that the
computation of objective values is relatively cheap and fast,
i.e., the objective values can be quickly obtained, given any
set of decision variables. Nonetheless, in certain applications,
each function evaluation can be time-consuming. Therefore,
the direct application of evolutionary algorithms to these
computationally expensive problems will not be feasible due
to the impracticality of performing a substantial number of
real function evaluations. For instance, a single simulation run
in computational fluid dynamics [9] or simulating a car crash
[29] could take days to months. Different from traditional
evolutionary algorithms, surrogate models can be built to
partially replace the real objective function evaluations in
SAEAs [30]. In SAEAs, apart from the surrogate construction,
the strategy of model management or the acquisition function,
plays a pivotal role. This strategy is used to determine the next
query point to effectively improve the set of optimal solutions
by well-balancing exploration and exploitation. An acquisition
function is the function used to determine the next most suitable
solution to be infilled using real function evaluation. Given
that each real function evaluation is notably time-intensive
for these expensive problems, the evolutionary optimization
can be strategically applied to the acquisition functions. These
computationally economical functions, offer a cost-effective
solution, thereby conserving computational resources in SAEAs.
The resulting optimal solution will then be evaluated using the
real objective functions and the surrogates, such as Gaussian
process models (GP, also called kriging), [31] will be updated.

Representative work of SAEAs for handling expensive MOPs
and MaOPs can be mainly categorized into two groups. In the
first group, a surrogate is built for each objective to represent
the real objective function as in K-RVEA [10], kriging-assisted
two-archive evolutionary algorithm (KTA2) [32], Euclidean
distance based expectation improvement matrix (EIMEGO)
[33], and MOEA/D assisted efficient global optimization

(MOEA/D-EGO) [34]. The above-mentioned work seldom
considers the PF shapes, while most recently, a kriging-assisted
evolutionary algorithm, termed GP-iGNG [35], is proposed to
solve problems with various Pareto front shapes, showing very
promising results. Unlike the above-mentioned approaches, two
optimization processes are performed in parallel in [36], instead
of one, to optimize an amplified upper confidence bound in
order to balance exploration and exploitation well. In the second
group, instead of directly predicting the objective values, a
surrogate is constructed to predict the dominance relationship.
Classification-based surrogate-assisted evolutionary algorithm
(CSEA) [37], dominance prediction assisted evolutionary
algorithm [38], and the recent relation learning and prediction
assisted evolutionary algorithm (REMO) [39] are part of the
representative work. In this group, a classifier that is able to
distinguish the relative quality of pairwise individuals is usually
required, but the main difficulty is a lack of sufficient training
data. To overcome this issue, a huge number of the training
data is constructed by utilizing the pairwise relation between
each two solutions [39], [40].

III. PROBLEM STATEMENT

The present optimization problem is an extended version of
a real-world facility optimization problem, primarily targeting
the reduction of energy costs and CO2 emissions. This revised
version takes into account the incorporation of a PV system, a
battery storage facility, and several pragmatic modifications to
the heating system, bearing space constraints and cost factors
in mind. The objectives presented in this work are derived
from this analysis and represent different goals and concerns
of facility management. The focus of the BEM problem is to
pinpoint an optimal assembly of power supply components for
an individual building. This building comprises various sections
including office spaces, automotive testing benches, computer
infrastructure, and other such facilities. Moreover, it includes a
sensible combination of different investment options, such as a
PV system, a battery storage, and a heat storage, as well as the
respective controller settings. The different configurations are
constructed by nine individual decision variables. The building
also uses a combined heat and power (CHP) system, which is
not optimized but needs to be considered for the calculation
of the objectives. In total, 10 objectives, derived from the
simulation output, contribute to the investment decision. These
objectives are partially related and might not all be relevant in
all related applications. However, they span a range of solution
features that a decision-maker could potentially be concerned
with.

A mathematical definition of a many-objective optimization
problem is defined as follows.{

min f(x) = (f1(x), f2(x), · · · , fM (x)),
subject to x = (x1, x2, . . . , xD), xi ∈ R, (1)

where x is a vector of D decision variables in the decision space
RD. M is the number of objectives and f(x) ∈ Λ ⊂ RM is the
objective vector with M objectives, Λ is the objective space.
When M < 4, (1) refers to a multi-objective optimization
problem and when M ≥ 4, (1) refers to a many-objective
optimization problem.
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TABLE I: The range of the decision variables. The hyphen symbol indicates that no unit is associated with the corresponding decision
variable.

Parameter Min value Max value Unit Description System component

αPV 0 45 ◦ PV inclination angle PV system
βPV 0 360 ◦ PV orientation angle PV system
PPV 10 450 kW PV peak power PV system
CB 5 1000 kWh Battery capacity Battery storage
bSOC,max 0.50 0.95 - Maximum battery SOC Battery storage
bSOC,min 0.05 0.40 - Minimum battery SOC Battery storage
Pcharge -500 149.9 kW Battery charging threshold Battery storage
Pdischarge 150 700 kW Battery discharging threshold Battery storage
VCHP 1 5 m3 Heat storage volume CHP

A. Description of the Decision Variables

The problem considers nine decision variables in total, which
will be discussed in the following.

1) Inclination angle of photovoltaics system αPV between
0° and 45°.

2) Orientation angle of photovoltaics system βPV between
0° and 360°.

3) Installed peak power of the photovoltaics system PPV

between 10 kW and 450 kW.
4) Nominal Battery Capacity CB between 5 kWh and

1000 kWh.
5) Maximum Battery state of charge bSOC,max between 0.50

and 0.95. The battery is charged only up to the specified
maximum state-of-charge (SOC) to limit battery aging.

6) Minimum Battery state of charge bSOC,min between 0.05
and 0.40. The battery is discharged only down to the
specified minimum SOC to limit battery aging. This
excludes the emergency power supply.

7) Battery Charging Threshold Pcharge between −500 kW
and 149.9 kW. The stationary battery is charged when
the current overall power demand is below the specified
value.1

8) Battery Discharging Threshold Pdischarge between
150 kW and 700 kW. The stationary battery is discharged
when the current overall power demand is above the
specified value.

9) Heat storage cylinder volume VHeat between 1 m3 and
5 m3.

A summary of the decision variables and the affected system
components is given in Table I. For the optimization framework,
all parameters are normalized to the range 0 to 1.

B. Objective Function Description

A study comparing different many-objective optimization
algorithms (without surrogate assistance) on this problem was
conducted in [17]. However, this earlier study only focused on
five independent objectives (the fifth objective battery life is
not considered), whereas this work is targeting to evaluate 10
objectives in total. A summary of the objectives is given in

1A detailed description of the battery control approach can be obtained
from [17].

Table II. As a prerequisite for the optimizer, all objectives need
to be minimized. Note that hardware installation and other
costs are based on data from 2019 and might have changed.
The computation of objectives is based on the output of the
simulation tool (for example, the grid electricity demand for
every 15 min interval in the simulation time period). Also note
that in contrast to many linearized simulation models that only
employ analytical functions approximating the systems like
the PV system or battery as in [41], our simulator can model
even non-linear effects in high precision (at the cost of higher
and variable simulation times).

1) Investment costs in Euro. In this paper, mainly three
investment cost components are considered resulting from
purchasing the PV system, the stationary battery, as well
as the combined heat and power plant.

Cinvest = IPV + IBatt + IHeatStor, (2)

where IPV , IBatt, and IHeatStor refer to the invest-
ment cost for the PV system, the stationary battery,
and the heat storage tank, respectively. Linearly scal-
ing cost factors are assumed for all three components
(1000 Euro/kW PV peak power, 250 Euro/kWh battery
capacity, 700 Euro/m3 heat storage).

2) Annual operation costs in Euro per year. Maintaining and
operating the whole system will involve the grid electric
cost, the gas consumption, the peak electricity load cost
and the CHP maintenance cost. Thus, these four costs
constitute the annual cost.

CAnnual = CGrid + CGas + CPeak + CCHP , (3)

where CPeak is the additional peak cost for the highest
energy demand in a year. CHP maintenance costs of
4.3 Euro per hour of operation are assumed: a gas
price of 0.025 Euro/kWh power demand from gas, a
(beneficial) feed-in tariff of 0.07 Euro/kWh in case
excess energy is fed into the grid, a (beneficial) subsidy of
0.087 Euro/kWh of energy produced by the CHP, a fixed
base price of 1000 Euro, and a price of 0.131 Euro/kWh
for electricity provided from the grid. An additional
amount of 100 Euro/kW is charged for the overall
maximum power demand peak.

3) Yearly CO2 emissions in tons. The CO2 emissions are
estimated based on the simulated electricity and gas
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consumption of grid electricity system, CHP, and boilers,
respectively.

Gtotal = Ggrid +Ggas (4)

where Ggrid is the amount of CO2 emissions from grid
electricity, approximated at 500 g/kWh. The term Ggas

refers to the amount of CO2 emissions from operating the
CHP and boilers, set at 185 g/kWh.

4) Resilience in seconds. The term resilience refers to the
duration the company would be able to operate in case
no grid power is available, i.e., energy is only provided
by local production (PV system and CHP) and battery
energy storage. This is, for example, relevant in cases of
severe mal-functions due to extreme weather conditions,
malicious physical or cyber-attacks. The resilience is in
our case computed as

R = min
(
bSOC · CB

Pload

)
(5)

where bSOC is the battery’s state of charge vector (for all
simulation time steps), CB refers to the battery capacity
and Pload is the grid load vector. Resilience thus refers
to the minimum (of time) over all 15 min time periods in
the simulation of energy in the battery (bSOC(t) ∗ CB)
divided by the respective power consumption PLoad(t).
This can be interpreted as the time period, for which
the company would still be able to operate all electric
components, at the worst point in time, i.e., the lowest
ratio of battery state of charge and current electric load.
Since all objectives need to be minimized, Equation (5)
is formulated negatively as

R′ = −R (6)

5) Mean battery state of charge b̄SOC , between 0 and 1:
b̄SOC is the average state of charge of the stationary
battery over the entire simulation. On one hand, a high
mean state of charge enables the battery to discharge large
amounts of energy to mitigate high peak costs when the
overall power consumption is high. However, on the other
hand, a high battery SOC over large periods of time is
undesirable, as it leads to faster battery degradation.

6) Yearly energy discharged from battery Ebatt,discharge in
kWh. A second indicator for battery degradation is the
amount of energy that is discharged from it. The more
energy discharged (and charged) from it, the faster the
degradation.

7) Maximum power peak Ppeak,supply in kW. The maximum
power demand peak is treated as an individual objective.
Aside from contributing to higher annual costs due to
peak demand charges for the customer, a high maximum
power peak may lead to instability of the grid.

8) Time share tm between 0 and 1 of the time in which the
battery SOC is between 30% and 70%. As a trade-off
between battery degradation and the ability to react to
high demand charges, this objective creates an additional
incentive to charge the battery with a medium amount

of energy. Since the objectives are minimized to an
intermediate charge (SOC) level, it is formulated as

t′m = 1− tm (7)

9) Yearly energy Efeed fed into the grid in kWh. Minimizing
the amount of energy that is fed into the grid has multiple
advantages. It maximizes PV power self-consumption and
creates a higher level of independence from the energy
supplier. It also reduces CO2 emissions and leads to lower
annual costs, since the feed-in tariff is lower than the grid
supply rate. Yearly energy Efeed is already included in
objective annual operation costs, but might be of special
interest for some decision makers.

10) Maximum feed-in power peak Ppeak,feed in kW. Similar
to the previous objective, a lower maximum feed-in
power peak relates to higher PV power self-consumption
and generally an efficient usage of self-produced energy.
Furthermore, penalizing the maximum feed-in peak might
be a realistic option for the supplier to reduce grid
instability and frequency issues in the future. This would
create additional costs for the consumer. In the present
cost structure, there is no monetary impact of Ppeak,feed,
but due to its impact on the grid stability, it is, however,
also considered as a separate objective.

In BEM, all decision values have an impact on the internal
electricity consumption (vector over time) of the building
that is simulated and all objectives (except for Cinvest) are
affected by this consumption, either directly (like Cannual)
or indirectly via the amount of energy that is stored in the
stationary battery, or when this energy is discharged. Sensitivity
analysis between the decision variables and all objectives is
carried out, which confirms that nine of the ten objectives
are affected by all decision variables, except that Cinvest is
determined by PPV , CB , and bSOC,max only. The details of
the sensitivity analysis are not provided here due to space limit.
In summary, the simulation setup offers multiple directions
to consider when optimizing the configuration. A large PV
system enables the building to produce a significant share
of the overall used energy, keeping the annual costs, peak
power, and emissions low, while at the same time requiring
a high initial investment. Orientation and inclination of the
PV system can be tuned to define at which points in time
(daily and seasonal) the system produces the most power. A
large battery is also costly, though advantageous with regard to
resilience and supply power peak. Many of the objectives are
very sensitive to the four parameters that define the operation
of the battery (bSOC,max, bSOC,min, Pcharge, Pdischarge ) and
therefore, create a challenging optimization task.

IV. METHODS

A. Adopted Algorithms

Five multi-objective SAEAs, i.e., GP-iGNG, RVMM, K-
RVEA, KTA2, and REMO, and one MOEA, i.e., RVEA-iGNG,
are adopted to optimize the BEM problem. RVEA-iGNG is
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TABLE II: Objective description and range. The hyphen symbol indicates that no unit is associated with the corresponding objective, or that
there is no upper or lower bound.

Objective Min value Max value Unit Description

Cinvest 0 - Euro Investment costs
Cannual 0 - Euro Operation costs
Gtotal 0 - t CO2 emissions
R′ - 0 s (negative) Resilience
b̄SOC 0 1 - Mean battery SOC
Ebatt,discharge 0 - kWh Discharged energy
Ppeak,supply 0 - kW Supply power peak
t′m 0 1 - Medium SOC share
Efeed 0 - kWh Feed-in energy
Ppeak,feed 0 - kW Feed-in power peak

used to verify whether SAEAs can converge faster than the
traditional MOEA with the help of cheap surrogates and a
model management strategy. Before discussing the detailed
mechanism of the six algorithms, this study first illustrates how
a multi-objective SAEA is different from an MOEA. In multi-
objective SAEAs, the function evaluation is partly conducted
on the built cheap surrogate model. This way, the computational
cost can be reduced immensely when the real objective function
is time-consuming. Note that the optimization process is
partly based on the predicted objective values instead of the
real objective values, so a reliable surrogate model is highly
desired, which usually relies on an efficient surrogate model
management strategy. A brief introduction of the six algorithms
is as follows.

1) GP-iGNG [35]. GP-iGNG is able to handle expensive
problems with various kinds of Pareto front shapes,
making it suitable for handling real-world applications
whose Pareto fronts are not known beforehand.

2) RVMM [36]. An adaptive reference vector based model
management strategy is proposed. By optimizing an
amplified upper confidence bound acquisition function
using two optimization processes on top of two sets of
reference vectors, RVMM shows great competitiveness in
handling expensive many-objective problems.

3) K-RVEA [10]. The optimization is conducted on the basis
of the predicted mean values of GP models, and the
selection of newly infilled solutions is based on the angle
penalized distance and the uncertainty.

4) KTA2 [32]. Three Gaussian process models, i.e., one
global GP model and two GP influential point-insensitive
models, are proposed to improve the prediction accuracy.
An adaptive acquisition function that can adaptively
emphasizing convergence, diversity or uncertainty is
proposed in KTA2.

5) REMO [39]. Different from regression-based SAEAs, a
neural network based relation model is trained to learn
the relationship between pairs of candidate solutions.

6) RVEA-iGNG [42]. RVEA-iGNG is an MOEA that is pro-
posed to handle many-objective problems. RVEA-iGNG
is based on the framework of reference vector assisted
evolutionary algorithm (RVEA), and the reference vectors
are adjusted by training an improved growing neural
gas network. Given the absence of a prior knowledge

regarding the shape of the true Pareto fronts of the BEM
problem, RVEA-iGNG proves to be an appropriate choice.
This is due to its competitive performance in handling
benchmark problems characterized by various types of
Pareto fronts. It is worth mentioning that other state-of-
the-art MOEAs can also be used.

To sum up, the five adopted SAEAs differ in the following
aspects.

• Model construction. In GP-iGNG, RVMM, and K-RVEA,
a traditional GP is adopted as the surrogate model for
each objective to replace in part the objective function.
KTA2 overcomes the drawbacks of conventional GPs by
excluding those influential points from the training set
and constructs three separate GP models. In REMO, one
relation model is constructed using a neural network to
learn the relationship between pairs of solutions.

• Model management strategy. In GP-iGNG, KTA2, and
K-RVEA, the model management strategies are different,
although they are all based on the solution set obtained
by one optimization process using the GP models as
the approximated objectives. In RVMM, the exploration
and exploitation are balanced by selecting solutions
from two optimization processes, each accounting for
convergence and diversity, respectively. In REMO, the
model management strategy is based on a specific voting
strategy, and solutions with higher scores will be evaluated
using the real function evaluations.

V. EXPERIMENTAL RESULTS

A. Parameter Settings

For the five multi-objective SAEAs and one MOEA, the
maximum number of real function evaluations is set to 1000 and
11200, respectively. The population size for the five adopted
algorithms is set to 230. The initial number of training data for
the five multi-objective SAEAs is set to 11 ·D − 1, where D
is the dimension of the decision space. The initial 11 ·D − 1
real function evaluations contribute to the maximum number
of 1000 or 11200 real function evaluations. In this paper,
the five adopted multi-objective SAEAs are conducted for 10
independent runs and the adopted MOEA, i.e., RVEA-iGNG,
is conducted for six independent runs due to time limitations.
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B. Performance Indicator

In this study, hypervolume (HV) [43] is adopted as the
performance indicator since the true Pareto front (PF) for the
BEM problem is not known. The reference point for calculating
HV is obtained by all the non-dominated solutions obtained
by the five algorithms under comparison.

H(S) = ∧(
⋃

p∈S,p6r

[p, r]) (8)

where ∧ denotes the Lebesgue measure, and [p, r] ={
q ∈ Rd|p 6 q and q 6 r

}
denotes the box delimited below

by p ∈ S and above by r. The HV contribution of a point to
a set p ∈ Rd is as follows:

H(p, S) = H(S)−H(S \ p) (9)

A reference point is required for HV calculation. As
discussed in [44], [45], first the non-dominated solutions by the
six algorithms are normalized using the ideal point and nadir
point (which are the minimum and the maximum objective
value of each objective of all non-dominated solutions). Then,
the HV values of all normalized solutions can be calculated
using the reference point (1.1, 1.1, ..., 1.1).

C. Employed Simulation System and Optimization Framework

The energy management system is simulated using the
commercial tool SimulationX2, which is based on the Modelica
simulation language3 (Fig. 1). The adopted SimulationX
simulator can create a complete renewable energy system
rather than some components only, as shown in Fig. 1. The
hybrid simulation approach employs sensor readings from
a real facility and well tested simulation modules based on
fundamental physical equations. The simulation model was
built based on an analysis of the real building and smart
meter measurements of real energy consumption over several
years. The aggregated simulation output, like yearly energy
consumption, has been validated against real consumption
values. More information on the simulation approach can
be found in [46]. Building energy consumption profiles and
weather patterns are based on recorded energy consumption
values of real buildings obtained by smart meter measurements.
Modelica uses differential equations (DE) of the underlying
physical processes to simulate technical elements like PV
systems or batteries. Different levels of details can be simulated,
including non-linear effects like variable technical efficien-
cies, which are often not represented in simpler simulation
approaches. The drawback of this modeling approach is an
increased runtime, which is also additionally dependent on the
specific characteristics of the simulated system (due to the way
the internal DE solver works). For example, simulating the
(otherwise) same system with two different battery sizes might
take different times. Certain extreme conditions (especially
those that no human engineer has ever considered) might even

2https://www.esi-group.com/products/system-simulation
3https://modelica.org/modelicalanguage.html

Fig. 1: A system view of the simulation: The model simulates the
building power and heat demand based on time and weather conditions.
Energy is provided by the grid connection, a PV system, a combined
heat and power plant (CHP), and a stationary battery. The battery’s
charging and discharging behavior is controlled depending on a
predetermined control strategy and internal reference values, e.g.,
the overall power consumption level.

cause the simulation run to stall completely. It is therefore
necessary to stop long-running simulations when runtime
exceeds a certain threshold (as will be discussed in more
detail in Section IV. E) and discard this solution (by setting all
objectives to the worst possible level). If this time-out threshold
is set properly, the impact on the overall simulation results
was found to be low.

Generally, the configuration needs to be evaluated based on
the simulation of at least a complete year (to cover all seasons).
However, this work first conducts the optimization based on
a single month to have sufficient runs for a fair comparison
of algorithms. The month of August is chosen in this work,
as it shows the most similar results compared to a full year in
previous studies. Since the overall system can be influenced
by different seasons, e.g., sunshine and temperature, in future
work, we would study the performance of the algorithms on
the optimization of the BEM over a complete year.

Regarding the optimization tool, the six adopted algorithms
under comparison are all implemented under the PlatEMO
framework [47] to optimize the BEM application.

D. Performance Comparison of the Six Algorithms

To further substantiate the potential of surrogate models
and efficacious model management strategies in enhancing
algorithmic performance, a comparative analysis is conducted.
This analysis examines the performance of five multi-objective
SAEAs, namely, GP-iGNG, KTA2, K-RVEA, REMO, and
RVMM, juxtaposed with a traditional MOEA - RVEA-iGNG,
in the context of the BEM optimization. In Fig. 2, the HV
values of the solutions obtained by the six algorithms over the
1000 real function evaluations are given. It can be seen that
RVMM achieves the best HV value among the five algorithms,
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Fig. 2: The mean HV curve over the number of real objective function
evaluations obtained by the six adopted algorithms over the evolution
process. The upper and lower bars denote the standard deviation over
10 runs.

Fig. 3: The total number of individuals each individual could dominate
within the optimal solution set obtained by each of the five SAEAs.

followed by REMO and KTA2. Overall, REMO and RVMM
achieve similar performance over the number of real function
evaluations. GP-iGNG performs slightly worse than KTA2.
RVEA-iGNG, one of the MOEAs without surrogate assistance,
performs only marginally worse than the state-of-the-art K-
RVEA in dealing with BEM. In Fig. 3, We calculate the total
number of individuals each individual could dominate within
the optimal solution set obtained by each of the five SAEAs.
The result is almost consistent with the HV results, showing
that the number of solutions obtained by REMO is the largest,
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Fig. 4: The HV curve over the number of real objective function
evaluations obtained by RVEA-iGNG over six independent runs. Note
that the abnormal solutions are deleted before calculating the HV
values. Thus, the number of the existing solutions is less than 11200.
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Fig. 5: Histogram of the runtime

followed by RVMM.

To observe the degree of improvement of the five multi-
objective SAEAs in handling BEM, compared with RVEA-
iGNG, we conduct the test on BEM using RVEA-iGNG with a
maximum number of 11200 real function evaluations. In Fig. 4,
it is observed that the performance of RVEA-iGNG increases
sharply over the first 4000 real function evaluations and then
increases at a slower pace until the exhaustion of the 11200
real function evaluations budget. The mean HV values obtained
by RVMM, REMO, KTA2, GP-iGNG, and K-RVEA with a
maximum of 1000 real function evaluations, and RVEA-iGNG
with a maximum of 11200 real function evaluations are 0.1928,
0.1919, 0.1712, 0.1623, 0.1249, and 0.1804, respectively. It
can be concluded that RVMM and REMO can converge almost
10 times faster than RVEA-iGNG. The HV values of the
solutions obtained by RVMM and REMO with a maximum
number of 1000 real function evaluations, i.e., 0.1928 and
0.1919, surpass the HV value of the solutions obtained by
RVEA-iGNG with a maximum number of 11200 real function
evaluations, i.e., 0.1804. It is noteworthy that REMO and
RVMM, when compared to the other three multi-objective
SAEAs, demonstrate significantly superior performance in
the context of the BEM optimization. The HV values of the
solutions obtained by KTA2 and GP-iGNG with a maximum
number of 1000 real function evaluations, i.e., 0.1712 and
0.1623, are close to that obtained by RVEA-iGNG with a
maximum number of 11200 real function evaluations, i.e.,
0.1804.

E. Runtime and Timeout Analysis

Conventional MOEAs necessitate a considerable quantity of
real function evaluations. Therefore, when each evaluation is
time-intensive, it restricts the feasible number of real function
evaluations that can be feasibly carried out. In this study, RVEA-
iGNG is applied to optimize the BEM with a maximum number
of 11200 real function evaluations, and one independent run
takes about six days. It takes around 65 hours for the five
adopted multi-objective SAEAs with a maximum number of
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Fig. 6: Mean squared prediction error of surrogates for all objectives
over 10

independent runs.

1000 real function evaluations. During the simulation of the
BEM, each evaluation may take a few seconds to minutes.
Thus, in this subsection, the histogram of the evaluation time
of the 11200 real function evaluations is shown in Fig. 5 to
illustrate the distribution of the evaluation time. It is observed
that the most frequent evaluation time is in the range of about
35 seconds to 65 seconds.

Currently, the optimization is merely conducted based on the
data from the month of August, and the evaluation time ranges
from seconds to hours for different sets of decision variables,
which is not affordable for traditional MOEAs. During the
experiments, it is observed that the time of one function
evaluation could be up to hours for some sets of decision
variables. Therefore, we first record the simulation time for
each function evaluation and then set the maximum time limit
to 7200 seconds, i.e., if the simulation time of one solution is
longer than 7200 seconds, then this solution will be abandoned
to improve the efficiency of optimization. It is observed that a
number of solutions take more than 7200 seconds, while for
the majority of solutions, the time it takes is in the range of 0
to 70 seconds.

To analyze in which time range the solutions are more
beneficial to the optimization process, those solutions whose
time is longer than 70 seconds are first removed and then the
HV contribution of solutions whose simulation time is below
70 seconds (s) is studied. We divide the whole evaluation time
into six sub-ranges, i.e., 0 to 15s, 15 to 25s, 25 to 35s, 35
to 45s, 45 to 55s, 55 to 65s, and study the HV contribution
of the solutions in each sub-range, as shown in Fig. 5. It can
be seen that the solutions in the range of 15 to 35 seconds
contribute the most to the HV values, and solutions in the range
below 15 and above 35 contribute less. It is concluded that
the reasonable timeout value shall not be set to less than 35
seconds if we want to speed up optimization process. Note that
long simulation times are also often an indicator of numerical
instabilities, which makes a removal of these solutions even
more advisable.

F. Analysis of the Surrogate Accuracy

Both surrogate model and model management constitute
critical factors that significantly influence the performance of
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Fig. 7: Probability that a solution’s Pareto dominance rank is wrongly
predicted over 10

independent runs.

multi-objective SAEAs. Note that in Fig. 2, RVMM performs
the best in terms of HV value, followed by REMO, while
K-RVEA ranks the worst. REMO adopts a neural network to
predict the relationship between pairs of solutions instead of
the objective values as in GP. Considering it is difficult to
make comparisons of accuracy between the neural network and
GP surrogates, only the accuracy of GP surrogates in four GP-
assisted evolutionary algorithms is analyzed in this subsection.
To better compare the adopted algorithms in solving BEM,
we study the model accuracy of GPs trained by a subset of
the solution set obtained by each algorithm under comparison.
80 percent of solutions are selected as training data and 20
percent as the test data. The solutions’ objective values are
first predicted using the constructed GP models to obtain the
predicted objective values, and then they are compared with
their real objective values. The mean squared errors between the
predicted objective values and real objective values are plotted
in Fig. 6. Interestingly, it is observed that the prediction error
of the solution set obtained by K-RVEA is overall the lowest
among the four multi-objective SAEAs under comparison.
Specifically, RVMM, GP-iGNG, KTA2, and K-RVEA win
on four, one, zero, and five out of 10 independent runs in
terms of the prediction error. In addition to the predicted mean
squared error, we also calculate the probability that a solution’s
Pareto dominance rank is wrongly predicted, considering that
in multi- or many-objective optimization, the rank, instead
of the objective values of a solution, is used to determine
the quality of the solution. Fig. 7 shows that KTA2 and GP-
iGNG predict the rank more accurately than K-RVEA and
RVMM. Interestingly, RVMM occupies the lowest position in
terms of rank prediction. This finding suggests that diminished
model accuracy does not invariably equate to a decline in the
performance of multi-objective SAEAs. Since in RVMM, two
GPs are constructed in parallel in two optimization processes,
and the low mean accuracy of two GPs may result from two
GPs serving different purposes in two optimizations, i.e., one
emphasizing on accelerating the convergence and the other on
diversity. Note that in K-RVEA and GP-iGNG, the optimization
process in both algorithms is based on the predicted mean
values of a constructed GP model, supporting the statement that
apart from the constructed surrogate model, model management



10

Fig. 8: The approximated Pareto front of the second objective (F2),
the third objective (F3), and the ninth objective (F9).

strategy is vital in guiding the search process.

G. Property Analyses of the BEM Problem

As previously discussed, certain solutions might be inherently
unstable in real-world scenarios, leading to high time resolu-
tions in simulations. Consequently, even after a waiting period
of 7200 seconds, the computation of objective values might
remain incomplete. Also, apart from the expensive property of
this BEM problem, Fig. 5 shows that the runtime for different
objectives is also different.

Take the second, third, and ninth objective of the non-
dominated solutions as an example, as shown in Fig. 8,
the shape of the obtained Pareto front is further analyzed.
As defined in [48], a Pareto front is called regular if an
infinite number of vectors with positive directions all intersect
with it; otherwise, it is irregular. It is observed that the
approximated Pareto front in Fig. 8 only covers a small part
of the whole objective space. Thus, it is concluded that the
approximated Pareto front of this BEM problem is irregular.
This irregular Pareto front property could possibly explain the
ineffectiveness of K-RVEA in handling BEM, in which a set
of predefined evenly distributed reference vectors covering the
whole objective space is adopted.

H. Analysis of the Solutions

To better visualize the solutions obtained by the six algo-
rithms, both the decision variables and the objective values of
the obtained non-dominated solutions are illustrated. For the
PV system, the orientation angle of the photovoltaics system is
around 180 degrees in most cases, which means it is southward,
as confirmed in Fig. 9. The few northward facing PV-systems
can be explained by the configurations with very small PV
peak-powers. For those solutions, the orientation and inclination
have no impact on the result, as they do not contribute to the
energy production.

Fig. 10 shows that for most solutions, the battery is charged
when the surplus power is above 149.9 kW (which is the upper
limit of the parameter). Essentially, a higher charging threshold
seems to be more reasonable. For the discharging limit in

Fig. 9: Histogram of βpv

kW

Fig. 10: Histogram of charging threshold

Fig. 11, it is observed that there are multiple reasonable values,
although many of the solutions are around 300 kW.

We now study the correlation between objectives (for better
visualization only pairwise comparisons are considered). In
Fig. 12, only two dimensions of the 10-dimension objective
values of the non-dominated solutions are plotted, and it is
observed that there is a (rather weak) negative correlation
between the investment costs and the annual operation costs.
Similarly, in Fig. 12, the investment costs and the yearly CO2
emissions are also negatively correlated, as expected. However,

kW

Fig. 11: Histogram of discharging threshold
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TABLE III: The best found solution by all runs of the five algorithms for each objective and the objective values of two additional knee points.
id best Cinvest Cannual Gtotal R bSOC Ebatt,discharge Ppeak,supply tm Efeed Ppeak,feed

1 Cinvest 11600.00 335855.99 2156.36 -3.83 0.3623 1024.46 333428.19 0.3324 0.00 0.00
2 Cannual 566695.73 318833.10 2091.74 -1004.80 0.2000 0.01 333428.19 1.0000 76409.66 310735.30
3 Gtotal 566695.73 318833.10 2091.74 -1004.80 0.2000 0.01 333428.19 1.0000 76409.66 310735.30
4 R 666050.99 322715.73 2106.34 -9086.84 0.8828 8199.41 333429.00 0.9896 50683.61 226282.66
5 bSOC 315240.88 326323.42 2120.30 -47.95 0.0274 328.24 333428.21 1.0000 20415.92 107002.88
6 Ebatt,discharge 11600.01 335854.46 2156.44 -10.80 0.2000 0.00 333428.19 1.0000 0.00 0.00
7 Ppeak,supply 106201.35 336393.05 2158.40 -431.47 0.6387 111547.83 273239.52 0.7589 0.00 0.00
8 tm 253864.20 333533.27 2147.19 -874.72 0.5971 654.20 333428.19 0.0002 0.00 0.00
9 Efeed 566335.20 331701.31 2140.57 -6294.54 0.9205 6344.97 333432.17 0.9871 0.00 0.00
10 Ppeak,fead 344858.68 337084.61 2154.64 -526.49 0.1040 494.72 333428.20 1.0000 0.00 0.00
11 (knee point 1) 460329.69 330866.87 2137.58 -7842.71 0.7223 6150.24 333428.35 0.9879 2843.12 26893.59
12 (knee point 2) 375578.36 330794.14 2137.21 -8153.59 0.7861 6956.20 333428.79 0.9878 7533.43 46370.87

TABLE IV: The best-found solution by all runs of the five algorithms for each decision variable and the decision values of two additional
knee points.

id best objective αPV βPV PPV CB bSOC,max bSOC,min Pcharge Pdischarge VCHP

1 Cinvest 33.63 57.25 10.00 5.00 0.5000 0.0716 149.87 278.83 4.8401
2 Cannual 45.00 185.49 450.00 465.32 0.5200 0.3681 -431.47 698.76 4.9332
3 Gtotal 45.00 185.49 450.00 465.32 0.5200 0.3681 -431.47 698.76 4.9332
4 R 34.65 216.24 415.43 1000.00 0.8883 0.3606 45.10 629.54 4.8264
5 bSOC 18.98 199.38 270.19 178.78 0.5039 0.0500 -358.75 195.20 4.9628
6 Ebatt,discharge 29.32 19.57 10.00 5.00 0.5000 0.1242 3.61 590.26 4.9609
7 Ppeak,supply 31.57 161.47 18.45 348.58 0.8697 0.0908 149.90 268.40 4.6988
8 tm 22.88 16.10 218.87 138.39 0.5634 0.1672 48.97 595.48 4.2494
9 Efeed 28.69 41.50 383.68 728.03 0.9282 0.1711 32.86 392.67 4.6852
10 Ppeak,feed 22.99 351.10 226.85 469.36 0.9472 0.1074 -475.62 206.53 1.0618
11 (knee point 1) 6.33 254.21 145.55 596.61 0.9090 0.3607 -313.61 539.80 3.1487
12 (knee point 2) 27.06 209.21 243.38 918.93 0.5361 0.2591 60.78 396.57 4.3863
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Fig. 12: Visualization of the relation between annual operational costs
and the investment costs and the relation between investment costs
and CO2 emission using all non-dominated solutions obtained by
REMO.

this analysis also shows that the overall savings potential for
this specific use case are limited.

To better observe the quality of the solution set obtained
by the six algorithms and provide domain experts with more
informed knowledge of the optimal set and its boundaries for
better decision-making, we also list the best-found solution by
all runs for each objective and two of the knee solutions ob-
tained by RVMM, as shown in Table III, and the corresponding
parameters are listed in Table IV.

As a reference, the complete distributions of the decision
variables and obtained objectives are shown in Fig. 13 and

Fig. 13: Distribution of the decision variables for all Pareto non-
dominated solutions: The boxes indicate the 25%-75% percentile, and
the whiskers mark the minimum and maximum values. The markers
indicate the two knee point solutions.

Fig. 14, respectively.

The first solution (id 1 in Table III) shows the lowest value
for investment costs Cinvest. The low investment costs are
realized by utilizing a very small PV system (PPV ) and a very
small battery capacity(CB).

Solution 2, on the contrary, utilizes the largest possible PV
system. In combination with a relatively large volume for the
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Fig. 14: Distribution of the objective values for all Pareto non-
dominated solutions: The boxes indicate the 25%-75% percentile
range, and the whiskers mark the minimum and maximum values.
The markers indicate the two knee point solutions.

heat storage tank (VCHP ), it plausibly achieves the lowest
annual costs (Cannual), illustrating the competitive nature of
investment and annual costs. These two power sources provide
more electricity than necessary for the building itself and feed
a substantial amount into the grid (shown by high values
for Efeed and Ppeak,feed, in comparison to the low value of
Ebatt,discharge). By producing substantial amounts of energy
from the large PV system and the CHP, the same solution is
also able to achieve the lowest level of CO2 emissions (Gtotal,
see solution 3).

Solution 4 utilizes a large PV system in combination with a
large battery. Together with the high mean state of charge
(bSOC) of the battery and its overall high charging limit
(bSOC,max), this results in the longest resilience time in cases
when no grid power is available.

Solution 5 requires only a minimum battery SOC (bSOC,max)
and achieves the lowest mean battery state of charge.

Solution 6 utilizes the smallest possible PV system, as well
as the smallest possible battery capacity and lowest maximum
charging limit (bSOC,max), thereby eliminating the utilization
of the battery (shown by the lowest value of Ebatt,discharge).

Solution 7 surprisingly achieves the lowest power peak
demand from the grid (Ppeak,supply), despite a very small PV
system. The rather small battery (CB) is efficiently discharged
(shown by an above average value for Ebatt,discharge) to
compensate the demand peak. This behaviour is achieved with
the highest possible battery charging threshold (Pcharge) and
a low discharging threshold (Pdischarge). Overall, the solution
seems to utilize the small battery very efficiently for power
peak shaving. Interestingly, the solution does not rely on a
large PV system to produce additional power when the building

demand is high. Hence, an efficiently used battery seems to
be more important for power peak shaving than a large PV
system, in this specific scenario.

Solution 8 achieves the largest time share (tm) in which the
battery SOC is between 30% and 70% due to a combination of a
low maximum battery SOC, high charging and high discharging
thresholds. The battery has a mean state of charge of roughly
60%. Small charging or discharging processes are likely to
keep the SOC between the desired values.

For solution 9, the lowest possible energy that is fed into
the grid (Efeed) corresponds to a feed-in power peak value of
zero and a high value for tm. In spite of the large PV system,
no excess energy is being produced and fed into the grid. This
can be seen as a result of the low orientation angle of the PV
system (βPV ). The orientation leads to an overall low energy
production, in particular during times of higher energy demand
around midday.

Solution 10 can be interpreted in a similar way. The high
value for tm and low value for Efeed are in line with the
lowest possible feed-in power peak. The PV system is directed
North, thus producing only a small amount of energy. Note
that this is a very inefficient solution, indicating that multiple
objectives are always needed to be considered.

Several insights into the optimization of the BEM problem
can be further gained from the distribution of the decision
variables and objectives of the Pareto non-dominated solutions
(Figs. 13 and 14). While some decision variables, such as
αPV , PPV , CB , bSOC,max, and bSOC,min take a wide range
of values, βPV , Pcharge, Pdischarge, and VCHP can only take
a small range of values to achieve good performance in all
objectives. As expected, it can, for example, be observed
that an orientation around 180° (South) is useful for the PV
system, which is plausible considering a location in central
Europe. It is unexpected, though very valuable, that mainly
very large values for Pcharge seem to have a positive effect
on the optimization. This means that the stationary battery
will be charged in most configurations, even for a net positive
energy consumption, thus prioritizing the benefit that the battery
provides over a potentially lower energy consumption. In a
similar way, the results show that large values for VCHP seem
to be overall beneficial, highlighting the general advantage of a
large heat storage volume. With regard to the objectives, it can
be observed that most configurations lead to similar low values
for Ebatt,discharge and Ppeak,supply , with few exceptions.

Decision-makers may not have explicit preferences over
the obtained solutions. In this case, it is suggested to choose
knee points for implementation, as knee points can achieve
a well-balanced trade-off between all conflicting objectives.
As summarized in [49], there are three main commonly used
knee identification methods. In this work, we propose using the
convex knee based on the convex hull of the individual minima
method to select the knee solutions. Since RVMM performs the
best among the six algorithms under comparison, we propose
selecting two of the most representative knee solutions from
the solution set obtained by RVMM and have included them
in Tables III and IV, as well as Figs. 13 and 14, respectively.
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The knee points demonstrate the average performance for
six of the objectives. They achieve very strong resilience values
(R′), mainly due to the use of above average battery sizes (CB)
and high discharging thresholds (Pdischarge). On the downside,
this leads to above-average investment costs (Cinvest) and a
battery that is almost always charged with a high mean SOC
(refer to t′m and b̄SOC).

Another noteworthy aspect is the fact that, although the
decision variables of both selected knee points take significantly
different values, they lead to rather similar values in terms of
objectives.

To summarize, the many-objective optimization algorithms
can identify a set of optimal solutions. However, the task of
selecting one single solution to be finally implemented is still
the responsibility of the domain expert. Currently the most
important benefit is that a more informed decision can be made
given the knowledge of the optimal set and its boundaries.
Nevertheless, further research is necessary for supporting
the decision maker. Promising methods are currently being
investigated, for example, incorporating human preferences
into the decision making process [41], identifying solutions of
interest from the Pareto set [50], directly integrating the user
into an interactive multi-objective optimization [51], selecting
knee points [49], or dividing the solutions into semantically
meaningful concepts and selecting the representatives [52],
[53].

VI. CONCLUSION

In this study, a real-world building energy management
problem is formulated and then is optimized using a competitive
multi-objective evolutionary algorithm and five surrogate-
assisted evolutionary algorithms. A thorough analysis of the
obtained solutions in terms of both the decision space and
objective space is provided. Furthermore, it is suggested which
timeout value should be set according to the amount of
HV contribution in each time slot. The experimental results
demonstrate that multi-objective SAEAs can be applied to
identify a set of optimal solutions and are generally very helpful
in improving the efficiency of building energy management.
The performance of K-RVEA seems to be very close to RVEA-
iGNG, indicating that better model management strategies need
to be developed based on the properties of BEM to further
improve performance and efficiency. In this work, by giving
the knowledge of the optimal set and its boundaries, a more
informed decision can be made to support decision-makers.
However, which solution shall be finally implemented still
requires the knowledge and preferences of domain experts.

Note that the time of each function evaluation ranges from
less than one minute to more than two hours in the BEM.
Thus, we believe it will be of great importance to include the
cost of each real function evaluation when designing model
management strategies, such as [14], to obtain competitive
performance with the lowest cost. Thus, the proposed BEM
problem can serve as a test problem for future design of
new surrogate-assisted evolutionary algorithms or cost-aware

Bayesian optimization, where expensive many-objective opti-
mization problems are urgently needed. In our future work, we
will design SAEAs by designing cost-aware model management
strategies to select query points within the minimum time cost
in light of this problem property of the BEM application.
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