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A B S T R A C T

The electric autonomous dial-a-ride problem (E-ADARP) represents a challenging and practically relevant
extension of the dial-a-ride problem, which takes electric vehicle charging into account. It introduces battery
constraints and the option to recharge vehicles at different charging stations. The present paper proposes
a bilevel large neighborhood search approach (BI-LNS) for the E-ADARP. In the outer level of the proposed
approach, charging sessions are inserted in the routes of vehicles and in the inner level, the pick-up and drop-off
locations of the requests are inserted. In numerical experiments, it is shown that BI-LNS is able to outperform
existing approaches on a number of common E-ADARP benchmark instances. Furthermore, the scalability of
BI-LNS is evaluated on a set of large problem instances. The results show that the proposed approach is able
to find feasible solutions within five minutes for problem instances with up to a few thousand transportation
requests.
1. Introduction

The dial-a-ride problem (DARP) is the problem of finding optimal
tours of a number of vehicles through different pick-up and drop-
off locations in order to serve a number of transportation requests.
Different variants of the DARP, considering different constraints and
objectives, can be found in the literature. Most typical constraints are
that the routes have to start/stop at certain start/end locations (depots),
that the pick-up and drop-off locations have to be served within specific
time windows, that a vehicle can transport only a limited number
of passengers at the same time, that the user ride time is limited,
and that the duration of a vehicle’s route is limited. The objective
function usually relates to minimizing the operating cost (e.g., in terms
of the number of used vehicles) and/or maximizing the user satisfaction
(e.g., in terms of user ride times) (Molenbruch et al., 2017b).

The DARP is of high practical relevance due to an increasing pop-
ularity of on-demand mobility services (Shaheen and Cohen, 2020).
The problem is well studied and numerous approaches for solving the
DARP and its variants can be found in the literature. There are different
exact methods, which formulate and solve the problem as a mixed
integer linear programming (MILP) problem. These methods are mainly
based on branch-and-cut approaches (Cordeau, 2006; Ropke et al.,
2007; Parragh, 2011; Braekers et al., 2014) and/or column generation
approaches (Ropke and Cordeau, 2009; Garaix et al., 2011; Parragh and
Schmid, 2013; Gschwind and Irnich, 2015). While such exact methods
can be employed to efficiently solve small problem instances and
having the advantage of providing guarantees on the solution quality,
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they are typically not suited for real-world settings, which require low
response times and have to handle hundreds or even thousands of
requests. Hence, different heuristic solution approaches for the DARP
are proposed in the literature. Popular heuristics employed in the
context of the DARP are tabu search (Cordeau and Laporte, 2003),
large neighborhood search (LNS) (Shaw, 1997; Molenbruch et al.,
2017a), adaptive large neighborhood search (Ropke and Pisinger, 2006;
Gschwind and Drexl, 2019), and genetic algorithms (Jorgensen et al.,
2007). Furthermore, there are several hybrid algorithms for the DARP,
which combine two or more approaches (Masmoudi et al., 2016, 2017).
For a comprehensive overview to the different variants of the DARP
and approaches for their solution, the reader is referred to the excellent
literature reviews of Molenbruch et al. (2017b) and of Ho et al. (2018).

Today, the number of electric vehicles (EVs) is rapidly increasing
due to economical and especially environmental reasons. At the same
time, progress in autonomous driving is made. Hence, it can be as-
sumed that dial-a-ride service fleets of the future consist of autonomous
electric vehicles (Narayanan et al., 2020). Since such vehicles do not
require a human driver, they can be operated over long time periods
without the need for breaks or for returning to a depot. However,
in order to be able to provide a continuous service, such vehicles
have to be recharged. Since the recharging takes a considerable time,
it should be taken into account during the planning of the vehicles’
driving schedules. Thus, a practically relevant extension of the DARP
is the integration of EV charging, leading to the electric autonomous
vailable online 17 July 2023
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Nomenclature

Algorithmic Parameters

𝐶 𝑖𝑛𝑖𝑡 Initial number of charging sessions per
vehicle

𝐼 Number of inner-level LNS iterations
𝑝𝑖𝑛𝑠 Probability for charging session insertion at

the outer level
𝑝𝑚𝑜𝑑 Probability for charging session modifica-

tion at the outer level
𝑝𝑟𝑒𝑚 Probability for charging session removal at

the outer level
𝑄 Number of requests reinserted at inner level

after a feasible solution was found
𝑄𝑖𝑛 Number of requests inserted at inner level

as long as no feasible solution was found
𝑄𝑜𝑢𝑡 Number of requests removed at inner level

as long as no feasible solution was found

Parameters

𝛼𝑖 Charging speed at charging station 𝑖
𝐵 Battery capacity of vehicles
𝐶 Number of charging stations
𝑑𝑖 Duration of service at location 𝑖
𝑒𝑖,𝑗 Energy it takes to drive from location 𝑖 to

location 𝑗
𝐾 Number of vehicles
𝐿 Load capacity of vehicles
𝑙𝑖 Load of location 𝑖
𝑁 Number of requests
𝑟 Minimum final battery capacity ratio
𝑆 Upper bound for a passenger’s ride time
𝑇 Length of planning horizon
𝑡𝑖,𝑗 Time it takes to drive from location 𝑖 to

location 𝑗
𝑤+

𝑖 Upper bound of time window of location 𝑖
𝑤−

𝑖 Lower bound of time window of location 𝑖

Sets

 Set of charging stations
+ Set of start depots
− Set of end depots
 Set of vehicles
+ Set of pick-up locations
− Set of drop-off locations
 Set of all locations

Variables

𝐴𝑖 Time of arrival at location 𝑖
𝐵𝑎𝑟𝑟
𝑖 Vehicle’s battery level at arrival at location

𝑖
𝐵𝑑𝑒𝑝
𝑖 Vehicle’s battery level at departure from

location 𝑖
𝐸𝑖 Duration of charging at charging station 𝑖
𝐿𝑖 Vehicle’s load after serving location 𝑖
2

𝑅𝑖 Excess ride time for request associated with
pick-up location 𝑖

𝑆𝑖 Time of service for location 𝑖
𝑥𝑘𝑖,𝑗 Flag indicating whether vehicle 𝑘 drives

from location 𝑖 to location 𝑗
𝑥𝑖,𝑗 Flag indicating whether any vehicle drives

from location 𝑖 to location 𝑗

dial-a-ride problem (E-ADARP), which was initially introduces by Bon-
giovanni et al. (2019). In the E-ADARP, it is considered that the vehicles
consume energy by driving from one location to another and that it has
to be ensured that the vehicles’ batteries never get fully discharged. In
order to increase the quality of the planned routes, visits at charging
stations (CSs) have to be included into them – it has to be planned,
when, where and for how long vehicles charge.

This extension makes the already NP-hard DARP even harder to
solve, and it cannot be handled by the previously cited approaches
for the conventional DARP. The present work proposes a bilevel large
neighborhood search approach (BI-LNS) for the E-ADARP. In numerical
experiments, the proposed approach is evaluated on common bench-
mark instances with up to 96 requests and the results are compared
to those of the exact e-ADARP2 approach (Bongiovanni et al., 2019)
and of the heuristic DA approach (Su et al., 2023). Furthermore, the
proposed approach is evaluated on a set of larger problem instances
with up to 5200 requests in order to investigate its scalability.

The rest of the paper is organized as follows: Section 2 discusses
related work. Section 3 provides a detailed description of the consid-
ered problem. Section 4 describes the proposed BI-LNS approach. In
Section 5, the numerical experiments are described and their results are
presented and discussed. Finally, a conclusion and summary is provided
in Section 6.

2. Related work

In the literature, only very few approaches to the E-ADARP can be
found.

Pimenta et al. (2017) propose a hybrid approach for the DARP with
electric autonomous vehicles, which operate on fixed routes. However,
they do not consider that the vehicles have to be recharged. Venka-
traman and Levin (2019) assume that private vehicles are replaced
by a fleet of autonomous vehicles, leading to traffic congestion, and
propose a tabu search approach for the planning of the operation of the
vehicles taking into account the traffic congestion. A similar problem is
considered by Liang et al. (2020), who propose an exact approach for
its solution.

Masmoudi et al. (2018) investigated the DARP with EVs, which
can swap their batteries at battery swapping stations. Thus, in the
considered problem, it is not necessary to set charging durations. The
authors propose a hybrid approach, which combines variable neighbor-
hood search with evolutionary optimization, and evaluate it on problem
instances with up to 100 requests.

Bongiovanni et al. (2019) proposed an exact approach for the E-
ADARP. They provide a 3-index (e-ADARP3) and a more efficient
2-index (e-ADARP2) MILP formulation of the E-ADARP and propose a
branch-and-cut approach with new valid inequalities specific to the E-
ADARP. They evaluate the approach on problem instances with up to
50 requests.

In (Bongiovanni, 2020), Bongiovanni proposes a two-phase heuristic
for the dynamic version of the E-ADARP. In the first phase, it is tried
to insert newly received requests into existing routes with help of a
greedy operator, which appends a new charging session at the end of
routes into which new requests were inserted. In the second phase, a
large neighborhood search is applied in order to improve the routes.
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Table 1
Overview to related and present work.

Work Approach Largest considered problem size Considered problem variant

(Masmoudi et al., 2018) Population-based variable
neighborhood search

17 EVs, 100 requests Battery swapping instead of charging, all requests
have to be satisfied, maximum ride time constraint

(Bongiovanni et al., 2019) Branch-and-cut (e-ADARP2 and
e-ADARP3)

5 EVs, 50 requests Same variant as in present work

(Hoché et al., 2020) Neighborhood search 35 EVs, 10,000 requests No hard constraint for satisfaction of requests,
constraint that a charging station cannot be used by
two EVs simultaneously, no maximum ride time
constraint

(Bongiovanni, 2020) Greedy heuristic followed by large
neighborhood search supported
by machine learning approach

10 EVs, number of requests not specified Dynamic variant, which consists of solving multiple
subproblems, no hard constraint for satisfaction of
newly received requests, maximum ride time
constraint

(Su et al., 2023) Deterministic annealing (DA) 8 EVs, 96 requests Same variant as in present work
Present work Bilevel large neighborhood search 250 EVs, 5200 requests Static variant, all requests have to be served,

maximum ride-time constraint
The destroy and repair operators in the LNS are chosen with help
of a machine learning model, which is trained in an offline stage.
Furthermore, Bongiovanni proposes an exact algorithm for the setting
of service times of existing routes, which minimizes the excess ride
time (the time passengers spend in vehicles longer than necessary), and
shows that the algorithm is faster than a linear programming approach.

Hoché et al. (2020) proposed a heuristic neighborhood search ap-
proach. It uses a special insertion operator in order to take the EV
charging into account: A request is first inserted into a route of a vehicle
without consideration of battery constraints and then, the idle times of
the vehicle (i.e., times, when the vehicle is waiting at a location for the
start of the time window) are filled with visits to charging stations. If
the resulting route is feasible, it is accepted and otherwise the insertion
of the request failed. The authors evaluate the approach on problem
instances with 10,000 requests and 35 vehicles. However, only limited
details to the experimental results are provided.

A further heuristic approach for the E-ADARP is proposed by Su
et al. (2023). They describe a deterministic annealing approach (DA),
which employs different local search operators. A special repair oper-
ator is used in order to insert visits at charging stations into routes
that violate battery constrains. The approach is evaluated on problem
instances with up to 96 requests, and it is shown that on several
instances, it is able to outperform the exact e-ADARP2 approach.

The heuristic approaches proposed by Su et al. (2023) and by Hoché
et al. (2020), both repair battery-infeasible routes by inserting charging
sessions in the existing routes. The in this work proposed approach for
the E-ADARP works in the opposite way: Instead of inserting requests
and then filling up the route with charging sessions, the charging ses-
sions are first inserted, and then the route is filled up with requests. This
is done in the form of a bilevel large neighborhood search approach
(BI-LNS), where the outer level is responsible for setting the visits to
charging stations and the inner level is responsible for filling up the
routes with requests. By iteratively modifying the charging sessions
at the outer level, the number of charging sessions and their settings
(locations and durations) are improved over time. The approach does
not employ a compute-intensive operator for the insertion of charging
sessions, which can be expected to be beneficial for the scalability.
Table 1 provides a summary of the most relevant related work and the
present work.

The key contributions of the present paper are as follows:

• Proposal of a new bilevel large neighborhood search heuristic for
the E-ADARP,

• Presentation of new results on E-ADARP instances known from
literature, and

• Introduction of a set of large-scale E-ADARP instances and eval-
uation of the scalability of the proposed approach on these in-
3

stances.
3. Problem description

A problem analogous to that described by Bongiovanni et al. (2019)
is considered. It is assumed that a set  = {1,… , 𝐾} of 𝐾 electric
vehicles is available to serve 𝑁 requests. For each request, there is a
pick-up and a drop-off location. Let + = {1,… , 𝑁} denote the set of
pick-up locations and − = {𝑁 + 1,… , 2𝑁} denote the set of drop-off
locations, where 𝑖 ∈ + and 𝑖 + 𝑁 ∈ − are the pick-up and drop-
off location, respectively, belonging to the 𝑖th request. Each vehicle is
associated with a start and an end depot. Let + = {2𝑁+1,… , 2𝑁+𝐾}
be the set of start depots and − = {2𝑁+𝐾+1,… , 2𝑁+2𝐾} be the set of
end depots. Furthermore, there is a set  = {2𝑁+2𝐾+1,… , 2𝑁+2𝐾+𝐶}
of 𝐶 charging stations. Optionally, if it is permitted to visit a physical
charging station more than once, the set  might contain a sufficient
number of ‘‘virtual charging stations’’ or ‘‘charging sessions’’, which are
replications of the physical charging station locations. Let  = +∪−∪
+ ∪ − ∪  denote the set of all locations of the problem. The ride
from a location 𝑖 to a location 𝑗, takes 𝑡𝑖,𝑗 time units and consumes 𝑒𝑖,𝑗
energy units. Each vehicle has a maximum battery capacity of 𝐵 energy
units and a maximum load capacity 𝐿, where the latter represents the
maximum number of passengers, a vehicle can transport at the same
time. Without loss of generality, it is assumed that at the beginning of
the planning horizon, the vehicles are empty and have fully charged
batteries. Each location 𝑖 ∈  is associated with a load (number of
passengers) 𝑙𝑖 with 𝑙𝑖 = 0 for all locations 𝑖 ∈  ⧵ (+ ∪ −) and 𝑙𝑖 > 0
for all pick-up locations 𝑖 ∈ +, and 𝑙𝑖 = −𝑙𝑖−𝑁 for all drop-off locations
𝑖 ∈ −. For each location 𝑖 ∈  , a time window [𝑤−

𝑖 , 𝑤
+
𝑖 ] is defined. For

all locations 𝑖 ∈ ⧵(+∪−), 𝑤−
𝑖 is set to 0 and 𝑤+

𝑖 is set to the length 𝑇
of the planning horizon. It is assumed that the service (i.e., the pick-up
and drop-off of passengers) at location 𝑖 takes a certain time 𝑑𝑖 with
𝑑𝑖 = 0 for locations 𝑖 ∈  ⧵ (+ ∪−). Each charging station 𝑖 ∈  has a
certain charging speed of 𝛼𝑖 energy units per time unit. Furthermore, it
is assumed that the battery level of a vehicle at the end of the planning
horizon must not be lower than a ratio 𝑟 ∈ [0, 1] of its maximum battery
capacity and that the time a passenger spends in a vehicle is limited by
a maximum ride time 𝑆.

A solution to the problem consists of routes of the vehicles, i.e., a
sequence of locations for each vehicle, together with service times 𝑆𝑖
(i.e., points in time when locations are served) for each visited location
𝑖 ∈  . Charging durations directly follow from the service times. Let
the binary variable 𝑥𝑘𝑖,𝑗 indicate whether vehicle 𝑘 visits location 𝑗
directly after location 𝑖 in some given routes. An objective function and
constraints as described in the following two subsections are assumed.

3.1. Objective

The goal is to find feasible routes, which are optimal with respect
to the following objective:

min𝑤1
∑ ∑

𝑡𝑖𝑗𝑥
𝑘
𝑖,𝑗 +𝑤2

∑

𝑅𝑖, (1)

𝑖,𝑗∈ 𝑘∈ 𝑖∈+
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where 𝑤1 and 𝑤2 are prespecified weights and 𝑅𝑖 is the excess ride time
of request 𝑖, defined as follows:

𝑅𝑖 = 𝑆𝑖+𝑁 − (𝑆𝑖 + 𝑑𝑖) − 𝑡𝑖,𝑖+𝑁 ∀𝑖 ∈ +. (2)

Thus, the excess ride time is the time passengers spend in a vehicle
longer than necessary and the total objective is to reduce (a weighted
sum of) the total driving time of the vehicles and the excess ride time
of passengers.

3.2. Constraints

Routes have to fulfill the following constraints in order to be feasi-
ble.

Each location can be visited at most once (Constraint (3)). A vehicle
has to start its route at its corresponding start depot and cannot
approach any start depot (constraints (4) and (5)). Furthermore, each
vehicle’s route has to end at its corresponding end depot (Constraint
(6)) and if a vehicle enters a location other than an end depot, it also
has to leave the location (Constraint (7)):
∑

𝑘∈

∑

𝑖∈
𝑥𝑘𝑖,𝑗 ≤ 1 ∀𝑗 ∈  , (3)

∑

𝑗∈⧵{2𝑁+𝑘}
𝑥𝑘2𝑁+𝑘,𝑗 = 1 ∀𝑘 ∈ , (4)

∑

𝑘∈

∑

𝑖∈
𝑥𝑘𝑖,𝑗 = 0 ∀𝑗 ∈ +, (5)

∑

𝑖∈⧵{2𝑁+𝐾+𝑘}
𝑥𝑘𝑖,2𝑁+𝐾+𝑘 = 1 ∀𝑘 ∈ , (6)

∑

𝑗∈
𝑥𝑘𝑗,𝑖 −

∑

𝑗∈
𝑥𝑘𝑖,𝑗 = 0 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵−. (7)

Each pick-up location has to be visited by exactly one vehicle
(Constraint (8)) and a vehicle visiting a pick-up, has to visit also the
corresponding drop-off (Constraint (9)).
∑

𝑘∈

∑

𝑖∈
𝑥𝑘𝑖,𝑗 = 1 ∀𝑗 ∈ +, (8)

∑

𝑖∈
𝑥𝑘𝑖,𝑗 =

∑

𝑖∈
𝑥𝑘𝑖,𝑗+𝑁 ∀𝑘 ∈ ,∀𝑗 ∈ +. (9)

Note that this means that a solution, in which not all requests are
served, is infeasible.

In the following, the binary flag 𝑥𝑖,𝑗 is used to indicate whether any
of the vehicles drives from location 𝑖 to location 𝑗:

𝑥𝑖,𝑗 =
∑

𝑘∈
𝑥𝑘𝑖,𝑗 ∀𝑖, 𝑗 ∈  . (10)

The service time 𝑆𝑖 of a location 𝑖 ∈  must not be earlier than
the corresponding arrival time 𝐴𝑖 (set in (11) and (12)) and has to
adhere to the time window constraint (constraints (13) and (14)).
Furthermore, a drop-off location cannot be visited/served earlier than
the corresponding pick-up location (Constraint (15)), and the maximum
ride time constraint has to be satisfied (Constraint (16)):

𝐴𝑖 = 0 ∀𝑖 ∈ +, (11)

𝐴𝑖 =
∑

𝑗∈
(𝑆𝑗 + 𝑑𝑗 + 𝑡𝑗,𝑖) ⋅ 𝑥𝑗,𝑖 ∀𝑖 ∈  ⧵+, (12)

𝑆𝑖 ≥ 𝐴𝑖 ∀𝑖 ∈  , (13)

𝑤−
𝑖 ≤ 𝑆𝑖 ≤ 𝑤+

𝑖 ∀𝑖 ∈  , (14)

𝑆𝑖 ≤ 𝑆𝑖+𝑁 ∀𝑖 ∈ +, (15)

𝑆 − (𝑆 + 𝑑 ) ≤ 𝑆 ∀𝑖 ∈ +. (16)
4

𝑖+𝑁 𝑖 𝑖
The load 𝐿𝑖 after visiting location 𝑖 (set in (17) and (18)) cannot
be larger than the maximum load capacity 𝐿 (Constraint (19)) and
charging stations can only be visited by empty vehicles (Constraint
(20)):

𝐿𝑖 = 0 ∀𝑖 ∈ +, (17)

𝐿𝑖 = 𝑙𝑖 +
∑

𝑗∈
𝐿𝑗 ⋅ 𝑥𝑗,𝑖 ∀𝑖 ∈  ⧵+, (18)

𝐿𝑖 ≤ 𝐿 ∀𝑖 ∈  , (19)

𝐿𝑖 = 0 ∀𝑖 ∈ . (20)

The vehicles start their tours with full batteries (Constraint (21)).
The battery level 𝐵𝑎𝑟𝑟

𝑖 at arrival at a location (set in (22)) cannot fall
below zero (Constraint (23)) and the final minimum battery level ratio
has to be satisfied (Constraint (24)). It is assumed that at a charging
station 𝑖 ∈ , the time between arrival and service is used for charging
and thus, the battery level 𝐵𝑑𝑒𝑝

𝑖 at departure from the charging station
is up to (𝑆𝑖 − 𝐴𝑖) ⋅ 𝛼𝑖 energy units higher than at arrival (constraints
(25) and (26)). For all other locations, the battery level does not change
between arrival and departure (Constraint (27)):

𝐵𝑎𝑟𝑟
𝑖 = 𝐵 ∀𝑖 ∈ +, (21)

𝐵𝑎𝑟𝑟
𝑖 =

∑

𝑗∈
(𝐵𝑑𝑒𝑝

𝑗 − 𝑒𝑗,𝑖) ⋅ 𝑥𝑗,𝑖 ∀𝑖 ∈  ⧵+, (22)

𝐵𝑎𝑟𝑟
𝑖 ≥ 0 ∀𝑖 ∈  , (23)

𝐵𝑎𝑟𝑟
𝑖 ≥ 𝑟 ⋅ 𝐵 ∀𝑖 ∈ −, (24)

𝐸𝑖 = 𝑆𝑖 − 𝐴𝑖 ∀𝑖 ∈ , (25)

𝐵𝑑𝑒𝑝
𝑖 = min(𝐵,𝐵𝑎𝑟𝑟

𝑖 + 𝐸𝑖 ⋅ 𝛼𝑖) ∀𝑖 ∈ , (26)

𝐵𝑑𝑒𝑝
𝑖 = 𝐵𝑎𝑟𝑟

𝑖 ∀𝑖 ∈  ⧵ . (27)

Please note that in contrast to the problem definition of Bongiovanni
et al. (2019), it is not considered that vehicles can select from multiple
end depots. However, on the benchmark instances used in the exper-
iments described later, this makes no difference, since there is only a
single end depot in these instances.

4. BI-LNS approach

This work proposes a bilevel large neighborhood search approach
(BI-LNS) for solving the stated problem. Large neighborhood search
(LNS) is an established local search heuristic for solving the DARP.
LNS iteratively destroys and repairs solutions. In the context of the
DARP, this means that requests are iteratively removed and reinserted
from/into routes. In the literature, different operators for the removal
and insertion of requests are proposed. Examples of popular removal
and insertion operators are random removal, worst removal, greedy in-
sertion, deep greedy insertion, and regret insertion (Ropke and Pisinger,
2006; Vallée et al., 2017). A popular extension of LNS is adaptive
large neighborhood search (Ropke and Pisinger, 2006), which in each
iteration dynamically chooses from a set of different removal and
insertion operators.

In order to be able to schedule the visits to charging stations in the
E-ADARP, LNS is extended to a bilevel approach. The outer level (Sec-
tion 4.1) sets and modifies charging sessions of vehicles and removes
requests from affected routes. The inner level (Section 4.2) inserts
requests with help of a greedy insertion operator (Section 4.3) under
consideration of the charging sessions set by the outer level. Thus, at

the outer level charging sessions are fixed and at the inner level, the
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Fig. 1. Illustration of proposed approach for planning routes of three EVs.
equests are arranged around the charging sessions. It can be expected
hat the initial setting of the charging sessions is far from being optimal.
owever, iteratively the charging sessions are improved by applying
odifications to them. Since these modifications are small/local, the

nner level does not have to start from scratch in each iteration of the
uter level. Fig. 1 exemplary illustrates the proposed approach for
lanning routes of three EVs. In the shown example, the outer level
odifies the route of the second EV.

One might argue that the proposed approach wastes too much time
f the search with arranging requests around suboptimal charging ses-
ions. An alternative approach would be to combine the (re-)insertion
f requests with the setting of charging sessions. That means that the
harging sessions are not fixed before the insertion of requests, but
hat in the case that an insertion makes a route battery infeasible, it
s tried to make the route feasible by modifying/inserting charging
essions in the existing route. However, determining a charging session
etting, which makes the route feasible is time consuming. Thus, this
lternative approach wastes much time with setting/inserting charging
essions in routes with a suboptimal setting of requests. Furthermore,
ith an increasing number of requests in a route, the options for mod-

fying/inserting charging sessions in the route decreases. This makes
he alternative approach prone to getting stuck in a local optimum. The
roposed bilevel approach can be expected to be beneficial in terms of
better exploration of the search space.

In the following, the main components of the approach are de-
cribed in detail. In the explanation, it is assumed that in contrast to
he previous problem formulation, the charging stations can be visited
rbitrarily often. In Section 4.4, it is explained, how the approach can
e adapted if each charging station can be visited only once.

.1. Outer-level LNS

The outer-level LNS is responsible for setting the visits to charging
tations in the routes. Algorithm 1 outlines how the outer-level LNS
orks. It starts with empty routes, in which all vehicles directly drive

rom their start depot to their end depot. It then inserts in each vehicle’s
oute a prespecified number 𝐶 𝑖𝑛𝑖𝑡 of randomly generated charging
essions. Each charging session 𝑐 has the following parameters:

• a location 𝑐.𝑖 ∈  of the physical charging station to charge at,
• a charging duration 𝑐.𝑑, and
• a time window 𝑐.𝑤 = [𝑐.𝑙, 𝑐.𝑢] for the service time.

he physical charging station 𝑐.𝑖 is uniformly sampled from the set 
f available charging stations. The charging duration 𝑐.𝑑 is uniformly
andom chosen between zero and the time 𝑑𝑚𝑎𝑥 = 𝐵∕𝛼𝑐.𝑖 it takes to fully
harge a vehicle’s battery at the selected charging station. The lower
ound 𝑐.𝑙 of the time window is set to zero and the upper bound 𝑐.𝑢
s uniformly random chosen from the interval [𝑡2𝑁+𝑘,𝑐.𝑖, 𝑇 − 𝑡𝑐.𝑖,2𝑁+𝐾+𝑘],
here 𝑘 is the vehicle in whose route the charging session is inserted.

n each route, the charging sessions are inserted between the start and
nd depot in increasing order of their time window upper bound 𝑐.𝑢.
5

Algorithm 1: Outer-level LNS.
Input: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
Output: routes 𝑟𝑡∗

Parameter: 𝐶 𝑖𝑛𝑖𝑡, 𝐼 , 𝑝𝑚𝑜𝑑 , 𝑝𝑟𝑒𝑚
1 𝑟𝑡∗ = empty_routes();
2 𝑟𝑡∗ = insert_random_cs(𝑟𝑡∗, 𝐶 𝑖𝑛𝑖𝑡);
3 𝑟𝑡∗, 𝑟𝑒𝑗_𝑟𝑒𝑞∗ = inner_LNS(𝑟𝑡∗, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝐼);
4 𝑜∗ = obj(𝑟𝑡∗);
5 while termination condition not met do
6 𝑟𝑡 = 𝑟𝑡∗;
7 𝑟𝑒𝑗_𝑟𝑒𝑞 = 𝑟𝑒𝑗_𝑟𝑒𝑞∗;
8 𝑝 = rand(0,1);
9 if 𝑝 ≤ 𝑝𝑚𝑜𝑑 and at least one 𝑐 in 𝑟𝑡 then
10 modify random 𝑐 in 𝑟𝑡;
11 𝑉 = vehicle in whose route 𝑐 was modified;
12 else if 𝑝 ≤ 𝑝𝑚𝑜𝑑 + 𝑝𝑟𝑒𝑚 and at least one 𝑐 in 𝑟𝑡 then
13 remove random 𝑐 from 𝑟𝑡;
14 𝑉 = vehicle from whose route 𝑐 was removed;
15 else
16 insert random 𝑐 in 𝑟𝑡;
17 𝑉 = vehicle in whose route 𝑐 was inserted;
18 end
19 𝑟𝑡[𝑉 ], 𝑟𝑒𝑞 = remove_requests(𝑟[𝑉 ]);
20 𝑟𝑒𝑗_𝑟𝑒𝑞 = 𝑟𝑒𝑗_𝑟𝑒𝑞 ∪ 𝑟𝑒𝑞;
21 𝑟𝑡, 𝑟𝑒𝑗_𝑟𝑒𝑞 = inner_LNS(𝑟𝑡, 𝑟𝑒𝑗_𝑟𝑒𝑞, 𝐼);
22 𝑜 = obj(𝑟𝑡);
23 if (|𝑟𝑒𝑗_𝑟𝑒𝑞∗| > 0 and |𝑟𝑒𝑗_𝑟𝑒𝑞| ≤ |𝑟𝑒𝑗_𝑟𝑒𝑞∗|) or

(|𝑟𝑒𝑗_𝑟𝑒𝑞∗| == |𝑟𝑒𝑗_𝑟𝑒𝑞| == 0 and 𝑜 ≤ 𝑜∗) then
24 𝑟𝑡∗ = 𝑟𝑡;
25 𝑜∗ = 𝑜;
26 𝑟𝑒𝑗_𝑟𝑒𝑞∗ = 𝑟𝑒𝑗_𝑟𝑒𝑞;
27 end
28 end
29 return 𝑟𝑡∗;

After initializing the routes, the inner-level LNS is then run for
a prespecified number 𝐼 of iterations in order to insert the requests
(i.e., the corresponding pick-up and drop-off locations) in the routes.
The resulting routes are stored as currently best routes 𝑟𝑡∗. They might
violate the constraint that all requests have to be served, because the
inner-level LNS was possibly not able to insert all requests without
violating time, load or battery constraints. The requests, which could
not be inserted are stored as the currently best set of rejected requests
𝑟𝑒𝑗_𝑟𝑒𝑞∗ and the objective value of 𝑟𝑡∗ is stored as the currently best
objective value 𝑜∗.

In order to improve the currently best routes (i.e., increase the num-
ber of served requests and/or improve the objective function value), the
following procedure is repeated until a termination condition (e.g., a

maximum number of iterations, a time limit, or a threshold for the
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solution quality) is met: A copy 𝑟𝑡 of the currently best routes 𝑟𝑡∗ and
copy 𝑟𝑒𝑗_𝑟𝑒𝑞 of the currently best set of rejected requests 𝑟𝑒𝑗_𝑟𝑒𝑞∗ is

made and the charging sessions in 𝑟𝑡 are varied by one of the following
variation operators:

• Charging session modification 𝑚𝑜𝑑,
• Charging session insertion 𝑖𝑛𝑠, or
• Charging session removal 𝑟𝑒𝑚.

The 𝑚𝑜𝑑 operator randomly selects a charging session from 𝑟𝑡 and
emoves it together with all pick-up and drop-off locations from the
orresponding route. Then, it inserts a new random charging session
n the route at a position which ensures that the charging sessions
n the route are still sorted in increasing order of their upper time
indow bounds. The 𝑖𝑛𝑠 operator randomly selects a route, removes

he pick-up and drop-off locations from it and inserts a new random
harging session in the route (preserving the correct order of the charg-
ng sessions). The 𝑟𝑒𝑚 operator works like the 𝑚𝑜𝑑 operator without
nsertion of a new charging session. If 𝑟𝑡 does not contain any charging
ession, the 𝑖𝑛𝑠 operator is selected as variation operator. Otherwise,
he used operator is randomly selected with different probabilities 𝑝𝑚𝑜𝑑 ,
𝑝𝑖𝑛𝑠, 𝑝𝑟𝑒𝑚, respectively, for the different operators. The requests, which
were removed from 𝑟𝑡 by the variation operator, are added to the set
of rejected requests 𝑟𝑒𝑗_𝑟𝑒𝑞.

Then, 𝐼 iterations of the inner-level LNS are executed on 𝑟𝑡 in order
to try to insert the requests 𝑟𝑒𝑗_𝑟𝑒𝑞. If the resulting routes 𝑟𝑡 serve at
least as many requests as 𝑟𝑡∗ and one of the following conditions holds:

• 𝑟𝑡∗ does not serve all requests, or
• 𝑟𝑡∗ serves all requests and the objective value 𝑜 of 𝑟𝑡 is less or

equal the objective value 𝑜∗ of 𝑟𝑡∗,

then 𝑟𝑡 is stored as new currently best routes 𝑟𝑡∗ and otherwise it is
rejected.

4.2. Inner-level LNS

The inner-level LNS works as outlined in Algorithm 2. It takes
existing routes and a set of requests to insert as input and first tries to
insert the requests with help of an insertion operator. Then it tries to
improve the resulting routes 𝑟𝑡∗ by iteratively (re-)inserting requests.
In each iteration, it removes 𝑄𝑜𝑢𝑡 randomly selected requests from the
currently best routes and tries to insert 𝑄𝑖𝑛 randomly selected unserved
requests with help of the insertion operator. Similar to the outer-level
LNS, if the resulting routes are at least as good as the currently best
routes in terms of the number of served requests and/or the objective
value, they are accepted as new currently best routes and otherwise
they are rejected.

As long as not all requests are served in the currently best routes
𝑟𝑡∗, 𝑄𝑖𝑛 is set to a larger value than 𝑄𝑜𝑢𝑡 in order to try to increase the
number of served requests. After a solution, which serves all requests,
is found, 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 are both set to the same value 𝑄.

4.3. Insertion operator

For the actual insertion of requests, a greedy operator is used. Its
working is outlined in Algorithm 4 in Appendix A. It takes as input
existing routes and a series of requests to insert and tries to insert each
of these requests in the given order. For each request, it traverses the
current routes and determines all combinations of positions where the
corresponding pick-up and drop-off locations can be inserted without
violating constraints. If at least one such combination exists, the pick-up
and drop-off locations are inserted at the positions of the combination
which results in the lowest increase of the objective function value and
otherwise, the request is not inserted. In order to reduce the risk of
getting stuck in a local optimum, random noise is added to the increases
of the objective function values associated to the different position
combinations, as proposed by Ropke and Pisinger (2006).
6

Algorithm 2: Inner-level LNS.
Input: routes 𝑟𝑡, 𝑛𝑒𝑤_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝐼
Output: routes 𝑟𝑡∗, rejected requests 𝑟𝑒𝑗_𝑟𝑒𝑞∗
Parameter: 𝑄𝑖𝑛, 𝑄𝑜𝑢𝑡, 𝑄

1 𝑟𝑡∗, 𝑟𝑒𝑗_𝑟𝑒𝑞∗ = insertion_operator(𝑟𝑡, 𝑛𝑒𝑤_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠);
2 𝑜∗ = obj(𝑟𝑡∗);
3 i = 0;
4 while 𝑖 < 𝐼 do
5 if |𝑟𝑒𝑗_𝑟𝑒𝑞∗| == 0 then
6 𝑄𝑖𝑛 = 𝑄;
7 𝑄𝑜𝑢𝑡 = 𝑄;
8 end
9 𝑟𝑡 = 𝑟𝑡∗;
10 𝑟𝑒𝑗_𝑟𝑒𝑞 = 𝑟𝑒𝑗_𝑟𝑒𝑞∗;
11 𝑟𝑡, 𝑟𝑒𝑞 = remove_requests(𝑟𝑡, 𝑄𝑜𝑢𝑡);
12 𝑟𝑒𝑗_𝑟𝑒𝑞 = 𝑟𝑒𝑗_𝑟𝑒𝑞 ∪ 𝑟𝑒𝑞;
13 𝑟𝑒𝑞 = select_requests_to_insert(𝑟𝑒𝑗_𝑟𝑒𝑞, 𝑄𝑖𝑛);
14 𝑟𝑡, 𝑟𝑒𝑗_𝑟𝑒𝑞 = insertion_operator(𝑟𝑡, 𝑟𝑒𝑞);
15 𝑜 = obj(𝑟𝑡);
16 if (|𝑟𝑒𝑗_𝑟𝑒𝑞∗| > 0 and |𝑟𝑒𝑗_𝑟𝑒𝑞| ≤ |𝑟𝑒𝑗_𝑟𝑒𝑞∗|) or

(|𝑟𝑒𝑗_𝑟𝑒𝑞∗| == |𝑟𝑒𝑗_𝑟𝑒𝑞| == 0 and 𝑜 ≤ 𝑜∗) then
17 𝑟𝑡∗ = 𝑟𝑡;
18 𝑜∗ = 𝑜;
19 𝑟𝑒𝑗_𝑟𝑒𝑞∗ = 𝑟𝑒𝑗_𝑟𝑒𝑞;
20 end
21 i++;
22 end
23 return 𝑟𝑡∗, 𝑟𝑒𝑗_𝑟𝑒𝑞∗;

When checking the feasibility of a route (lines 12 and 15 in Algo-
rithm 4), charging sessions are taken into account as follows: For each
charging session 𝑐 in the route, it is assumed that the charging takes
place at position 𝑐.𝑖 with a charging speed of 𝛼𝑐.𝑖. It is checked that
the time window 𝑐.𝑤 is satisfied and that the station is not visited with
a passenger on board. It is assumed that the vehicle charges for 𝑐.𝑑
time units after arriving at the station and thus, the service time of the
charging session is the arrival time plus 𝑐.𝑑.

Without the maximum ride time constraint and the excess ride time
n the objective function, it would be sufficient to set the service times
f all other locations to their corresponding arrival times. However,
ith the given problem formulation it might be beneficial to reduce the
assenger ride times by delaying the services at pick-up locations. In
rder to check whether a given route, which satisfies the time window
onstraint, also satisfies the ride time constraint, the 8-step approach
ased on forward time slacks as described by Cordeau and Laporte
2003) is used. It shifts the services at the pick-up locations to the
atest possible points in time without violation of the time window
onstraint and without an increase in the violation of the ride time
onstraint. Then it checks whether the ride time constraint is satisfied
ith the given service times. The same approach is used to delay the

ervice times before computing the objective function value. It has to
e noted that while this approach typically reduces the excess ride time
ompared to setting the service times at pick-ups to the earliest possible
oints in time, it cannot guarantee an optimal excess ride time.

.4. Adaption to handle limited charging station visits

If a charging station 𝑖 ∈  can be visited only once, the outer-
level LNS, described in Section 4.1, has to be adapted. The following
approach is used to deal with the constraint of limited CS visits: The
initialization of the routes with charging sessions (insert_random_cs in
line 2 of Algorithm 1) is done as outlined in Algorithm 3. Lines 5 and

7 ensure that a different charging station location is chosen in each
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Algorithm 3: Initialization of routes with charging sessions
under consideration of constraint of limited charging station
visits.

Input: 𝑟𝑜𝑢𝑡𝑒𝑠, 𝐶 𝑖𝑛𝑖𝑡

Output: 𝑟𝑜𝑢𝑡𝑒𝑠
1 𝑛 = 0;
2 for each vehicle 𝑘 ∈  do
3 for 𝑗 = 1,…𝐶 𝑖𝑛𝑖𝑡 do
4 if 𝑛 < 𝐶 then
5 𝑛 = 𝑛 + 1;
6 𝑐 = new_charging_session();
7 𝑐.𝑖 = 2𝑁 + 2𝐾 + 𝑛;

// Randomly initialize remaining
parameters of c

8 𝑐 = init(𝑐);
9 insert 𝑐 in 𝑟𝑜𝑢𝑡𝑒𝑠[𝑘];
10 end
11 end
12 end
13 return 𝑟𝑜𝑢𝑡𝑒𝑠;

iteration of the inner loop and if all available locations are already
in use, the condition in the if-statement in line 4 evaluates to false
and no further charging sessions are initialized/inserted. Besides the
insertion operator, the variation operators are adapted as follows: The
𝑚𝑜𝑑 variation operator inserts a new charging session with the same
physical charging station 𝑖 ∈  as the previously removed charging
ession. The 𝑖𝑛𝑠 operator takes care that the physical charging station

of the inserted charging session is not already in the routes. If all
physical charging stations are used in the routes, the 𝑚𝑜𝑑 operator is
used instead of the 𝑖𝑛𝑠 operator.

5. Numerical experiments

All experiments with BI-LNS are executed on a 3.8 GHz Intel Core
i5-7600K quad-core CPU with 15.6 GB RAM using a single-threaded
C/C++ implementation of BI-LNS. In the inner-level LNS of BI-LNS, 𝑄𝑖𝑛

and 𝑄𝑜𝑢𝑡 (the number of inserted and removed requests, respectively,
before a feasible solution is found) are set to two and one, respectively.
The requests are initially sorted in increasing order of the lower bound
of their pick-up time windows. That means, the greedy insertion op-
erator processes the requests in this order, when it is called for the
first time. In the greedy insertion operator, a random noise between
−1% and +1% is added to the objective function values. The setting of
further parameters of BI-LNS is discussed in Section 5.2.

5.1. Problem instances

In order to evaluate the proposed BI-LNS approach, experiments are
executed on three sets of benchmark instances.12 The first set consists
of extensions of 14 problem instances introduced by Cordeau (2006)
with up to five vehicles and 50 requests. The pick-up and drop-off
locations are set in the square [−10,−10] × [10, 10] and the travel times
between locations in minutes equal the Euclidean distances between
the locations. All start and end depots are located at the center of
the square. The maximum ride time 𝑆 is set to 30 min. Each vehicle
has a load capacity of three passengers and there is one passenger per

1 The extended Cordeau instances were made publicly available by Bongio-
anni et al. under https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_
rchive.zip.

2 The extended Ropke instances and large instances are available under
ttps://github.com/HRI-EU/e_adarp_material.
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request. The service durations are set to three minutes for all pick-up
and drop-off locations. The second set of benchmark instances consists
of extensions of 10 instances introduced by Ropke et al. (2007). They
are generated similar to the Cordeau instances but contain up to 8
vehicles and 96 requests. The third benchmark instance set consists
of five large instances with up to 260 vehicles and 5200 requests,
which were generated by ourselves similar to the Cordeau and Ropke
instances. In the Cordeau and Ropke instances, the largest planning
horizon 𝑇 is 720 min and there are up to 12 requests per vehicle.
In the large instances, the planning horizon is set to 1200 min and
there are 20 requests per vehicle. The problem instances of all three
sets are extended as described by Bongiovanni et al. (2019): Three
charging stations are added: One at the center of the square, one at
the position (−4,−4), and one at the position (4, 4). It is assumed that
a vehicle consumes and charges 0.055 kWh of energy per minute of
ride and charging time, respectively. The maximum battery capacity
𝐵 is set to 14.85 kWh. The weights in the objective function (1) are
set to 𝑤1 = 0.75 and 𝑤2 = 0.25. The naming scheme of all benchmark
instances is a𝐾 − 𝑁 , where 𝐾 is the number of vehicles and 𝑁 is the
number of requests considered in the instance.

5.2. Parameter tuning and sensitivity analysis

In this section, the setting of the BI-LNS parameters 𝐼 (number of
inner-level LNS iterations), 𝑄 (number of reinsertions per iteration of
the inner-level LNS after a feasible solution was found), 𝑝𝑚𝑜𝑑 , 𝑝𝑖𝑛𝑠, and
𝑝𝑟𝑒𝑚 (probabilities of the variation operators at the outer level) is dis-
cussed. In order to determine reasonable settings of the parameters, ten
tuning problem instances are generated, on which different parameter
settings are evaluated. The tuning instances are generated analogously
to the problem instances discussed in Section 5.1. For each instance, the
number 𝐾 of vehicles is chosen randomly between 2 and 8, the number
of requests per vehicle is chosen randomly from {8, 10, 12}, the mini-
mum final battery capacity ratio 𝑟 is chosen randomly from [0.35, 0.75),
and the planning horizon 𝑇 is set to 720 min. The characteristics of the
resulting tuning instances are provided in Appendix C.

It can be considered reasonable to set the probability 𝑝𝑖𝑛𝑠 of inser-
ion of a charging session equal to the probability 𝑝𝑟𝑒𝑚 of removal of
charging session. Thus, only the probability 𝑝𝑚𝑜𝑑 of modification of

a charging session is tuned and the remaining probabilities are set to
𝑝𝑖𝑛𝑠 = 𝑝𝑟𝑒𝑚 = (1−𝑝𝑚𝑜𝑑 )∕2. In order to determine a good starting point for
a sensitivity analysis, 100 iterations of random search are executed. In
each iteration, a random parameter combination is generated, where 𝐼
is chosen from {1000,… , 20000}, 𝑄 is chosen from {2,… , 20}, and 𝑝𝑚𝑜𝑑
is chosen from [0.5, 1). Then, BI-LNS is run with the resulting parameter
combination on the ten tuning instances. Per instance, a time limit of
5 min is set. Furthermore, no limit for the number of visits of a physical
charging station is set, and the initial number 𝐶 𝑖𝑛𝑖𝑡 of charging sessions
per vehicle to is set to 1. With all of the 100 evaluated parameter
combinations, BI-LNS was able to find feasible solutions for all tuning
instances. Fig. 2 shows the evaluated parameter combinations and the
resulting mean objective values over the 10 tuning instances. The best
parameter combinations found are located in an area with low values
for 𝐼 and high values for 𝑄. The combination with 𝐼 = 1792, 𝑄 = 19,
and 𝑝𝑚𝑜𝑑 = 0.54 yielded the best mean objective of 556.27. Thus, the
parameter setting 𝐼 = 1800, 𝑄 = 19, 𝑝𝑚𝑜𝑑 = 0.55 is used as default
setting for a sensitivity analysis.

In the sensitivity analysis, one parameter is varied at a time while
keeping the other parameters to their default values. Again, each of the
resulting parameter combinations is evaluated on the tuning instances
with a time limit of 5 min per instance, with 𝐶 𝑖𝑛𝑖𝑡 = 1, and with
unlimited visits of charging stations. The results are shown in Tables 2,
3, and 4. One can see that beginning with a value of around 4800,
the results deteriorate with an increasing value if 𝐼 . For 𝑄 and 𝑝𝑚𝑜𝑑 ,
no clear trend can be observed. Thus, the results indicate that the

sensitivity of the BI-LNS regarding the setting of these parameters is

https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip
https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip
https://github.com/HRI-EU/e_adarp_material
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Table 2
Mean objective over the ten tuning instances resulting from different settings of 𝐼 with 𝑄 = 19 and 𝑝𝑚𝑜𝑑 = 0.55.
𝐼 800 1800 2800 3800 4800 5800 6800 7800 8800 9800 10,800
Mean Obj 554.21 559.97 559.29 558.23 561.11 560.58 561.21 562.40 564.69 564.89 563.23
Table 3
Mean objective over the ten tuning instances resulting from different settings of 𝑄 with 𝐼 = 1800 and 𝑝𝑚𝑜𝑑 = 0.55.
𝑄 5 7 9 11 13 15 17 19
Mean Obj 559.82 556.89 557.19 557.70 558.54 557.43 558.60 559.97
Table 4
Mean objective over the ten tuning instances resulting from different settings of 𝑝𝑚𝑜𝑑 with 𝐼 = 1800 and 𝑄 = 19.
𝑝𝑚𝑜𝑑 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Mean Obj 557.96 557.49 559.97 557.02 556.55 555.92 557.16 558.95 557.63 555.74 556.25
Fig. 2. 100 parameter combinations evaluated by random search and the corresponding
mean objective over the tuning instances.

low. The best mean objective was obtained with the parameter setting
𝐼 = 800, 𝑄 = 19, and 𝑝𝑚𝑜𝑑 = 0.55. Thus, this setting is used for BI-LNS in
the experiments on the benchmark instances described in the following
sections.

5.3. Experimental setup

On the Cordeau and Ropke instances, the optimizations with BI-LNS
are run with two settings: In the first setting, it is assumed that each
physical charging station can be visited only once and the adaption
described in Section 4.4 is used. In the second setting, it is assumed
that the number of visits of physical charging stations is not limited.
On the large instances, only the second setting is used. For each used
setting and each problem instance, 10 trials with 10 different seeds are
executed. If not otherwise stated, a time limit of five minutes is set per
trial. The initial number 𝐶 𝑖𝑛𝑖𝑡 of charging sessions per vehicle is set to
one on the Cordeau and Ropke instances. On the large instances, it is set
to two since the planning horizon is larger and there are more requests
per vehicle.

The results of BI-LNS are compared with the results of the exact
e-ADARP2 approach as reported by Bongiovanni et al. (2019) and
with the result of the DA heuristics as reported by Su et al. (2023).
Bongiovanni et al. (2019) executed the experiments with the exact e-
ADARP2 approach using version 7.0.1 of the Gurobi solver with a time
limit of 120 min per problem instance on a 3.6 GHz Intel Core CPU with
16 GB RAM. The results of the DA approach were computed by Su et al.
(2023) with a Julia 1.7.2 implementation with 50 trials per problem
instance and 10,000 iterations per trial on a 2.1 GHz Intel Xeon Gold
6230 Core CPU.
8

5.4. Experimental results

5.4.1. Results on Cordeau instances
Tables 5 and 6 show the results of e-ADARP2, DA, and BI-LNS

on the Cordeau instances with allowing only up to one visit to each
charging station. In Table 5, the results are shown for minimum final
battery capacity ratios of 𝑟 = 0.1 and 𝑟 = 0.4, and Table 6 shows the
results for 𝑟 = 0.7. For the e-ADARP2 approach, the runtimes (RT)
and final objective values are shown, for DA, the average runtimes
and minimum and average objective values over the 50 trials are
shown, and for BI-LNS, the minimum, mean, and maximum objective
values over all trials, which yielded a feasible solution, are shown.
Furthermore, for BI-LNS it is shown how many of the 10 trials yielded
a feasible solution. The runtime of the BI-LNS approach is not shown
since it is always five minutes per trial. Su et al. (2023) do not provide
a mean objective value for DA on problem instances where not all of
the 50 trials yielded a feasible solution. ‘‘NA’’ means that no feasible
solution was found and a ‘‘*’’ indicates that the result is proven optimal
according to Bongiovanni et al. (2019). As already described in (Su
et al., 2023), for some problem instances, the global optimum reported
in (Bongiovanni et al., 2019) is in fact not globally optimal. These
results of e-ADARP2 are marked with ‘‘**’’ in Tables 5 and 6. For most
of the corresponding problem instances, we were able to compute the
actual global optimum with an exact MILP formulation (see Appendix B
for more details). The corrected global optima are shown in brackets
behind the results of e-ADARP2.

As one can see, with 𝑟 = 0.1 and 𝑟 = 0.4, e-ADARP2 is very efficient.
DA is also able to find solutions of high quality. Both e-ADARP2 and
DA outperform BI-LNS on most problem instances. However, the gaps
between BI-LNS and e-ADARP are limited. For 𝑟 = 0.1, the highest
average gap is 0.81% (on a3-18) and the highest worst gap is 0.94% (on
a3-36). For 𝑟 = 0.4, the highest average gap is 0.99% (on a4-48) and
the highest worst gap is 1.62% (on a4-48). With 𝑟 = 0.7, the situation
changes compared to 𝑟 = 0.1 and 𝑟 = 0.4. The e-ADARP2 approach is no
longer able to find feasible solutions for all problem instances within
120 min. On 10 of the 14 Cordeau instances, DA finds feasible solutions
in all trials, while BI-LNS finds feasible solutions in all trials on 12
instances. On the smaller instances, BI-LNS is still outperformed by DA
and e-ADARP2, but on the larger problem instances, it is able find the
best solutions. A reason why BI-LNS is outperformed by the other two
approaches on smaller instances and instances with a low value for 𝑟
might be that e-ADARP2 and DA are better in fine-tuning solutions,
especially in terms of service times and charging durations. Thus,
they have an advantage in exploitation (finding local optima within
promising regions of the search space), while BI-LNS can be expected
to have an advantage in exploration (finding promising regions of the
search space). On easier instances, the exploitation is more important,
while on the harder instances, BI-LNS can benefit from the better
exploration.

For the case that multiple visits to a charging station are allowed, no
results of e-ADARP2 are provided in (Bongiovanni et al., 2019). With
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Table 5
Results on Cordeau instances with limited CS visits and 𝑟 = 0.1 and 𝑟 = 0.4.

Instance e-ADARP2 (Bongiovanni et al., 2019) DA (Su et al., 2023) BI-LNS Feasible

RT [min] Obj RT mean [min] Obj min Obj mean Obj min Obj mean Obj max

r = 0.1

a2–16 0.02 237.38* 0.65 237.38* 237.38* 238.20 238.20 238.20 10/10
a2–20 0.07 279.08* 1.23 279.08* 279.08* 281.00 281.00 281.00 10/10
a2–24 0.15 346.21* 2.68 346.21* 346.21* 346.21* 346.59 347.97 10/10
a3–18 0.08 236.82* 0.42 236.82* 236.82* 238.73 238.75 238.84 10/10
a3–24 0.23 274.80* 0.97 274.80* 274.80* 275.18 275.18 275.18 10/10
a3–30 1.70 413.27* 0.90 413.27* 413.27* 414.88 414.88 414.88 10/10
a3–36 1.78 481.17* 2.54 481.17* 481.17* 483.86 484.05 485.71 10/10
a4–16 0.06 222.49* 0.32 222.49* 222.49* 222.49* 222.49* 222.49* 10/10
a4–24 0.52 310.84* 0.49 310.84* 310.84* 311.48 311.48 311.48 10/10
a4–32 10.20 393.96* 0.87 393.96* 395.12 394.66 394.79 395.10 10/10
a4–40 8.62 453.84* 1.53 453.84* 459.42 456.93 457.08 457.84 10/10
a4–48 120 554.54 2.36 555.93 561.26 557.24 557.94 559.94 10/10
a5–40 19.03 414.51* 1.08 414.80 420.35 415.62 415.65 415.86 10/10
a5–50 120 559.17 2.29 561.41 570.58 560.07 560.66 562.14 10/10

r = 0.4

a2–16 0.03 237.38* 0.88 237.38* 237.38* 238.20 238.20 238.20 10/10
a2–20 0.83 280.70* 2.35 280.70* 280.70* 282.90 283.24 283.38 10/10
a2–24 0.42 348.04 (347.04)** 3.85 347.04* 347.04* 347.04* 349.67 350.84 10/10
a3–18 0.07 236.82* 0.44 236.82* 236.82* 238.73 238.73 238.83 10/10
a3–24 0.28 274.80* 1.13 274.80* 274.80* 275.58 275.58 275.58 10/10
a3–30 1.65 413.37 (413.34)** 1.48 413.34* 413.34* 415.51 415.75 416.06 10/10
a3–36 5.11 484.14** 2.63 483.06 483.86 485.98 487.42 489.81 10/10
a4–16 0.09 222.49* 0.32 222.49* 222.49* 222.49* 222.49* 222.49* 10/10
a4–24 0.66 311.03* 0.53 311.03* 311.65 311.48 311.48 311.48 10/10
a4–32 11.36 394.26* 1.05 394.26* 397.21 394.96 395.45 395.67 10/10
a4–40 6.96 453.84* 1.94 453.84* 459.46 457.01 457.39 457.92 10/10
a4–48 120 554.60 2.96 558.11 563.47 557.56 560.09 563.61 10/10
a5–40 20.35 414.51* 1.21 416.25 420.32 415.63 415.63 415.63 10/10
a5–50 120 560.50 2.71 567.54 574.56 560.41 562.55 565.30 10/10
Table 6
Results on Cordeau instances with limited CS visits and 𝑟 = 0.7.

Instance e-ADARP2 (Bongiovanni et al., 2019) DA (Su et al., 2023) BI-LNS Feasible

RT [min] Obj RT mean [min] Obj min Obj mean Obj min Obj mean Obj max

a2–16 0.09 240.66* 1.60 240.66* 240.66* 242.83 245.50 247.39 10/10
a2–20 120 NA 2.88 293.27 294.11 NA NA NA 0/10
a2–24 16.02 358.21 (353.18)** 3.44 353.18* - 356.99 363.04 368.96 10/10
a3–18 0.80 240.58* 0.97 240.58* 240.58* 242.49 246.13 250.30 10/10
a3–24 2.54 277.72 (275.97)** 2.06 275.97* 277.43 277.52 277.52 277.52 10/10
a3–30 120 NA 1.30 424.93 436.20 432.27 436.56 441.08 10/10
a3–36 120 494.04 2.09 494.04 502.27 496.75 500.84 502.32 10/10
a4–16 1.12 223.13* 0.52 223.13* 223.13* 223.13* 223.95 227.99 10/10
a4–24 30.58 318.21 (316.65)** 0.90 316.65* 318.31 319.37 321.10 324.19 10/10
a4–32 120 430.07 1.19 397.87 405.85 401.97 402.59 402.66 10/10
a4–40 120 NA 1.91 479.02 - 471.72 478.93 490.37 10/10
a4–48 120 NA 2.74 582.22 - 579.71 588.48 602.09 10/10
a5–40 120 447.63 1.63 424.26 436.94 420.20 423.88 428.17 10/10
a5–50 120 NA 2.64 603.24 - 593.71 602.30 612.16 9/10
Table 7
Results on Cordeau instances with unlimited CS visits and 𝑟 = 0.7.
Instance DA (Su et al., 2023) BI-LNS

RT mean [min] Obj min Obj mean Obj min Obj mean Obj max Feasible

a2–16 1.99 240.66 240.66 242.44 242.44 242.44 10/10
a2–20 5.27 286.32 288.89 290.33 291.23 293.18 10/10
a2–24 5.96 354.38 374.68 354.53 356.89 358.97 10/10
a3–18 1.10 238.82 238.82 241.95 242.46 243.04 10/10
a3–24 2.50 275.20 275.20 277.52 278.02 278.96 10/10
a3–30 2.85 415.71 417.07 419.16 426.30 433.20 10/10
a3–36 5.72 484.85 487.91 490.26 492.79 496.45 10/10
a4–16 0.52 222.49 222.49 222.49 223.57 225.06 10/10
a4–24 1.18 315.98 317.99 316.51 318.38 319.29 10/10
a4–32 2.06 394.94 401.82 396.64 397.98 400.26 10/10
a4–40 3.77 458.52 467.60 461.16 461.91 462.72 10/10
a4–48 6.72 568.08 575.96 568.01 570.80 575.03 10/10
a5–40 2.50 419.33 425.29 418.79 421.06 423.08 10/10
a5–50 5.88 579.15 588.98 571.37 575.49 579.58 10/10
9



Transportation Research Interdisciplinary Perspectives 21 (2023) 100876S. Limmer

v
B
w
r
D
i
O
c
t
p

w
n
i
l
r
C
a
a
𝑟
w
e
O
f
t
v
l
o
s
a
𝑟
i

Table 8
Statistics to BI-LNS optimizations on Cordeau instances with 𝑟 = 0.4 and 𝑟 = 0.7: Total number 𝐼 𝑡𝑜𝑡𝑎𝑙 of outer-level iterations, first outer-level iteration 𝐼𝑓𝑒𝑎𝑠 yielding
a feasible solution, last outer-level iteration 𝐼 𝑙𝑎𝑠𝑡 yielding an improvement, and time 𝑇 𝑙𝑎𝑠𝑡 of last improvement. The values are averaged over all trials, which
yielded a feasible solution.

Instance Limited CS visits Unlimited CS visits

𝐼 𝑡𝑜𝑡𝑎𝑙 𝐼𝑓𝑒𝑎𝑠 𝐼 𝑙𝑎𝑠𝑡 𝑇 𝑙𝑎𝑠𝑡 [min] 𝐼 𝑡𝑜𝑡𝑎𝑙 𝐼𝑓𝑒𝑎𝑠 𝐼 𝑙𝑎𝑠𝑡 𝑇 𝑙𝑎𝑠𝑡 [min]

r=0.4

a2–16 13730 5 925 0.35 13440 7 1244 0.44
a2–20 7679 4 2958 1.87 8423 3 4706 2.85
a2–24 12648 34 5302 2.04 10013 71 3372 1.68
a3–18 5248 4 449 0.40 5479 4 199 0.18
a3–24 2941 3 906 1.53 2930 4 482 0.76
a3–30 9177 7 4395 2.49 9025 10 943 0.47
a3–36 6491 30 2685 2.12 4500 45 2429 2.52
a4–16 6681 3 429 0.32 6483 7 1942 1.49
a4–24 3218 1 801 1.24 3230 4 879 1.35
a4–32 2288 4 837 1.83 2304 3 1346 2.88
a4–40 1862 2 760 2.03 1791 3 694 1.92
a4–48 1858 3 1316 3.24 1960 2 938 2.45
a5–40 1256 1 136 0.54 1258 2 114 0.44
a5–50 1348 1 377 1.34 1303 2 642 2.40

r=0.7

a2–16 39385 326 4818 0.57 37193 167 6637 0.92
a2–20 NA NA NA NA 20224 1806 11358 2.50
a2–24 43320 2668 7566 0.87 16292 461 11158 3.12
a3–18 22488 77 4627 0.97 16328 76 7041 1.91
a3–24 8656 14 2151 1.07 9365 30 4075 1.93
a3–30 37594 2047 13183 1.99 12178 478 6206 2.44
a3–36 16364 153 5427 1.56 8935 74 3731 2.07
a4–16 13596 7 5523 2.08 11988 10 5720 2.38
a4–24 13133 46 5328 2.18 11541 56 4965 2.37
a4–32 18876 323 2430 0.60 7496 65 5734 3.75
a4–40 15751 194 2145 0.63 3770 76 2573 3.28
a4–48 17202 1546 10220 2.75 3197 60 2526 3.80
a5–40 7279 28 3690 2.70 2866 23 1525 2.62
a5–50 24827 3359 11348 2.17 3047 130 2233 3.45
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𝑟 = 0.4, the results of DA and BI-LNS on the Cordeau instances are
ery similar to the results with limited CS visits. The same holds for
I-LNS for 𝑟 = 0.1 (there are no results of DA on Cordeau instances
ith unlimited CS visits with 𝑟 = 0.1 in (Su et al., 2023)). The detailed

esults with 𝑟 = 0.4 and 𝑟 = 0.1 can be found in Tables D.18 and
.19 in the appendix. The results of DA and BI-LNS on the Cordeau

nstances with 𝑟 = 0.7 and unlimited CS visits are shown in Table 7.
n most problem instances the results of both approaches are better
ompared to the results with limited CS visits in Table 6. Again, on
he smaller instances, DA outperforms BI-LNS, but on the five largest
roblem instances, BI-LNS yields better average results.

In order to gain more insights into the optimizations with BI-LNS,
e recorded different statistics to the optimization runs: The total
umber 𝐼 𝑡𝑜𝑡𝑎𝑙 of executed iterations at the outer level, the outer-level
teration 𝐼𝑓𝑒𝑎𝑠 in which the first feasible solution was found, the outer-
evel iteration 𝐼 𝑙𝑎𝑠𝑡 in which the last improvement was found, and the
untime 𝑇 𝑙𝑎𝑠𝑡 until the last improvement was found. The statistics on the
ordeau instances with 𝑟 = 0.1 are shown in Table D.20 in the appendix
nd for 𝑟 = 0.4 and 𝑟 = 0.7 in Table 8. The statistics are averaged over
ll trials, which yielded a feasible solution. With limited CS visits and
= 0.4, between 1000 and 14,000 outer-level iterations are executed
ithin the time limit of five minutes. Not surprisingly, the number of
xecuted iterations tends to decrease with an increasing problem size.
nly a small number of outer-level iterations are necessary to find a

easible solution and it typically takes notably less than 5 min to find
he final solution. With unlimited CS visits and 𝑟 = 0.4 the statistics are
ery similar to those with limited CS visits and 𝑟 = 0.4. With 𝑟 = 0.7 and
imited CS visits, it is harder to find a feasible solution. This does not
nly result in higher values for 𝐼𝑓𝑒𝑎𝑠 but also in higher values for 𝐼 𝑡𝑜𝑡𝑎𝑙

ince at the inner level only a small number of requests are reinserted
s long as no feasible solution is found. With unlimited CS visits and
= 0.7 the first feasible solution is typically found early and the last

mprovement later compared to limited CS visits and 𝑟 = 0.7.
10
5.4.2. Results on Ropke instances
The results with DA and BI-LNS on the Ropke instances with limited

charging station visits and 𝑟 = 0.4 are shown in Table 9. It can be
seen that BI-LNS clearly outperforms DA on these instances. In all trials
with BI-LNS, a feasible solution is found, while DA is not able to find
a feasible solution for the a8-96 instance in 50 trials. On six of the
10 problem instances, the average result of BI-LNS is better than the
best result of DA. Furthermore, compared to the Cordeau instances, the
runtime of DA is notably higher and often more than the five minute
runtime of BI-LNS. The results with limited CS visits and 𝑟 = 0.7 are
hown in Table 10. Su et al. (2023) state that DA was not able to solve
ny of the Ropke instances with limited CS visits and a high energy
estriction of 𝑟 = 0.7. BI-LNS is also not able to solve the instances with
2 requests per vehicle. However, for four of the six other instances it
ielded a feasible solution in all trials and on the a6-60 instance nine
f the 10 trials yielded a feasible solution.

The results on the Ropke instances with unlimited CS visits and
= 0.4 and 𝑟 = 0.7, are shown in Tables 11 and 12, respectively.

oth DA and BI-LNS find feasible solutions in all trials on all problem
nstances. For most problem instances, BI-LNS finds better solutions
han DA and on all problem instances, the worst result of BI-LNS is
etter than the average result of DA.

Thus, while DA outperforms BI-LNS on most of the Cordeau in-
tances, it cannot compete with BI-LNS on the larger Ropke instances.
his demonstrates the good scalability of BI-LNS.

Analogous to the Cordeau instances, we collected statistics to the
I-LNS optimizations on the Ropke instances. The statistics can be seen

n Table 13. A comparison between the statistics with 𝑟 = 0.4 and 𝑟 = 0.7
nd with and without limitation of CS visits shows the same trend as on
he Cordeau instances. The number of executed outer-level iterations
s typically lower and the time of the last improvement is typically
igher compared to the Cordeau instances. Especially with 𝑟 = 0.7 and
nlimited CS visits, the average time of the last improvement is near
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Table 9
Results on Ropke instances with limited CS visits and 𝑟 = 0.4.
Instance DA (Su et al., 2023) BI-LNS

RT mean [min] Obj min Obj mean Obj min Obj mean Obj max Feasible

a5–60 4.89 697.97 718.44 688.16 693.43 696.81 10/10
a6–48 4.29 506.91 514.46 506.85 507.43 509.31 10/10
a6–60 2.89 694.78 706.07 692.69 695.13 699.78 10/10
a6–72 5.83 799.60 821.17 771.97 778.30 784.30 10/10
a7–56 1.67 613.66 624.40 614.58 616.02 618.34 10/10
a7–70 4.56 766.05 784.54 761.62 765.71 769.13 10/10
a7–84 9.74 932.12 - 886.19 891.04 896.35 10/10
a8–64 10.69 638.36 652.30 637.95 640.41 643.17 10/10
a8–80 7.47 811.19 833.05 793.17 798.41 804.88 10/10
a8–96 10.29 NA - 1048.72 1057.47 1068.40 10/10
Table 10
Results on Ropke instances with limited CS visits and 𝑟 = 0.7.
Instance DA (Su et al., 2023) BI-LNS

Obj min Obj min Obj mean Obj max Feasible

a5–60 NA NA NA NA 0/10
a6–48 NA 519.55 522.50 528.81 10/10
a6–60 NA 733.45 742.02 754.03 9/10
a6–72 NA NA NA NA 0/10
a7–56 NA 649.11 669.71 687.20 10/10
a7–70 NA NA NA NA 0/10
a7–84 NA NA NA NA 0/10
a8–64 NA 646.82 652.38 662.67 10/10
a8–80 NA 854.85 863.74 876.91 10/10
a8–96 NA NA NA NA 0/10
Table 11
Results on Ropke instances with unlimited CS visits and 𝑟 = 0.4.
Instance DA (Su et al., 2023) BI-LNS

RT mean [min] Obj min Obj mean Obj min Obj mean Obj max Feasible

a5–60 4.75 691.72 709.78 685.68 689.42 693.28 10/10
a6–48 4.26 507.25 514.64 506.85 507.30 508.29 10/10
a6–60 2.90 692.83 701.86 692.25 693.68 696.44 10/10
a6–72 5.71 781.22 801.86 774.38 778.84 783.39 10/10
a7–56 1.65 615.74 623.51 614.58 615.40 616.31 10/10
a7–70 4.56 761.58 778.04 762.78 764.51 767.59 10/10
a7–84 7.61 896.91 916.23 884.94 890.81 896.54 10/10
a8–64 11.99 637.84 652.17 637.95 640.30 643.87 10/10
a8–80 7.52 813.16 829.92 794.38 797.08 800.00 10/10
a8–96 9.41 1058.41 1090.04 1048.45 1053.35 1059.35 10/10
Table 12
Results on Ropke instances with unlimited CS visits and 𝑟 = 0.7.
Instance DA (Su et al., 2023) BI-LNS

RT mean [min] Obj min Obj mean Obj min Obj mean Obj max Feasible

a5–60 8.21 708.54 723.73 697.87 709.11 719.19 10/10
a6–48 8.07 509.76 525.10 511.04 514.53 517.13 10/10
a6–60 4.83 697.57 711.52 699.70 705.56 714.29 10/10
a6–72 9.57 796.19 826.48 788.34 801.80 812.75 10/10
a7–56 3.53 625.91 641.82 627.34 633.38 636.99 10/10
a7–70 8.00 781.56 800.35 777.69 785.49 793.49 10/10
a7–84 11.75 915.61 938.49 900.98 916.93 925.47 10/10
a8–64 21.50 649.93 668.48 645.62 648.60 654.84 10/10
a8–80 12.41 843.26 865.90 815.06 825.74 838.01 10/10
a8–96 13.45 1097.76 1136.43 1072.77 1091.06 1117.57 10/10
to the time limit of 5 min for multiple problem instances. Hence, one
can expect that with this setting BI-LNS could profit from a higher time
limit.

The best result of BI-LNS for the a8-80 instance with limited CS
visits and 𝑟 = 0.7 is illustrated in Fig. 3. Shown are for each vehicle,
he number of served requests, the driving time, the amount of charged
nergy and the driving/charging schedule. In this result, the excess ride
ime is 304.67 min and the total driving time of vehicles is 1038.25 min,
ielding an objective value of 854.85. Since each charging station can
11

e visited only once, only three vehicles charge. It can be seen that
these vehicles have two to three times higher driving times than the
vehicles that do not charge and that they serve more than half of
the requests. The vehicles that do not charge are idle for most of
the planning horizon. For comparison, Fig. 4 illustrates the best result
with unlimited CS visits. In this result, the excess ride time reduces to
279.75 min and the total vehicles’ driving time reduces to 993.50 min,
resulting in an objective value of 815.06. The requests are more equally
distributed over the vehicles compared to the result with limited CS

visits. Vehicle 1 has only a short charging session at the end depot after
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Table 13
Statistics to BI-LNS optimizations on Ropke instances: Total number 𝐼 𝑡𝑜𝑡𝑎𝑙 of outer-level iterations, first outer-level iteration 𝐼𝑓𝑒𝑎𝑠 yielding a feasible
solution, last outer-level iteration 𝐼 𝑙𝑎𝑠𝑡 yielding an improvement, and time 𝑇 𝑙𝑎𝑠𝑡 of last improvement. The values are averaged over all trials, which
yielded a feasible solution.

Instance Limited CS visits Unlimited CS visits

𝐼 𝑡𝑜𝑡𝑎𝑙 𝐼𝑓𝑒𝑎𝑠 𝐼 𝑙𝑎𝑠𝑡 𝑇 𝑙𝑎𝑠𝑡 [min] 𝐼 𝑡𝑜𝑡𝑎𝑙 𝐼𝑓𝑒𝑎𝑠 𝐼 𝑙𝑎𝑠𝑡 𝑇 𝑙𝑎𝑠𝑡 [min]

r=0.4

a5–60 2492 7 1084 2.37 2380 7 1257 3.11
a6–48 972 1 333 1.69 990 4 341 1.65
a6–60 1216 2 295 1.18 1234 3 610 2.60
a6–72 1603 6 893 2.67 1547 2 873 2.74
a7–56 876 1 420 2.37 894 2 470 2.62
a7–70 789 1 287 1.81 786 2 459 2.89
a7–84 1333 5 732 2.80 1166 1 568 2.49
a8–64 671 1 289 2.12 673 2 333 2.42
a8–80 520 1 178 1.72 507 1 283 2.78
a8–96 1406 7 767 2.88 1048 1 853 3.97

r=0.7

a5–60 NA NA NA NA 3156 162 2710 4.15
a6–48 10508 115 3028 1.41 2860 42 2133 3.26
a6–60 22883 8034 17043 3.34 2646 45 2266 4.10
a6–72 NA NA NA NA 2406 91 1744 3.52
a7–56 20946 4518 12795 2.86 2554 24 1607 2.77
a7–70 NA NA NA NA 1928 47 1579 4.17
a7–84 NA NA NA NA 1923 83 1581 3.96
a8–64 6438 118 3658 2.72 2094 8 1331 2.86
a8–80 11512 3887 7416 2.89 1332 17 1089 3.79
a8–96 NA NA NA NA 2223 200 1974 4.39
Fig. 3. Detailed result on a8-80 instance with 𝑟 = 0.7 and limited CS visits.
Fig. 4. Detailed result on a8-80 instance with 𝑟 = 0.7 and unlimited CS visits.
12
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Table 14
Results of BI-LNS on large instances with unlimited CS visits and 𝑟 = 0.7.
Time limit [min] Obj min Obj mean Obj max Feasible Gap Mean

a180-3600

5 29,793.51 29,977.80 30,145.25 10/10 –
10 29,397.03 29,546.14 29,768.16 10/10 −1.44%
15 29,177.96 29,312.55 29,587.32 10/10 −2.22%

a200-4000

5 32,803.99 33,161.17 33,485.56 10/10 –
10 32,390.78 32,558.80 32,751.15 10/10 −1.82%
15 32,013.56 32,263.01 32,530.51 10/10 −2.71%

a220-4400

5 36,365.84 37,523.84 39,556.70 10/10 –
10 35,627.80 35,746.51 35,917.44 10/10 −4.74%
15 35,259.06 35,428.04 35,567.21 10/10 −5.59%

a240-4800

5 41,357.57 42,150.46 42,943.32 2/10 –
10 38,496.01 38,817.89 39,084.53 10/10 −7.91%
15 38,270.98 38,460.95 38,579.35 10/10 −8.75%

a260-5200

5 NA NA NA 0/10 –
10 41,890.96 42,191.50 42,490.99 10/10 NA
15 41,472.11 41,745.98 41,855.53 10/10 NA
serving all its requests in order to satisfy the minimum final battery
capacity ratio.

5.4.3. Results on large instances
In order to investigate the limits of the scalability of BI-LNS, exper-

iments on five large problem instances with 180 to 260 vehicles and
3600 to 5200 requests were executed. The experiments were run not
only with a time limit of 5 min per trial but also with time limits of
10 min and 15 min to investigate the convergence of the approach. The
results are shown in Table 14 For time limits of 10 and 15 min, the
percentage gaps between the corresponding mean results and the mean
results with five minute time limit are shown. For the instances with
3600, 4000, and 4400 requests, BI-LNS finds a feasible solution within
five minutes in all trials. With time limits of 10 and 15 min, better
results are achieved and the gaps increase with an increasing problem
size. On the problem instance with 4800 requests, only two trials with
a time limit of five minutes yielded a feasible solution and the gaps
to the results with 10 and 15 min time limit are large. For the a260-
5200 instance, BI-LNS was no longer able to find a feasible solution in
any trial. Thus, one can conclude that with around 4000 requests, the
BI-LNS approach reaches its limits — at least with a time limit of five
minutes. However, being able to schedule around 4000 requests within
five minutes, can be assumed to be a reasonable performance for many
practical applications and, as one can see, with a higher time budget,
even more requests can be scheduled.

Table 15 shows statistics to the BI-LNS optimizations on the large
instances. The number of executed outer-level iterations is in a range
between 270 and 410. After a first feasible solution is found, only a
small number of further iterations is executed, even with a time limit of
15 min. The reason is that at the inner level the number of reinsertions
increases after a feasible solution is found and this makes the inner level
very time consuming on the large instances. According to the results of
the parameter tuning (see Section 5.2), the number 𝑄 of reinsertions
after a feasible solution is found has been set to 19. With a lower value,
more outer-level iterations could be executed, which might improve the
results on the large instances. In order to investigate whether this is the
case, the optimizations on the a200-4000 instance with a time limit of
5 min were executed with different values for 𝑄. The results are shown
13

in Table 16. One can see, that a lower value for 𝑄 is not beneficial. On
the contrary, higher values can slightly improve the results compared
to 𝑄 = 19.

6. Summary and conclusion

The present work proposes a bilevel large neighborhood search
heuristic (BI-LNS) for the challenging electric autonomous dial-a-ride
problem (E-ADARP). The approach does not rely on a compute-
intensive operator for the insertion of charging sessions since it inserts
charging sessions in empty routes before it inserts the pick-up and drop-
off locations. Numerical experiments have shown that in this way a
considerable scalability is achieved. On benchmark instances with up
to five vehicles and 50 requests the proposed approach was compared
to the exact 2-index mixed integer linear programming approach (e-
ADARP2) of Bongiovanni et al. (2019) and the deterministic annealing
heuristic (DA) of Su et al. (2023). On a number of instances, the
proposed approach was able to yield better results than the other two
approaches while being competitive on the rest of the instances. In
further experiments on a set of larger problem instances with up to
8 vehicles and 96 requests, BI-LNS significantly outperformed DA and
was able to find feasible solutions in most of the trials. On a set of
large benchmark instances with up to 260 vehicles and 5200 requests,
the scalability of the BI-LNS approach was investigated and it could be
shown that the approach scales up to around 4000 requests, which can
be assumed to be sufficient for a wide range of practical applications.

Different potential improvements of the proposed approach could be
investigated as part of future research. One of such improvements could
be the use of adaptive large neighborhood search, which selects in
each iteration an operator from different alternatives and dynamically
adapts the probabilities of the individual operators for being selected.
At the outer level, BI-LNS already selects between three variation op-
erators with different (so far fixed) probabilities. Additional operators
could be considered, for example, an operator that removes a charging
session from one route and inserts a new charging session in another
route or an operator that modifies more than one charging session.
A further potential improvement could be the combination of BI-LNS
with linear programming to a hybrid approach. At the outer level, the
service times of new solutions could be improved with help of linear

programming in order to reduce the excess ride times of passengers.
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Table 15
Statistics to BI-LNS optimizations on large instances: Total number 𝐼 𝑡𝑜𝑡𝑎𝑙 of outer-level iterations,
first outer-level iteration 𝐼𝑓𝑒𝑎𝑠 yielding a feasible solution, last outer-level iteration 𝐼 𝑙𝑎𝑠𝑡 yielding an
improvement, and time 𝑇 𝑙𝑎𝑠𝑡 of last improvement. The values are averaged over all trials, which
yielded a feasible solution.

Time limit [min] 𝐼 𝑡𝑜𝑡𝑎𝑙 𝐼𝑓𝑒𝑎𝑠 𝐼 𝑙𝑎𝑠𝑡 𝑇 𝑙𝑎𝑠𝑡 [min]

a180-3600

5 270 264 269 4.72
10 282 264 281 9.52
15 296 264 295 14.63

a200-4000

5 289 286 289 4.75
10 300 286 299 9.59
15 311 286 311 14.53

a220-4400

5 311 310 311 4.81
10 321 310 321 9.50
15 332 310 331 14.56

a240-4800

5 334 334 334 4.98
10 376 369 376 9.68
15 386 369 385 14.53

a260-5200

5 NA NA NA NA
10 399 393 398 9.45
15 407 393 407 14.55
Table 16
Mean objective over ten trials on the a200-4000 with a time limit of 5 min resulting from different settings of 𝑄 with 𝐼 = 800 and
𝑝𝑚𝑜𝑑 = 0.55.
𝑄 3 11 19 27 35 43
Mean Obj 33,518.86 33,314.86 33,161.17 33,095.75 33,012.34 33,043.75
Table C.17
Characteristics of the tuning problem instances.

Instance 𝐾 𝑁 𝑟 𝑇 [min]

1 8 96 0.60 720
2 3 36 0.46 720
3 5 50 0.48 720
4 6 60 0.74 720
5 5 60 0.70 720
6 3 36 0.64 720
7 2 16 0.48 720
8 3 36 0.49 720
9 3 24 0.63 720
10 7 70 0.57 720

Table D.18
Results of BI-LNS on Cordeau instances with unlimited CS visits and 𝑟 = 0.1.

Instance Obj min Obj mean Obj max Feasible

a2–16 238.20 238.20 238.20 10/10
a2–20 281.00 281.00 281.00 10/10
a2–24 346.21 346.22 346.28 10/10
a3–18 238.73 238.73 238.73 10/10
a3–24 275.18 275.18 275.18 10/10
a3–30 414.88 414.88 414.88 10/10
a3–36 483.86 483.86 483.86 10/10
a4–16 222.49 222.49 222.49 10/10
a4–24 311.48 311.48 311.48 10/10
a4–32 394.66 394.79 395.10 10/10
a4–40 456.93 457.37 457.84 10/10
a4–48 557.25 557.82 559.26 10/10
a5–40 415.62 415.62 415.62 10/10
a5–50 560.07 560.95 562.15 10/10
14
Another practical extension of BI-LNS would be an approach for the
automated setting of the initial number 𝐶 𝑖𝑛𝑖𝑡 of charging sessions per
vehicle based on characteristics of the problem instance.

CRediT authorship contribution statement

Steffen Limmer: Conceptualization, Data curation, Formal analy-
sis, Funding acquisition, Investigation, Methodology, Project admin-
istration, Resources, Software, Supervision, Validation, Visualization,
Roles/Writing – original draft, Writing – review & editing.

Declaration of competing interest

The author has no conflict of interest to declare.

Data availability

Data will be made available on request.

Appendix A. Insertion operator

Algorithm 4 outlines the used insertion operator.

Appendix B. MILP approach

For the computation of the corrected global optima, we used the fol-
lowing mixed integer linear programming formulation of the problem:

min𝑤1
∑ ∑

𝑡𝑖𝑗𝑥
𝑘
𝑖,𝑗 +𝑤2

∑

𝑅𝑖 (B.1)

𝑖,𝑗∈ 𝑘∈ 𝑖∈+
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𝑖

𝑥

𝑥

𝑥

𝑘

𝑗

𝑘
∑

𝑤

𝑆

𝑆

Algorithm 4: Insertion Operator.

Input: routes 𝑟𝑡, 𝑛𝑒𝑤_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
Output: routes 𝑟𝑡∗, rejected requests 𝑟𝑒𝑗_𝑟𝑒𝑞

1 𝑟𝑡∗ = 𝑟𝑡;
2 𝑟𝑒𝑗_𝑟𝑒𝑞 = ∅;
3 for 𝑟𝑒𝑞 in 𝑛𝑒𝑤_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 do
4 𝑏𝑒𝑠𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 0;
5 𝑏𝑒𝑠𝑡_𝑟𝑜𝑢𝑡𝑒 = [];
6 𝑏𝑒𝑠𝑡_𝑜𝑏𝑗_𝑖𝑛𝑐 = ∞;
7 for 𝑉 in vehicles do
8 𝑟𝑜𝑢𝑡𝑒 = 𝑟𝑡∗[𝑉 ];
9 for 𝑖 in [2,… , 𝑟𝑜𝑢𝑡𝑒.𝑠𝑖𝑧𝑒 − 1] do
10 𝑟𝑜𝑢𝑡𝑒2 = insert(𝑟𝑜𝑢𝑡𝑒,𝑟𝑒𝑞.𝑝𝑖𝑐𝑘𝑢𝑝,𝑖);
11 if feasible(𝑟𝑜𝑢𝑡𝑒2) then
12 for 𝑗 in [𝑖 + 1,… , 𝑟𝑜𝑢𝑡𝑒2.𝑠𝑖𝑧𝑒 − 1] do
13 𝑟𝑜𝑢𝑡𝑒3 = insert(𝑟𝑜𝑢𝑡𝑒2,𝑟𝑒𝑞.𝑑𝑟𝑜𝑝𝑜𝑓𝑓 ,𝑗);
14 if feasible(𝑟𝑜𝑢𝑡𝑒3) then
15 𝑜𝑏𝑗_𝑖𝑛𝑐 = objective(𝑟𝑜𝑢𝑡𝑒3)-

objective(𝑟𝑜𝑢𝑡𝑒)+random_noise();

16 if 𝑜𝑏𝑗_𝑖𝑛𝑐 < 𝑏𝑒𝑠𝑡_𝑜𝑏𝑗_𝑖𝑛𝑐 then
17 𝑏𝑒𝑠𝑡_𝑜𝑏𝑗_𝑖𝑛𝑐 = 𝑜𝑏𝑗_𝑖𝑛𝑐;
18 𝑏𝑒𝑠𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝑉 ;
19 𝑏𝑒𝑠𝑡_𝑟𝑜𝑢𝑡𝑒 = 𝑟𝑜𝑢𝑡𝑒3;
20 end
21 end
22 end
23 end
24 end
25 end
26 if 𝑏𝑒𝑠𝑡_𝑜𝑏𝑗_𝑖𝑛𝑐 ≠ ∞ then
27 𝑟𝑡∗[𝑏𝑒𝑠𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒] = 𝑏𝑒𝑠𝑡_𝑟𝑜𝑢𝑡𝑒;
28 else
29 𝑟𝑒𝑗_𝑟𝑒𝑞 = 𝑟𝑒𝑗_𝑟𝑒𝑞 ∪ {𝑟𝑒𝑞};
30 end
31 end
32 return 𝑟𝑡∗, 𝑟𝑒𝑗_𝑟𝑒𝑞;

subject to:
∑

𝑗∈+∪∪{2𝑁+𝐾+𝑘}
𝑥𝑘2𝑁+𝑘,𝑗 = 1 ∀𝑘 ∈ , (B.2)

∑

∈−∪∪{2𝑁+𝑘}
𝑥𝑘𝑖,2𝑁+𝐾+𝑘 = 1 ∀𝑘 ∈ , (B.3)

𝑘
𝑖,𝑗 = 0 ∀𝑘 ∈ ,∀𝑖 ∈  ,∀𝑗 ∈ +, (B.4)

𝑘
𝑖,𝑗 = 0 ∀𝑘 ∈ ,∀𝑖 ∈  ,∀𝑗 ∈ − ⧵ {2𝑁 +𝐾 + 𝑘}, (B.5)

𝑘
𝑖,𝑗 = 0 ∀𝑘 ∈ ,∀𝑖 ∈ −,∀𝑗 ∈  , (B.6)

∑

∈

∑

𝑖∈
𝑥𝑘𝑖,𝑗 ≤ 1 ∀𝑗 ∈  , (B.7)

∑

∈
𝑥𝑘𝑗,𝑖 −

∑

𝑗∈
𝑥𝑘𝑖,𝑗 = 0 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵−, (B.8)

∑

∈

∑

𝑖∈
𝑥𝑘𝑖,𝑗 = 1 ∀𝑗 ∈ +, (B.9)

𝑖∈
𝑥𝑘𝑖,𝑗 =

∑

𝑖∈
𝑥𝑘𝑖,𝑗+𝑁 ∀𝑘 ∈ ,∀𝑗 ∈ +, (B.10)

−
𝑖 ≤ 𝑆𝑖 ≤ 𝑤+

𝑖 ∀𝑖 ∈  , (B.11)

𝑖 ≥ 𝑆𝑗 + 𝑑𝑗 + 𝑡𝑗,𝑖 −𝑀𝑗,𝑖 ⋅ (1 −
∑

𝑥𝑘𝑗,𝑖) ∀𝑖, 𝑗 ∈  , (B.12)
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𝑘∈
𝑖 ≤ 𝑆𝑖+𝑁 ∀𝑖 ∈ +, (B.13)

𝑆𝑖+𝑁 − (𝑆𝑖 + 𝑑𝑖) ≤ 𝑆 ∀𝑖 ∈ +, (B.14)

𝐿𝑖 ≥ 𝐿𝑗 + 𝑙𝑖 − 𝑂𝑗,𝑖 ⋅ (1 −
∑

𝑘∈
𝑥𝑘𝑗,𝑖) ∀𝑖, 𝑗 ∈  , (B.15)

𝐿𝑖 = 0 ∀𝑖 ∈ + ∪ , (B.16)

𝐿𝑖 ≤ 𝐿 ∀𝑖 ∈  , (B.17)

𝐵𝑎𝑟𝑟
𝑖 = 𝐵 ∀𝑖 ∈ +, (B.18)

𝐵𝑎𝑟𝑟
𝑖 ≤ 𝐵𝑎𝑟𝑟

𝑗 − 𝑒𝑗,𝑖 + 𝐵 ⋅ (1 −
∑

𝑘∈
𝑥𝑘𝑗,𝑖) ∀𝑖 ∈  ,∀𝑗 ∈  ⧵ , (B.19)

𝐵𝑎𝑟𝑟
𝑖 ≥ 𝐵𝑎𝑟𝑟

𝑗 − 𝑒𝑗,𝑖 − 𝐵 ⋅ (1 −
∑

𝑘∈
𝑥𝑘𝑗,𝑖) ∀𝑖 ∈  ,∀𝑗 ∈  ⧵ , (B.20)

𝐵𝑎𝑟𝑟
𝑖 ≤ 𝐵𝑎𝑟𝑟

𝑗 −𝐸𝑗 ⋅ 𝛼𝑗 − 𝑒𝑗,𝑖 +𝐵 ⋅ (1 −
∑

𝑘∈
𝑥𝑘𝑗,𝑖) ∀𝑖 ∈  ⧵ −,∀𝑗, (B.21)

𝐵𝑎𝑟𝑟
𝑖 ≥ 𝐵𝑎𝑟𝑟

𝑗 −𝐸𝑗 ⋅ 𝛼𝑗 − 𝑒𝑗,𝑖 −𝐵 ⋅ (1 −
∑

𝑘∈
𝑥𝑘𝑗,𝑖) ∀𝑖 ∈  ⧵ −,∀𝑗, (B.22)

𝐵𝑎𝑟𝑟
𝑖 + 𝐸𝑖 ⋅ 𝛼𝑖 ≤ 𝐵 ∀𝑖 ∈ , (B.23)

0 ≤ 𝐵𝑎𝑟𝑟
𝑖 ≤ 𝐵 ∀𝑖 ∈  , (B.24)

𝐵𝑎𝑟𝑟
𝑖 ≥ 𝑟 ⋅ 𝐵 ∀𝑖 ∈ −, (B.25)

𝑅𝑖 = 𝑆𝑖+𝑁 − (𝑆𝑖 + 𝑑𝑖) − 𝑡𝑖,𝑖+𝑁 ∀𝑖 ∈ +, (B.26)

where 𝑀𝑗,𝑖 in Constraint (B.12) is set to max{0, 𝑤+
𝑗 + 𝑑𝑗 + 𝑡𝑗,𝑖 −𝑤−

𝑖 } and
𝑂𝑗,𝑖 in Constraint (B.15) is set to min{𝐿,𝐿+𝑙𝑗}. In order to accelerate the
solving process, we apply tighter bounds for service times and vehicle
loads, and arc elimination (Cordeau, 2006). Furthermore, we use results
of BI-LNS as initial solutions. We used version 9.1.0 of Gurobi3 as
solver.

Appendix C. Tuning instances

The characteristics of the 10 problem instances used for tuning of
the algorithm parameters are shown in Table C.17.

Appendix D. Additional results on Cordeau instances

Table D.18 shows the results of BI-LNS on the Cordeau instances
with unlimited CS visits for 𝑟 = 0.1 and Table D.19 shows the results of
DA and BI-LNS on the Cordeau instances with unlimited CS visits for
𝑟 = 0.4. Table D.20 shows statistics to the BI-LNS optimizations on the
Cordeau instances with 𝑟 = 0.1.

3 https://www.gurobi.com/

https://www.gurobi.com/
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Table D.19
Results of DA and BI-LNS on Cordeau instances with unlimited CS visits 𝑟 = 0.4.

Instance DA (Su et al., 2023) BI-LNS

RT mean [min] Obj min Obj mean Obj min Obj mean Obj max Feasible

a2–16 0.84 237.38 237.38 238.20 238.20 238.20 10/10
a2–20 2.42 280.70 280.70 282.62 283.10 283.38 10/10
a2–24 4.43 346.28 346.28 347.93 349.07 349.82 10/10
a3–18 0.42 236.82 236.82 238.73 238.73 238.73 10/10
a3–24 1.11 274.80 274.80 275.18 275.46 275.58 10/10
a3–30 1.73 413.34 413.34 415.51 415.81 415.85 10/10
a3–36 4.15 481.17 481.17 484.07 485.37 487.74 10/10
a4–16 0.30 222.49 222.49 222.49 222.49 222.49 10/10
a4–24 0.49 311.03 311.65 311.48 311.48 311.48 10/10
a4–32 1.03 394.26 397.27 394.96 395.15 395.41 10/10
a4–40 2.02 453.84 458.74 456.93 457.50 457.92 10/10
a4–48 3.86 558.96 564.86 557.63 559.63 562.58 10/10
a5–40 1.18 415.79 419.82 415.62 415.62 415.62 10/10
a5–50 3.07 567.13 574.28 560.41 562.64 567.91 10/10
Table D.20
Statistics to BI-LNS optimizations on Cordeau instances with 𝑟 = 0.1: Total number 𝐼 𝑡𝑜𝑡𝑎𝑙 of outer-level iterations, first outer-level iteration 𝐼𝑓𝑒𝑎𝑠 yielding a feasible
solution, last outer-level iteration 𝐼 𝑙𝑎𝑠𝑡 yielding an improvement, and time 𝑇 𝑙𝑎𝑠𝑡 of last improvement. The values are averaged over all trials, which yielded a
feasible solution.

Instance Limited CS visits Unlimited CS visits

𝐼 𝑡𝑜𝑡𝑎𝑙 𝐼𝑓𝑒𝑎𝑠 𝐼 𝑙𝑎𝑠𝑡 𝑇 𝑙𝑎𝑠𝑡 [min] 𝐼 𝑡𝑜𝑡𝑎𝑙 𝐼𝑓𝑒𝑎𝑠 𝐼 𝑙𝑎𝑠𝑡 𝑇 𝑙𝑎𝑠𝑡 [min]

a2–16 10468 4 12 0.00 10718 7 10 0.01
a2–20 3292 2 14 0.02 3330 3 10 0.01
a2–24 4334 3 658 0.72 4353 5 716 0.80
a3–18 4721 4 686 0.72 4858 4 42 0.04
a3–24 2454 3 367 0.73 2510 3 641 1.27
a3–30 2732 4 188 0.34 2885 4 424 0.71
a3–36 2352 5 221 0.45 2408 5 278 0.54
a4–16 6480 3 429 0.32 6693 7 1942 1.44
a4–24 2819 1 662 1.16 2905 4 998 1.70
a4–32 1910 2 449 1.18 1899 3 540 1.42
a4–40 1136 1 476 2.09 1137 2 442 1.92
a4–48 871 1 390 2.23 877 2 332 1.86
a5–40 1115 1 225 1.02 1119 2 110 0.48
a5–50 879 1 307 1.72 862 2 136 0.76
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