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Topology Optimization (TO) is used in the initial de-
sign phase to optimize certain objective functions un-
der given boundary conditions by finding suitable mate-
rial distributions in a specified design domain. Currently
available methods in industry work very efficiently to get
topologically-optimized design concepts under static and
dynamic load cases. However, conventional methods do
not address the designer’s preferences about the final ma-
terial layout in the optimized design. In practice, the final
design might be required to have a certain degree of lo-
cal or global structural similarity with an already present
good reference design because of economic, manufactur-
ing and assembly limitations or the desire to re-use parts
in different systems. In this article, a heuristic Energy
Scaling Method (ESM) for similarity-driven TO under
static as well as dynamic loading conditions is presented
and thoroughly evaluated. A 2D cantilever beam under
static point load is used to show that the proposed method

can be coupled with gradient-based and also heuristic,
non-gradient methods to get designs of varying similarity
w.r.t. a reference design. Further testing of the proposed
method for similarity-driven TO on a 2D crash test case
and a large-scale 3D hood model of a car body indicates
the effectiveness of the method for a wide range of prob-
lems in the industry. Finally, the application of similarity-
driven TO is further extended to show that ESM also has
the potential for sensitivity analysis of performance w.r.t.
the extension of design domain.

1 INTRODUCTION
As the technology is advancing and computational

power is increasing, structural Topology Optimization
(TO) [1] is getting more and more acceptance in industry.
A topologically-optimal design uses the available mate-
rial efficiently and delivers the best performance under



given boundary conditions (BCs). Commonly considered
objectives for TO are compliance and absorbed energy
under static and non-linear dynamic loading conditions,
respectively.

Out of different available approaches for TO, very
widely used ones are density-based methods, including
homogenization method [2] and Solid Isotropic Material
with Penalization (SIMP) [3]. Another group comprises
Level Set Methods (LSMs) [4]. When it comes to finding
the solutions of TO problems, Optimality Criteria (OC)-
based SIMP [1] is a very efficient algorithm which uses
the gradient information of the considered objective func-
tion and the constraints. The unavailability of the gradient
information in highly non-linear dynamic problems limits
the use of OC-based SIMP to TO under static load cases.
Apart from approaches using linear approximations of
non-linear loads [5, 6], to address this drawback, non-
gradient TO methods, e.g. Bi-directional Evolutionary
Structural Optimization (BESO) approaches [7], Hybrid
Cellular Automata (HCA) techniques [8, 9], and State-
Based Representation (SBR) approaches [10] have been
developed. The heuristic HCA makes use of the assump-
tion that uniform distribution of the internal energy results
in a topologically-optimal design. Recently, Evolutionary
and Kriging-Guided Level Set Methods (EA-LSM [11]
and KG-LSM [12]) were proposed as general approaches
to solve TO problems under static and crash load cases.

The conventional TO methods are used successfully
in industry, and problems related to manufacturing and
economic performance of the optimized designs are in-
tensively studied in the research community. On the one
hand, in the past years, a significant progress has been
made in integrating manufacturing constraints into stan-
dard, density-based TO and LSMs [13]. On the other
hand, novel design parametrizations used in explicit TO
techniques [14, 15, 16] allow for incorporation of design
limitations already on the representation level. Mecha-
nisms such as length scale control [17], structural com-
plexity control [18], or handing of constraints for addi-
tive manufacturing [19, 20], can be also integrated into
such approaches to improve manufacturability and cost
efficiency. Moreover, the geometric features of the ele-
mentary components comprising the design can be modi-
fied to meet the requirements of a specific manufacturing
technology [21, 22, 23, 24]. However, despite the high
practical value of such methods, it is still difficult to ex-
plicitly control the final layout of the optimized structure,
especially for the design requirements that cannot be eas-
ily described in a closed mathematical form, which is of-
ten the case in real-world industrial applications [25]. In
our opinion, the designer should be able to flexibly steer
the TO process by imposing similarity to certain reference

designs because of practical reasons as discussed below.
Firstly, it is usually desired to re-use the already

present optimized parts as much as possible because of
economic restrictions associated with manufacturing and
assembly processes. It is very common in the automo-
tive industry to share the platform part in different models
of the same vehicle with slight alterations. As a practi-
cal scenario, there might be an already present good de-
sign which was optimized subject to certain loading con-
ditions. If the loading conditions are changed slightly,
the use of the previous design might show worse per-
formance. Although running the TO subject to the new
loading conditions will improve the performance, it might
deliver a completely new design. Therefore, similarity-
driven TO should be used to keep the consistency with
the previous design, while being able to improve the per-
formance for the new loading conditions.

Secondly, computational cost can be reduced signif-
icantly by using similarity-driven TO in particular cases.
In a specific scenario, re-optimization will be needed if
a new load case is added to already applied high num-
ber of load cases. If the relative magnitude of the new
load case is small, it will not modify the previously opti-
mized topology significantly. The conventional way will
require to re-run the TO subject to all the load cases,
which will be computationally very costly. On the other
hand, similarity-driven TO allows the designer to run the
TO subject to just the newly added load case and control
its similarity w.r.t. already optimized topology.

Thirdly, similarity-driven TO can help in the easier
re-integration of topologically-optimized structural com-
ponents into a bigger system. TO of these components
is performed in the initial design phase and their re-
integration into the bigger system is a challenge, for ex-
ample, due to the required but not structurally significant
connection locations on the base part that are eliminated
by the TO. This limits the types of structural topology al-
lowed for these components. Similarity-driven TO makes
the re-integration easy by enabling the designer to express
his or her desires at the start of the TO process about the
final obtained structural layout.

Finally, as discussed in [26] and [27], novelty in
some structural components is also inevitable in the prod-
uct development phase. To make the product stand out
in a big crowd, both performance as well as good aes-
thetics and novelty are important. Similarity-driven TO
discussed in this paper is able to deliver the optimized de-
sign by controlling either the similarity or dissimilarity
w.r.t. a reference as specified by the designer. By impos-
ing high dissimilarity to the reference, the optimization
can be guided towards novel solutions, if novelty [27] is
interpreted through geometric dissimilarity.



Very little discussion is available in literature about
similarity-driven TO. By coupling generative design ex-
ploration [28] with deep neural network generative mod-
els and OC-based SIMP TO, in [26], a framework to ob-
tain designs with better aesthetics using already available
reference designs has been developed. The first com-
ponent of this framework is iterative design exploration,
which generates a large number of designs using TO and
deep generative models. The second component, design
evaluation, evaluates the designs on the basis of novelty
and other user-specified attributes. Even though the ap-
proach is effective to get the desired structural layout, the
unavailability of sensitivity information and complexity
of the iterative design exploration phase hinders its appli-
cation to highly non-linear dynamic scenarios and large-
scale industrial problems. Recently, we proposed four
novel approaches for similarity-driven TO: Energy Scal-
ing Method (ESM), OC-based SIMP with similarity con-
straint, weak passive material method, and modified de-
sign domain method [25]. The initial experiments showed
that ESM is the most promising approach for similarity-
driven TO.

In this article, we present an extensive analysis of
ESM, including application to a large-scale industrial
problem, and propose novel extensions of this approach.
First of all, we rigorously compare ESM to a formal,
gradient-based SIMP method with a similarity constraint
and quantify the differences between both approaches.
We demonstrate the universality of ESM by integrating
it with both OC-based SIMP and heuristic HCA method.
In a set of benchmark 2D dynamic crash problems, we
evaluate the sensitivity of the method w.r.t. different im-
pact velocities. Secondly, we apply ESM to a real-world
hood frame TO problem with a similarity target, which
is a novel problem formulation, and demonstrates the ef-
ficiency and the potential impact of this approach in the
industrial setting. Furthermore, we propose and evaluate
ESM for a new problem of subdomain similarity, which
allows controlling the structural layout locally. In addi-
tion, we find the key determinants of the relationship be-
tween the parameters of ESM and the final optimization
result based on a sensitivity study using four different ref-
erence structures in a 2D static scenario. Finally, we show
the potential of applying ESM to the problem of design
domain extension, which, to the best of our knowledge,
is a problem not addressed so far in the TO research, but
could play a very important role in the industrial context.

2 OBJECTIVE FUNCTIONS IN TO
The type of objective function in TO depends on the

kind of loading conditions which the structure is required

to support. Usually, for static load cases, the objective
function in TO is the overall compliance of the structure.
TO delivers the final design with minimum compliance
(maximum stiffness) and this is referred to as compliance
minimization problem. A typical SIMP-based compli-
ance minimization TO problem subject to a volume frac-
tion constraint can be described as follows [29]:

min
x

c(x) = UTKU =

N∑
e=1

(xe)
PuT

ekeue,

s.t.
V (x)

V0
= f, KU = F, 0 < xmin ≤ x ≤ 1.

(1)

In Eq. (1), c is the overall compliance of the structure. U,
K, and F are global displacement vector, stiffness ma-
trix, and force vector, respectively. Similarly, ue is the
elemental displacement vector while ke is the elemental
stiffness matrix. N is the total number of finite elements
in the design domain and V , V0 are the volume occupied
by material and total design domain, respectively. More-
over, x is the vector containing the relative mass density
of each element w.r.t. the base material. A non-zero xmin
is specified to avoid singularity, while P represents penal-
ization and f is the prescribed volume fraction.

On the other hand, for non-linear dynamic loading
scenarios like impact loading, it is required by the struc-
ture to deform in a controlled way to absorb the maximum
amount of energy. In fact, this is contradictory to the com-
pliance minimization problem mentioned above. Plastic
strains are quite large in impact loading and they are used
to calculate the total absorbed energy. As discussed in
[30], the total absorbed energy density (or internal energy
density IED) during the impact is a sum of elastic strain
energy density (SED) Ue and inelastic strain energy den-
sity or plastic work Up, i.e., IED = Ue + Up. Analo-
gous to Eq. (1), based on [30], the optimization problem
for crash can be described as follows:

min
x

1

IED(x, t = tfinal)
,

s.t.
V (x)

V0
= f, R(t) = 0, 0 < xmin ≤ x ≤ 1.

(2)

where R(t) = 0 denotes dynamic equilibrium at time t.
Besides the maximum absorbed energy, peak

force/acceleration, and maximum intrusion are also very
important for the crashworthiness of a vehicle. As dis-
cussed in [31], the energy absorbing behavior of two ve-
hicles having the same mass can be quite different. One



can absorb an energy E with high peak force and low
intrusion (stiff design), while other can absorb the same
energy E with low peak force, but high intrusion (flexi-
ble design). A good design obtained after TO offers a fair
compromise between stiffness and flexibility.

3 GEOMETRIC SIMILARITY METRICS
The level of geometric similarity between mechan-

ical parts can be quantified in many different ways, de-
pending on the geometric properties of the design that
are of interest [32]. At the most general level, the de-
signs can be compared in terms of macroscopic properties
such as volume, size, overall shape, or topology. Hand-
engineered geometric features such as statistics of mate-
rial distribution, curvature, or spectral descriptors [33],
are also used to quantify geometric differences between
3D objects. Recently, several data-driven methods for
quantifying geometric differences among topologically-
optimized designs have been evaluated in the context of
design clustering [32], as well. Although these methods
are very promising, they rely on availability of a large
number of designs to extract relevant geometric features
and are difficult to interpret. Hence, in this paper, we use
a dissimilarity metric s being a mean squared difference
between the elemental relative densities of the obtained
design and the reference design [25, 26]:

s =

N∑
e=1

(
xe − xref

e

)2
N

, (3)

where N , xe, and xref
e represent the total number of el-

ements, relative density of element e in the obtained de-
sign, and relative density of the element e in the given
reference design, respectively. The proposed metric has
an intuitive interpretation, and by incorporating it into the
optimization process, one can control much finer struc-
tural details of the design than with macroscopic proper-
ties such as volume or size.

4 ENERGY SCALING METHOD (ESM)
In [25], we implemented an extra similarity con-

straint along with the conventional volume fraction con-
straint directly in OC-based SIMP for 2D compliance
minimization. This can be regarded as a formal mathe-
matical method for similarity-driven TO. Here, similarity-
driven TO is realized by using the sensitivity information
of the objective function (compliance) and the constraints,
including the dissimilarity metric s given by Eqn. (3).

(a) Design domain with
BCs.

(b) Reference design.
Preferred region
(black) and the non-
preferred one (white).

Fig. 1: Representation of the preferred and non-preferred
regions in ESM [25].

Since OC-based SIMP requires sensitivities of objectives
and constraints, it cannot be used for crash cases. It is
discussed in [25] that the implementation of the similarity
constraint in OC-based SIMP is in fact equivalent to the
scaling of elemental strain energies. If the strain energy
in a design domain region is scaled up artificially, more
material will be deposited from the surrounding to that
particular region in the subsequent TO iterations. Tak-
ing inspiration from this formal approach, a novel non-
gradient heuristic Energy Scaling Method (ESM) is intro-
duced in [25], which can be coupled with gradient-based
methods like OC-based SIMP or non-gradient methods
like HCA for similarity-driven TO. To implement ESM,
the design domain is divided into the following two sub-
domains, based on the material distribution in the given
reference design (Fig. 1):

Preferred subdomain: Subdomain which must have
a maximum amount of available material to obtain
maximum similarity w.r.t. the reference design.
Non-preferred subdomain: Subdomain which must
have a minimum amount of material to obtain maxi-
mum similarity w.r.t. the reference design.

To achieve designs similar to the reference, ESM
scales up the elemental energies in the preferred re-
gion and scales down the elemental energies in the non-
preferred regions. This is realized by applying a scaling
factor p and 1 − p to the elemental energies in the pre-
ferred and non-preferred region, respectively. In the OC-
based SIMP for compliance minimization, the elemen-
tal energies are proportional to the corresponding com-
pliance sensitivities ∂c/∂x, where c and x are the overall
compliance and the elemental relative densities vector, re-
spectively. On the other hand, in HCA, a designated field
variable, strain energy density (SED), is available for ap-
plying energy scaling. The incorporation of ESM in OC-



based SIMP and HCA is summarized in Table 1 and the
flowchart in Fig. 2.

Table 1: ESM for similarity-driven TO using OC-based
SIMP and HCA [25]. P denotes the preferred region
(zone) and NP the non-preferred one.

Zone OC-based SIMP HCA

P
∂c

∂x
:= p ·

∂c

∂x
SED := p · SED

NP
∂c

∂x
:= (1− p) ·

∂c

∂x
SED := (1− p) · SED

If a very high energy scaling (e.g. p = 0.98) is
applied, nearly all of the available material goes to the
preferred region and results in a design which looks very
similar to the reference design. A completely dissimilar
design is obtained by applying a very low scaling value
(e.g. p = 0.02). It is also important to note that applying a
scaling value of p = 0.5 is equivalent to running the con-
ventional TO, where similarity control is not addressed.
So, the designer is able to get the designs of varying sim-
ilarity w.r.t. the reference by changing p between nearly
0 and nearly 1.

To evaluate ESM, it is incorporated into the 88-line
Matlab code [34] for 2D linear elastic static similarity-
driven TO using OC-based SIMP. In order to show that
ESM is equally applicable to non-gradient TO methods,
ESM is also combined with the HCA approach [30].

5 TEST CASES AND RESULTS
In the first test case, we use a 2D square plate under

linear elastic static conditions (Fig. 3a). Two variants of
this test case are considered. The first variant is used to
achieve the following:

1. Compare the similarity-driven TO results of ESM
in OC-based SIMP and the formal mathematical ap-
proach of OC-based SIMP with similarity constraint.

2. Show that ESM works for both the gradient-based
TO like OC-based SIMP and non-gradient TO like
HCA. Here, TO is performed by implementing ESM
in both methods to achieve global similarity w.r.t. the
same reference structure.

3. Demonstrate how the material distribution in the ref-
erence structure affects the similarity-driven TO.

4. Investigate the influence of the reference structure on
the relationship between the scaling parameter p and

Fig. 2: Similarity-driven TO using ESM in OC-based
SIMP and HCA [25].

the dissimilarity metric s for the optimized design.

On the other hand, the second variant is used to achieve
the local/subdomain similarity using ESM in OC-based
SIMP.

In the second test case we consider a 2D beam under
dynamic nonlinear crash loading conditions. Here, ESM
is used in HCA to get the designs of varying similarity
w.r.t. a reference design. Moreover, in the third test case,
the similarity-driven TO of a 3D frontal hood of a car
body is realized by using ESM in HCA to demonstrate its
potential for application in the industry.

Finally, as additional application of ESM, a 2D linear
elastic test case, similar to the first one, is used to point out
the potential of ESM for design domain-based sensitivity
analysis in TO.



(a) Design space and BCs.

(b) Default TO result
using OC-based SIMP.

(c) Default TO result
using standard HCA.

Fig. 3: Test case of 2D square plate [25].

5.1 Compliance Minimization of a Linear Elastic 2D
Square Plate with Global Similarity Control

The first test case is shown in Fig. 3a. It is fixed on
the left edge and subject to a unit downward load on the
midpoint of the right edge of the design domain. A com-
pliance minimization problem with a volume constraint is
considered. The finite element discretization consists of
100× 100 square elements of unit dimensions. Here, the
similarity in the optimized design is required w.r.t. the
reference structure shown in Fig. 1b. The designs ob-
tained with conventional TO using OC-based SIMP and
HCA are shown in Fig. 3b and Fig. 3c, respectively. For
this, the simulation and optimization parameters given in
Table 2 are used. All other TO parameters for OC-based
SIMP and HCA are the same as discussed in [34] and
[30].

5.1.1 Experimental Procedure
The formal mathematical approach of OC-based

SIMP with a similarity constraint [25] is used to perform
14 similarity-driven TO runs to generate designs of dis-
similarity metric between 0 and 1 w.r.t. the reference. For
ESM, the scaling parameter p is sampled uniformly in the
range from 0.02 to 0.98 and 25 sampling points are gen-
erated. For each value of p, a complete similarity-driven
TO run is performed using ESM in both OC-based SIMP
and HCA. Each TO run delivers a design of a certain sim-
ilarity level w.r.t. the considered reference.

Table 2: Optimization and simulation parameters for OC-
based SIMP and HCA for 2D square plate test case [25].

Parameter OC-based SIMP HCA

Force magnitude 1 N 0.01 N

Mesh size 100× 100 100× 100

Element type 4-node shell 4-node shell

Poisson’s ratio ν 0.3 0.3

Young’s modulus E 1 [MPa] 1 [MPa]

SIMP penalization 3 1

Filter radius 1.5 1.5

Volume fraction 0.5 0.5

5.1.2 Results and Discussion
Fig. 4 compares the similarity-driven TO results of

OC-based SIMP with similarity constraint and ESM in
OC-based SIMP for the considered test case. The meth-
ods are successful in generating a variety of designs. The
designs of the highest, intermediate, and the lowest simi-
larity level are represented by the left, center, and the right
ends of the curves in Fig. 4. The designer will have to
make a compromise between the similarity w.r.t. the ref-
erence and the overall performance (compliance) of the
obtained design. This is because of the fact that the in-
crease in the similarity level degrades the performance.

As shown in Fig. 4, both methods generate quali-
tatively similar designs for a given dissimilarity metric
value, which demonstrates the correctness of the heuristic
energy scaling rule used in ESM. For most of the design
concepts obtained using the heuristic ESM, the perfor-
mance (compliance) is better than those obtained by using
the formal mathematical approach of similarity constraint
in OC-based SIMP. The performance comparison of the
obtained designs with both methods having nearly the
same similarity level w.r.t. the reference is given in Table
3. It can be observed that for designs of higher dissim-
ilarity metric value (dissimilar w.r.t. the reference), the
performance improvement using ESM is quite large (up
to 20.74%). The reason is that the method of similarity
constraint in OC-based SIMP fails to converge to 0-1 de-
signs, even for a high value of penalization factor P . This
is observable by the grey areas in the designs of high dis-
similarity metric values. Similar problem was observed
by [26] when using L2-norm for quantification of geo-
metric dissimilarity. On the other hand, ESM is free from



Fig. 4: Similarity-driven TO results using ESM and similarity constraint in OC-based SIMP. The structures with
different dissimilarity metric values w.r.t. the reference along with their corresponding objective function (compliance)
values are shown [25]. The asymmetry of some structures may result from a small asymmetry of the reference design.

this problem and it always delivers a 0-1 design (even for
the default penalization factor of 3). The ESM is also
very robust w.r.t. variations of the parameters of the op-
timization algorithm such as SIMP penalization power or
the filter radius. One possible reason for the better qual-
ity of designs obtained with ESM is that the same scaling
values are applied over larger areas of the design domain
and do not change over the optimization iterations, which
leads to a higher stability of the algorithm. In contrast, the
OC-based SIMP with similarity constraint computes sen-
sitivities for each element independently and adapts them
over the course of the optimization, which hinders de-
velopment of clear boundary between material and void.
Considering the computational costs per optimization it-
eration, both methods perform similarly and are close to
the standard OC-based SIMP. This is due to the fact that
essentially, the computation of similarity sensitivities or
the energy scaling involves only one additional matrix op-
eration, being subtraction or element-wise multiplication,
which has a negligible impact on the computational effi-
ciency of the algorithm. Also in terms of convergence ve-
locity of both methods, our experiments have not shown
significant differences w.r.t. the standard OC-based SIMP.

Qualitatively similar results were obtained by using
ESM in HCA for the test case. The obtained topologies
along with their performance and dissimilarity metric val-
ues are shown in Fig. 5. The results show that ESM can
also be successfully applied in similarity-driven TO with
non-gradient TO like HCA. It can be observed that the
obtained designs can be regarded as topologically-similar
to the ones obtained with ESM in OC-based SIMP.

5.2 Compliance Minimization of a Linear Elastic 2D
Square Plate with Local Similarity Control

In the previous test case, ESM was used to control the
similarity of the obtained design in the whole design do-
main w.r.t. the considered reference structure. Now, the
capability of the method is shown to control the similarity
in just a part of the design domain. This is sometimes re-
quired when the designers have precise preferences only
in certain subdomains of the whole design domain and
they accept any design concept in the other subdomains.
There might be another situation where the designers can-
not judge whether a certain region should be specified as
preferred or non-preferred for similarity control. The test
case considered here is the same as shown in Fig. 3a
along with the corresponding result in Fig. 3b for com-
pliance minimization TO with default OC-based SIMP. In
the upper half subdomain of the test case, similarity con-
trol w.r.t. the corresponding subdomain of the reference
structure shown in Fig. 1b is imposed by using the ESM
in OC-based SIMP (Fig. 6).

5.2.1 Experimental Procedure
Preferred and non-preferred regions are defined only

in the upper half subdomain, where the similarity con-
trol is required. It is important to mention that no scal-
ing is applied in the lower half subdomain. Furthermore,
the dissimilarity metric is computed by taking the mean
squared pixel difference in the upper half subdomain of
the obtained and the reference design. In total 25, subdo-
main similarity-driven TO runs are performed by chang-



Table 3: Performance (compliance) improvement (I) for different values of dissimilarity metric (s) by using ESM
instead of similarity constraint in OC-based SIMP for similarity-driven TO.

s 0.053 0.15 0.20 0.29 0.48 0.64 0.70 0.75 0.80 0.86

I -6.9% 2.1% 3.0% -0.33% -0.74% 0.63% 2.22% 12.33% 16.42% 20.74%

Fig. 5: Similarity-driven TO results using ESM in HCA. The structures with different dissimilarity metric values w.r.t.
the reference along with their corresponding objective function (compliance) values are shown [25].

ing the energy scaling p uniformly in the range from 0.02
till 0.98.

5.2.2 Results and Discussion
Fig. 6 shows the objective values of different ob-

tained designs. On the left end of the curve, the obtained
design has a minimum subdomain dissimilarity metric
value (maximum level of local similarity), while the de-
signs on the right end have a high subdomain dissimilar-
ity metric value (minimum level of local similarity) w.r.t.
the reference. Furthermore, some oscillations can be ob-
served on the right end. This might be because of the fact
that the dissimilarity metric was computed just in the up-
per half subdomain. It is possible that two designs have
the same upper half but the material distribution in the
lower half subdomain is different. This will, as a result,
deliver designs with nearly the same value of the consid-
ered dissimilarity metric, but different objective (perfor-
mance) values. The obtained results show that ESM is
equally good for controlling similarity w.r.t. a reference
in a part of the design domain (local similarity).

5.3 2D Beam under Impact Loading
To test ESM for similarity-driven TO with HCA un-

der non-linear dynamic loading conditions, a beam of di-
mensions 800mm×200mm×10mm as shown in Fig. 7a
is considered. This test case has been considered as a
benchmark in literature [11, 35] for 2D TO under impact

loading. The beam is fixed on the vertical edges and im-
pacted by a rigid pole of 70mm radius with a specified
initial velocity on the top edge at an offset from the mid-
point to the left. The FEM model of the test case is shown
in Fig. 7b. To make the problem 2D and minimize com-
putational efforts, zero value is specified for the DOFs in
the z-direction. The result of TO with conventional HCA
without any similarity control is shown in Fig. 7c. For
similarity-driven TO, the reference structure of Fig. 7d
is considered, which was obtained via TO of a test case
where the pole hits the beam right at the center of the
top edge. For FEM simulations, piecewise linear plas-
tic (*MAT−PIECEWISE−LINEAR−PLASTICITY LS-
DYNA card) and rigid (*MAT−RIGID LS-DYNA card)
material model is used for the beam and the pole, respec-
tively. The values for the simulation and optimization pa-
rameters are given in Table 4.

5.3.1 Experimental Procedure
The scaling value p is sampled uniformly (total 14

samples) in the range from 0.05 to 0.95. For each value of
p, similarity-driven TO is performed using ESM in HCA
and the performance of the obtained structure is measured
by the maximum intrusion of the pole into the beam. The
procedure is repeated for three impact velocities of 20m/s,
40m/s, and 60m/s and setting LS-Dyna termination time
to 3.0×10−3s, 4.5×10−3s, and 6.0×10−3s, respectively,
to allow for a simulation of the entire crash event, i.e.



Fig. 6: Objective value (compliance) vs. dissimilarity metric value of the obtained designs for subdomain similarity
control study.

(a) Design domain with BCs. (b) FEM model in LS-DYNA.

(c) Default TO result of the
test case using standard HCA.

(d) Reference structure for
similarity-driven TO.

Fig. 7: Test case of 2D beam with fixed edges under im-
pact loading [25].

until the elastic rebound. The discussion of the results is
given below.

5.3.2 Results and Discussion
Performance (maximum intrusion of the pole) vs.

dissimilarity metric results of the similarity-driven TO
for the considered test case with pole impact velocity of
20m/s are shown in Fig. 8. As in the previous linear elas-
tic static scenario, ESM also works very well for the dy-
namic case to deliver designs of different similarity level
w.r.t. the reference. The curve in Fig. 8 represents the
designs of maximum, intermediate, and minimum simi-
larity w.r.t. the reference on its left end, center, and the

Table 4: Optimization and simulation parameters for 2D
beam test case with impact loading [25].

Parameter Value

Pole mesh 22 elements

Pole element type 4-node shell

Pole density 5.0× 10−6
[
ton/mm3

]
Beam mesh 160× 40× 1

Beam element type 8-node solid

Beam density 2.7× 10−9
[
ton/mm3

]
Beam Young’s modulus E 7.0× 104 [MPa]

Beam Poisson’s ratio ν 0.33

Beam yield strength σy 241 [MPa]

Beam tangent modulus Etan 70 [MPa]

Volume fraction 0.5

Filter radius 5.5 [mm]

right end, respectively. It is also important to note that the
maximum similarity level comes at the cost of poor per-
formance. Therefore, the designer should make a proper
compromise between the similarity w.r.t. the reference
and the overall performance indicator.

The performance vs. dissimilarity metric results for



Fig. 8: Performance vs. dissimilarity metric in similarity-driven TO of 2D crash test case for pole impact velocity of
20m/s.

Fig. 9: Effect of impact velocity on performance vs. dissimilarity metric in similarity-driven TO of 2D crash test case.
The shown deformed structures are at the moment when the maximum intrusion of the pole happens.

similarity-driven TO with different pole impact velocities
are compared in Fig. 9. For each impact velocity, the de-
formed shape at the moment of the highest intrusion of the
pole is also shown for the structures which are the most
similar and the most dissimilar to the reference. The max-
imum intrusion for impact velocity of 60m/s is around
120mm, which is more than half of the beam height. This
shows the robustness of ESM for similarity-driven TO un-
der highly non-linear loading conditions.

5.4 Industrial Test Case: Frontal Hood of a Car
Body

To further test the capabilities of ESM for similarity
control, a large-scale 3D industrial test case is considered.
The LS-Dyna model for the test case and the reference
structure for similarity control were provided by Honda

Development & Manufacturing of America (HDMA). In
this test case, stiffness maximization TO of the frontal
hood of a car body is performed using HCA. Here, nodes
with prescribed displacements are considered to simulate
a hood lift related to aerodynamic loads under linear elas-
tic scenario. For a given value of prescribed displacement,
the stiffest structure will be the one which will require
maximum force to displace the nodes by the prescribed
value. This will cause the stiffest structure to have a max-
imum amount of internal energy under the given BCs.

The design domain and the BCs are shown in Fig.
10. For this test case, ESM in HCA is used to control
the similarity w.r.t. the reference structure. The reference
structure (defined as the preferred region by the design-
ers at HDMA) is shown in Fig. 11. The volume fraction
of this reference structure was 0.76, but practically, such



a high volume fraction is rarely used during TO. There-
fore, a volume fraction of 0.35 is used during similar-
ity control experiments. The default HCA result (post-
processed to achieve 0-1 design), without any similarity
control and obtained with simulation and optimization pa-
rameters given in Table 5, is shown in Fig. 12.

Fig. 10: Design domain used for similarity-driven TO of
the industrial test case. 1 and 2: Prescribed displacement
BCs. 3 and 4: Fixed support BCs. 5: Pin support BCs. 6:
Mass distributed gravity load.

Fig. 11: Considered reference structure views for
similarity-driven TO of the industrial test case.

Fig. 12: Default HCA result views (post-processed to 0-1
design) for the industrial case without similarity control.

5.4.1 Experimental Procedure
In total, 13 values of energy scaling p are chosen in

the range 0.02 to 0.98 and the similarity-driven TO runs
using ESM in HCA were performed for each of those val-
ues. The results are discussed below.

Table 5: Simulation and optimization parameters for
similarity-driven TO of industrial test case.

Parameter Value

Number of elements 195, 830

Element type 8-node solid

Prescribed displacement 2 [mm]

Density ρ 2.7× 10−9 [ton/mm3]

Young’s modulus E 6.7× 104 [MPa]

Poisson’s ratio ν 0.32

Volume fraction 0.35

HCA filter radius 10.5 [mm]

Symmetry constraint as shown in Fig. 10

5.4.2 Results and Discussion
Here, internal energy per unit mass, which can be ob-

tained from LS-Dyna, is used as performance indicator to
compare different designs. Fig. 13 shows the similarity-
driven TO results for the industrial test case. Once again,
ESM has shown to be able to deliver the designs which
are highly similar to the given reference structure (De-
sign A: left end of the curve in Fig. 13) or completely
dissimilar to it (right end of the curve in Fig. 13). Fig.
13 shows that the minimum possible dissimilarity metric,
even for the highest energy scaling value of p = 0.98, is
around 0.4. The reason for this is the lower target volume
fraction value in similarity-driven TO as compared to the
reference structure. Due to the smaller amount of avail-
able material, no more material can be put in the preferred
region to further reduce the voxel difference (dissimilar-
ity metric) between the reference and the obtained design.
However, even for this high dissimilarity metric value of
0.4, the corresponding design (Design A) looks very sim-
ilar to the given reference structure with almost all the
material in the preferred region.

The results in Fig. 13 help the designer to identify
the new structural components and the design modifica-
tions which have to be realized in the reference structure
to improve its performance. Design A in Fig. 13 is the
most similar to the reference, but it shows a very poor
performance value. On the other hand, Design B still
looks similar to the reference, but shows a performance
improvement of around 10% as compared to Design A.
This performance improvement is achieved by building
some new structural components in the central region of



Fig. 13: Performance indicator vs. dissimilarity metric, together with corresponding designs, in similarity-driven TO
of the industrial test case.

Fig. 14: Performance improvement by realizing some de-
sign modifications in the reference structure. These de-
sign modifications are obtained by similarity-driven TO
using ESM in HCA.

the Design A (Fig. 14). In short, these new structural
components can be incorporated in the reference structure
to get a better objective function value.

6 INFLUENCE OF THE SCALING PARAMETER
As discussed in Sec. 5, the similarity of the opti-

mized design w.r.t. reference in ESM is controlled by
adjusting the scaling parameter p. In the conducted ex-
periments, a sequence of TO runs was always performed
for different values of p to explore designs of different
similarity levels and select the ones that are the most in-
teresting for the designer. Based on such a sampling, a
specific similarity level can be achieved by conducting
optimization for an interpolated value of p. However, in
industrial setting, where simulations are computationally
costly, it might be impractical to run multiple optimiza-
tions to determine the scaling factor value for the desired
similarity level w.r.t. reference. Hence, it becomes essen-
tial to understand the key determinants of the relationship
between the dissimilarity metric s in the optimized design
and the scaling factor p. In this section, based on a sensi-
tivity study, we determine the features that influence this

characteristic, which can help to set the parameter p.
For the four reference designs presented in Fig. 15,

we present the curves obtained by running TO using ESM
within HCA for different values of p. The optimization
settings, parameters of the mechanical model as well as
the boundary conditions remain the same as in the ex-
periments in Sec. 5.1. As demonstrated in Sec. 5.1.2,
OC-based SIMP and HCA yield similar results when used
with ESM and therefore, also the relationships in Fig. 15
look very similar for the OC-based SIMP [36].

Fig. 15: Relationship between energy scaling factor p and
the dissimilarity metric s for structures optimized using
ESM in HCA, for four different reference structures.



By analyzing the curves presented in Fig. 15, one can
conclude that the following three features influence most
strongly the relationship s(p):

1. Target volume fraction.
2. Volume fraction of the reference design – the higher

the difference between this quantity and the target
volume fraction, the higher is the dissimilarity for
p > 0.5, which can be seen in case of the red curve.

3. Dissimilarity of the default TO result w.r.t. reference
– the lower this value, the lower dissimilarity metric
and more flat characteristic is obtained for different
values of p > 0.5 since ESM influences to a small
extent the material distribution. This is visible when
comparing the blue curve with the rest of the curves.

Based on the input features described above, it is pos-
sible to build a machine learning model capable of ac-
curately predicting the value of scaling parameter p to
obtain a specific value of dissimilarity metric in the op-
timized design for a wide range of TO problems [36].
In such a case, only running the default TO prior to the
similarity-based TO is required to predict the value of p.
A description of this approach will follow in our future
publications.

7 DESIGN DOMAIN EXTENSION WITH ESM
In the previous sections, ESM has been shown to be

very effective in controlling the similarity of the design
obtained after TO w.r.t. a given reference. In this section,
the concept of similarity-driven TO is further extended to
demonstrate how ESM can be used to study the effect of
a change in the design domain dimensions on the overall
performance of the obtained design.

During the initial design phase, the interior and the
exterior of a vehicle are specified based on styling, aero-
dynamics, available space, packaging, or other practical
design requirements. This results in the definition of the
design domain for TO. Conventionally, the design domain
is kept fixed and the whole structure is meant to be de-
veloped only inside the domain. However, considerable
improvement in the overall performance of the obtained
design is possible if we allow the material to be present
at certain locations in the slightly extended region of the
original design domain. Consequently, in case of large
benefits coming from the extension of the design domain,
the structural engineering department can propose modi-
fications to the other relevant design groups. This study
can be seen as a sensitivity analysis of the performance
w.r.t. the extension of the design domain. In this arti-
cle, an extended version of the original design domain is
considered and ESM implemented in OC-based SIMP is

(a) Default design domain. (b) Default OC result.

(c) New extended design domain.

Fig. 16: Test case for design domain extension study.

used to control the material quantity in the outer extended
region to get different designs.

7.1 Test Case
A 2D test case (with 100 × 100 square elements of

unit dimensions) with left edge fixed and a unit load on
the midpoint of the right edge is considered for compli-
ance minimization TO. The design domain definition and
the result for this design domain with default OC-based
SIMP of 88 line Matlab code under volume fraction con-
straint of 0.5 are shown in Fig. 16a and 16b.

A new extended design domain with 100×160 square
elements of unit dimensions is considered as shown in
Fig. 16c. For the application of ESM, the whole inner
region of this new extended design domain is considered
as preferred with energy scaling value of p. The upper and
lower extended regions are considered as non-preferred
regions with the same energy scaling value of 1− p.

7.2 Experimental Procedure
Total 24 complete TO runs are performed using the

new extended domain (Fig. 16c) for the values of pre-
ferred region energy scaling p in the uniform range of
0.02 to 0.98. During all these simulations, the total mass
in the final obtained structure is kept the same as in the



design obtained using the original design domain (Fig.
16b). This is achieved by applying a target volume frac-
tion value of 0.31 in the new extended design domain.
Furthermore, the dissimilarity metric as discussed previ-
ously is also used here to assess the amount of material
in the upper and lower extended regions of the obtained
design. A design with minimum material in the extended
regions will have maximum similarity to the design ob-
tained by using the original design domain.

7.3 Results and Discussion
The objective values (compliance) for the obtained

designs of different dissimilarity metric values are shown
in Fig. 17. On the right end of the curve, “Design a”
has nearly no material in the extended regions and it is
the same as the design corresponding to the original do-
main. On the left curve end, “Design h” has the maxi-
mum amount of material in the extended regions and it
is a completely new conceptual design. “Design e” is the
one which was obtained for p = 0.5. This design is the
same as the designer would get by using default OC-based
SIMP on the extended design domain without using ESM.
“Design b” would be perhaps the most interesting for the
designer because almost the whole amount of material is
still inside the original design domain, but it shows around
7.15% improvement in the objective value. “Design c”
shows around 21% improvement in the objective value
but it has slightly more material in the extended regions
as compared to “Design b”. Still, the material that goes
in the extended regions is accumulated near the left fixed
edge and the rest of the extended regions are empty. This
shows that by slightly extending the design domain near
the fixed edge of the considered test case, it is possible to
considerably improve the performance of the structure.

8 CONCLUSION
In this paper, a novel concept of similarity-driven

Topology Optimization (TO) is demonstrated which en-
ables the designer to have more control over the process
of TO. A heuristic method for similarity-driven TO called
Energy Scaling Method (ESM) is developed by carefully
observing the working principles of the formal mathemat-
ical method of OC-based SIMP with similarity constraint.
The comparison of both methods for linear elastic static
similarity-driven TO shows the superiority of ESM. Al-
though both methods are capable of delivering a wide va-
riety of designs by controlling their similarity w.r.t. the
reference, the heuristic ESM delivers designs with better
performance, specially for the designs of lower similar-
ity level w.r.t. the reference. This makes ESM favorable

when the novelty of the obtained designs w.r.t. the ref-
erence is important for the designer. Moreover, ESM is
also found to be able to generate various designs by con-
trolling their similarity in just a part of the design domain
w.r.t. the corresponding part of a given reference.

The implementation of ESM in a certain TO method
does not require any sensitivity information. This allows
its easy incorporation into gradient methods like OC-
based SIMP as well as non-gradient methods like HCA
to realize similarity-driven TO. Using HCA as the main
TO algorithm, the capabilities of ESM for highly non-
linear dynamic problems are demonstrated by running
similarity-driven TO on a 2D beam with fixed edges, im-
pacted by a pole on the top edge.

The simplicity and low computational cost of ESM
allows its use for large-scale industrial problems. In this
article, similarity-driven TO is performed on a 3D frontal
hood of a car body using ESM in HCA. Again, designs of
different similarity level w.r.t. the reference are obtained.

A design domain extension study is conducted in lin-
ear elastic static TO of a 2D test case. The quantity of
material in the extended portions of the design domain
is controlled by coupling ESM with OC-based SIMP.
It is found that ESM can deliver designs which have a
very small amount of material in the extended portion of
the domain but have considerably improved performance.
These better performing designs are also not much differ-
ent from the one obtained using the original design do-
main. These results show the potential of ESM for sen-
sitivity analysis of performance w.r.t. the design domain
size. This can change the way TO is used in the industry
by making the design process more flexible and coopera-
tive between different design teams.

Finally, the effectiveness of ESM allows the designer
to make a compromise between the overall performance
and the desired structural layout by expressing their pref-
erences right in the initial phases of product development.

In this work, ESM was used for similarity-driven TO
by controlling the energy scaling parameter p. Designs
of different dissimilarity metric w.r.t. the reference were
obtained by changing p and performing a number of TO
runs. An interesting problem, which we are going to ad-
dress in our future publications, is to predict the required
scaling parameter p to obtain a design of a certain dis-
similarity metric. In this way, the designer will have to
perform only one similarity-driven TO run using the pre-
dicted p to obtain the desired structure.

Moreover, this work considers only one reference
structure for similarity-driven TO. Practically, the de-
signer might want to control the structural layout of the
obtained design w.r.t. a number of different reference
structures. This is particularly important when the nov-



Fig. 17: Objective value vs. energy scaling results for design domain extension study. The dotted lines in designs “b”
and “c” show the upper and lower extended regions of the design domain.

elty is important and the new design should be different
from the already available designs. Therefore, similarity-
driven TO w.r.t. multiple reference structures is also a
promising future research direction.

Finally, other dissimilarity metrics, including the
ones based on machine learning [37] can also be consid-
ered to improve the workflow of similarity-driven TO.
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nio Jimenez, A., Ramirez Rodriguez, J., and Im-
bert Paredes, R., 2017, “Comparative analysis of
shape descriptors for 3d objects,” Multimed. Tools
Appl., 76, pp. 6993–7040.

[34] Andreassen, E., Clausen, A., Schevenels, M.,
Lazarov, B. S., and Sigmund, O., 2011, “Efficient
topology optimization in MATLAB using 88 lines
of code,” Struct. Multi. Optim., 43(1), pp. 1–16.

[35] Patel, N., 2007, “Crashworthiness Design Using
Topology Optimization,” PhD thesis, University of
Notre Dame, Indiana, USA.

[36] Yousaf, M. S., 2020, “Structural Layout Preferences
in Topology Optimization for Statics and Crash,”
Master’s thesis, TU Munich, Munich, Germany.

[37] Dommaraju, N., Bujny, M., Menzel, S., Olhofer,
M., and Duddeck, F., 2019, “Identifying topolog-
ical prototypes using deep point cloud autoencoder
networks,” In 2019 ICDMW, IEEE, pp. 761–768.


