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ABSTRACT
Tree-based pipeline optimization tool (TPOT) is used to automati-

cally construct and optimize machine learning pipelines for classi-

fication or regression tasks. The pipelines are represented as trees

comprising multiple data transformation and machine learning

operators — each using discrete hyper-parameter spaces — and

optimized with genetic programming. During the evolution pro-

cess, TPOT evaluates numerous pipelines which can be challeng-

ing when computing budget is limited. In this study, we integrate

TPOT with Bayesian Optimization (BO) to extend its ability to

search across continuous hyper-parameter spaces, and attempt to

improve its performance when there is a limited computational

budget. Multiple hybrid variants are proposed and systematically

evaluated, including (a) sequential/periodic use of BO and (b) use

of discrete/continuous search spaces for BO. The performance of

these variants is assessed using 6 data sets with up to 20 features

and 20,000 samples. Furthermore, an adaptive variant was designed

where the choice of whether to apply TPOT or BO is made auto-

matically in each generation. While the variants did not produce

results that are significantly better than “standard" TPOT, the study

uncovered important insights into the behavior and limitations of

TPOT itself which is valuable in designing improved variants.

CCS CONCEPTS
• Computing methodologies → Search methodologies; Ran-
domized search;
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1 INTRODUCTION
Researchers and practitioners have a significant interest in devel-

oping numerical models that have good predictive capability to

deal with classification or regression tasks. Given that the choice

of model(s) and the ways they can be combined to accomplish

these tasks is virtually unlimited, the choice is best dealt using

automated machine learning tools (AutoML) [8] in lieu of manual

selection. Machine learning models can be employed individually,

or sequentially; using the output of one model as the input to the

next, harnessing the strengths of multiple models simultaneously.

When combined in this manner, the models are collectively known

as a machine learning pipeline [13]. Each model has its own unique

set of hyper-parameters which must be prescribed before applica-

tion of the model. The hyper-parameters control various aspects

of the model behavior and can take continuous, discrete, binary or

even categorical values. In designing a machine learning pipeline,

one needs to decide on the following:

(1) Which models to use in the pipeline?

(2) How are they organised relative to each other?

(3) What are the values of their respective hyper-parameters?

Tree-based pipeline optimization tool (TPOT) [13] is a Python

library, built on top of the Distributed Evolutionary Algo-

rithms (DEAP) [5](https://github.com/deap) library, designed to

automate this machine learning pipeline development process

for classification or regression tasks
1
. It represents pipelines

as tree-based data structures, constructed using the genetic

programming (GP) methods provided by DEAP.

One significant limitation of TPOT is that, for all its sophistica-

tion in utilizing GP, it still relies on a random-search method for

tuning hyper-parameters using discretized hyper-parameter spaces.

When a new model is added to a pipeline during the initialization

or mutation, its hyper-parameters are uniformly randomly sampled

from their respective value ranges. While many hyper-parameters

are essentially continuous variables, TPOT discretizes the contin-

uous search spaces with an arbitrary granularity. Although this

approach is somewhat effective, the fact still remains that unless

the global optimum value for a given hyper-parameter lies on the

exact point of discretization, TPOT will not find it. Another issue,

is related to the use of TPOT in settings where the computational

budget is limited, i.e., there is a limit on the number of pipelines

that can be evaluated during the course of search. Since pipelines

1
The methods proposed in this paper were developed using the TPOTRegressor class,

however they are equally applicable to the TPOTClassifier class as well.

https://doi.org/10.1145/3583131.3590364
https://doi.org/10.1145/3583131.3590364
https://github.com/deap
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in TPOT are evolved using an evolutionary algorithm (GP), many

evaluations are required in order to achieve convergence, which is

critical if the ML task involves long training times.

Optuna [1](https://optuna.org/) is a hyper-parameter opti-

misation library for Python which employs Bayesian optimisa-

tion (BO) [14] to tune hyper-parameter values. It uses a Tree-based

Parzen Estimator (TPE) [2, 4] as the underlying surrogate model,

built using historical information to estimate and suggest promising

values. Unlike TPOT, Optuna has no limitations on the type of

values the hyper-parameters can take, however it is not as effective

at constructing/selecting models as TPOT.

Based on the above, TPOT can be thought of as an effective

tool for exploration of the space of possible pipelines, and Optuna

as an effective means for exploitation of those pipelines, by fine-

tuning their hyper-parameters — harnessing the strengths of both.

In this study, we follow this line of inquiry to construct three hybrid

variants of TPOT and BO — along with a “standard" TPOT base-line

— and evaluate them on a range of datasets to draw insights that

will be valuable for designing improved optimization approaches.

2 BACKGROUND AND RELATEDWORK
There has been significant growth and interest in industrial applica-

tions of machine learning in recent years. Identification of a model

to deal with a regression or a classification task involves repetitive

and computationally demanding evaluation of various models and

their combinations with potentially numerous hyper-parameter

settings. Automated machine learning (AutoML) has emerged as

an effective approach to deal with the above problem where opti-

mal pipelines consisting of data pre-processing, feature engineer-

ing, model selection with tuned hyper-parameters are sought. A

review of the history of AutoML tool development along with a

comprehensive analysis of existing tools and their functionalities

appears in [16]. Some prominent open source developments include

Auto-Weka [11], TPOT [13], auto-sklearn [6], and H2O [15]. The

developments have typically focused on two specific areas: how to

represent and combine multiple models in a pipeline and how to

find the best hyper-parameter settings for the underlying models.

TPOT adopts a tree-based representation for its pipelines and modi-

fies the trees through GP. This scheme in TPOT can potentially lead

to the generation of infeasible, or duplicate, pipelines which are not

evaluated. As for the hyper-parameters of the models, TPOT relies

on the use of random search within a discretized parameter space.

This is motivated by the observation reported in [3] where it was

shown that such a scheme can discover high-performing parameter

sets faster than a more comprehensive search.

Hyper-parameter optimization methods evaluate promising con-

figurations such as via successive halving [10] or via BO. For ex-

ample, Gaussian process models constructed using historical data

have long been employed in BO [9]. Alternatively, a tree structured

Parzen estimator (TPE) [2, 4] can be used where the models are

represented as trees involving a large number of continuous, dis-

crete, binary and categorical hyper-parameters. A recent review

of BO methods can be found in [17]. Optuna [1] is an open source

hyper-parameter optimization framework that supports BO via TPE.

While the original implementation used an independent TPE sam-

pler, which ignores the interaction among the hyper-parameters,

a multivariate TPE sampler has recently been added which has

significantly improved the efficiency of the optimization process.

Building upon the above developments, we present here a frame-

work that is aimed at combining the strengths of TPOT and BO.

Within the framework, multiple variants have been constructed,

including those that use BO sequentially or periodically and those

that use discrete or continuous search spaces for BO. The frame-

work is outlined in Section 3, followed by numerical experiments

and detailed analysis in Sections 4 and 5. Based on the observa-

tions, another variant that includes the automatic selection of the

TPOT/BO step has also been studied and presented in Section 5.

The summary of the findings along with additional challenges and

potential future directions are discussed in Section 6.

3 BO-TPOT SUITE
The proposed BO-TPOT

2
is a suite of methods which aim to aug-

ment the current capabilities of TPOT using BO. Three variants

of BO-TPOT are presented below: TPOT-BASE, TPOT-BO-S and

TPOT-BO-ALT. Briefly, TPOT-BASE executes baseline TPOT for

the entire computational budget of pipeline evaluations (i.e., cross-

validation on the input data set), TPOT-BO-S executes TPOT un-

til a certain point and then switches to BO for the remainder of

the pipeline evaluations, while TPOT-BO-ALT alternates between

TPOT and BO steps a few times over the run for a pre-defined

number of pipeline evaluations each. More details are given below.

3.1 TPOT-BASE
To evaluate the performance of the variants, the baseline perfor-

mance of TPOT is first established. TPOT-BASE loads the training

data 𝐷 for the given problem and using the TPOT Python library, a

given population of 𝑛𝑃 pipelines is constructed and evolved using a

set of genetic programming (GP) operators 𝜌 over 𝑛𝐺𝑡 generations.

The result is a set 𝑆 of 𝑛𝐺𝑡 × 𝑛𝑃 evaluated pipelines, minus any

which were not evaluated due to time-out, or other issues. Algo-

rithm 1 provides the pseudo-code for this baseline procedure. The

output is given as a Python dictionary object, the keys for which are

the string representations of the pipelines in 𝑆 . Hyper-parameter

values can be drawn from (discretized) continuous spaces, integers,

categorical or boolean values.

Algorithm 1: TPOT-BASE
Input: 𝐷 : training data; 𝑛𝑃 : population size; 𝑛𝐺𝑡 : total generations;

𝜌 : GP parameters

Output: 𝑆 : set of evaluated pipelines

1: 𝑇 ← TPOTRegressor object created using 𝑛𝑃 and 𝜌

2: 𝑆 ← result of fitting𝑇 on 𝐷 for 𝑛𝐺𝑡 generations

3: return 𝑆

3.2 TPOT-BO-S: Single instance BO step
At its core, TPOT employs random search for hyper-parameters

based on a discrete search space. The use of discretized search

spaces for all the hyper-parameters, and random search to identify

them, could turn out inefficient choices — especially when the

2
Code available at https://github.com/AngusKenny/BO-TPOT.

https://optuna.org/
https://github.com/AngusKenny/BO-TPOT
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computing budget is limited. Furthermore, since TPOT evaluates

multiple pipelines in every generation, the computational budget

can easily be exhausted within a few generations.

Bayesian optimization methods are typically used when the

computational budget in terms of candidate evaluations is limited.

BO methods build a surrogate model to approximate the fitness

function and maximize an acquisition function, typically based on

predicted mean and associated uncertainties, to determine the next

sampling location. This means that combining BO with TPOT will

allow TPOT-BO-S to be more selective in terms of sampling the

hyper-parameter values, compared to TPOT on its own.

Some AutoML tools (e.g., auto-sklearn) employ Bayesian op-

timization (BO) for model selection. However, these tools typi-

cally deal with fixed pipeline structures — not with flexible ones

like TPOT does — meaning BO is more frequently used in hyper-

parameter optimization. Therefore, TPOT-BO-S is applied to fine-

tune the hyper-parameters of the best pipeline identified by TPOT

at a prescribed point, e.g., after some number (𝑛𝐺𝑠 ) of generations.

The pseudo-code for TPOT-BO-S is given in Algorithm 2. It uses

𝑆 , typically the output generated by TPOT-BASE at a prescribed

stopping point 𝑛𝐺𝑠 , to determine 𝑠 , the pipeline with the smallest

cross-validation (CV) error, which is chosen as the candidate for

improvement by BO. All pipelines with a matching structure to

this candidate pipeline are extracted from 𝑆 to make a new set of

pipelines 𝑆 (Line 1). Two unique pipelines are said to have matching

structures if they contain the same operators, organised in the same

way, but with different hyper-parameter values.

The hyper-parameter values for the pipelines in 𝑆 are used to

initialise a model𝑀 (Line 2) and BO is allowed to evaluate a total of

𝑛𝐸 = (𝑛𝐺𝑡 − 𝑛𝐺𝑠 ) × 𝑛𝑃 pipelines, where 𝑛𝐺𝑡 is the total number of

TPOT generations and 𝑛𝑃 is the population size. This ensures that

the total computing budget consumed by TPOT-BO-S and the ini-

tial 80 TPOT-BASE generations is equivalent to that consumed by

the full TPOT-BASE execution
3
. Pipelines with hyper-parameters

suggested by BO are successively evaluated (Line 7), and 𝑀 up-

dated (Line 13), until the computational budget has been exhausted,

at which point the total set of evaluated pipelines is returned.

Occasionally, there do not exist sufficient unique combinations

of hyper-parameter values to satisfy the entire budget, which can

result in TPOT-BO-S falling into an infinite loop. To avoid this,

a counter is maintained which triggers a second stopping con-

dition if no new pipelines are evaluated within 100 consecutive

attempts (Line 9). If this condition is reached, the BO step is prema-

turely terminated, returning the best pipeline so far.

Unlike TPOT operating with discretized hyper-parameter values,

BO is not limited to discrete spaces and can undertake a much

finer-grained hyper-parameter search. Although many of the mod-

els supported by TPOT have continuous hyper-parameters, TPOT

discretizes them in its standard implementation. Hence, on its own,

TPOT might not be able to find the optimal value for a given hyper-

parameter unless it happens to exist in the discretized set of values.

In contrast, the surrogate model and acquisition function of BO

based on TPE can operate seamlessly within discrete, continuous

and categorical hyper-parameter search spaces.

3
Noting that it is possible for TPOT-BASE to evaluate marginally fewer than𝑛𝐺𝑡 ×𝑛𝑃
pipelines, since some might time-out or already exist in the set of evaluated pipelines.

Algorithm 2: TPOT-BO-S
Input: 𝐷 : training data; 𝑆 : input pipelines; 𝑛𝐸: BO evaluations;

𝜌 : GP parameters

Output: 𝑆 : updated set of evaluated pipelines

1: 𝑆 ← best pipeline 𝑠 in 𝑆 and all matching pipelines

2: 𝑀 ← surrogate model constructed from 𝑆

3: 𝑇 ← TPOTRegressor with population size 1 and GP parameters 𝜌

4: 𝑐 ← 0: counter for unsuccessful evaluations

5: 𝑛𝐸𝑡 ← 𝑛𝐸 + |𝑆 |
6: while |𝑆 | < 𝑛𝐸𝑡 do
7: 𝑠′ ← pipeline built from hyper-parameters suggested by𝑀 ,

evaluated by𝑇 on 𝐷 and 𝑆

8: if 𝑠′ not evaluated then
9: 𝑐 ← 𝑐 + 1, break if 𝑐 = 100

10: else
11: 𝑐 ← 0, 𝑆 ← 𝑆 ∪ 𝑠′
12: end if
13: 𝑀 ← update surrogate model with 𝑠′

14: end while
15: return 𝑆 ∪ 𝑆

3.3 TPOT-BO-ALT: Alternating TPOT and BO
steps

An alternative strategy to TPOT-BO-S, but with similar intent, is

referred here as TPOT-BO-ALT. TPOT-BO-S invests a large portion

of its computational budget to improve a single candidate pipeline

in its BO step. However, this is only effective when the pipeline

selected has enough room for improvement in the first place. As

there is no way of knowing this a priori, TPOT-BO-S essentially

locks-in its choice of pipeline structure and hopes that further

improvements materialize during the BO step.

TPOT-BO-ALT, presented in Algorithm 3, incorporates the ideas

developed in TPOT-BO-S, but addresses the issue raised by its poten-

tially high-risk strategy of investing the computational budget in a

single pipeline. It does so by dividing the total computational budget

into a series of alternating TPOT (Line 5) and TPOT-BO-S (Line 6)

steps, incrementally evolving the population, and improving the

best candidate, as it goes. Fewer BO evaluations are thus invested

in any single pipeline, but the risk that a large portion of the com-

putational budget will be wasted at the end is significantly reduced.

The total computing budget is divided into 𝑛𝐼 iterations, with

each further divided into a TPOT and a TPOT-BO-S step. The total

number of TPOT generations 𝑛𝐺𝑡 , and the number of generations

per TPOT step 𝑛𝐺𝑠 are specified as part of its input. To ensure a

fair comparison, 𝑛𝐺𝑡 is set the same as for TPOT-BASE and 𝑛𝐺𝑠

is set the same as for TPOT-BASE, divided by 𝑛𝐼 . This means the

total sum of TPOT and BO evaluations is the same as the initial

(full) TPOT-BASE execution. Minor variations may result due to

any skipped evaluations during the TPOT step, or a prematurely

terminated BO step.

4 NUMERICAL EXPERIMENTS
This section discusses the test problems and experimental settings

used to benchmark the BO-TPOT variants presented so far.
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Algorithm 3: TPOT-BO-ALT
Input: 𝐷 : training data; 𝑛𝐺𝑡 : total generations; 𝑛𝑃 : population size;

𝑛𝐼 : iterations; 𝑛𝐺𝑠 : generations in TPOT step; 𝜌 : GP parameters

Output: 𝑆 : set of evaluated pipelines

1: 𝑇 ← TPOTRegressor initialized using 𝑛𝑃 and 𝜌

2: 𝑛𝐸 ← (𝑛𝐺𝑡 − 𝑛𝐼 × 𝑛𝐺𝑠 ) × 𝑛𝑃
𝑛𝐼

, number of TPOT-BO-S evaluations

3: 𝑆 ← ∅, evaluated pipeline set

4: for 𝑛𝐼 iterations do
5: 𝑆 ← update with result of𝑇 on 𝐷 and 𝑆 for 𝑛𝐺𝑠 generations

†

6: 𝑆 ← TPOT-BO-S(𝐷,𝑆,𝑛𝐸, 𝜌 )
7: end for
8: return 𝑆

†
initially,𝑇 is fit for 𝑛𝐺𝑠 − 1 generations, to account for the starting population.

4.1 Test problems
The experiments were conducted using six well-studied data sets

drawn from the literature [7]. These data sets were chosen to have

a good representation of real-world regression problems with a di-

verse number of features. They are presented in Table 1. Categorical

features in the data are encoded as integer values.

Table 1: Six data sets used in this study, obtained from
the OpenML repository (https://openml.org/). Note that
brazilian_houses has been abbreviated to b_h.

Problem #features #samples Problem #features #samples

quake 3 2,178 socmob 5 1,156

abalone 8 4,177 b_h 12 10,692

house_16h 16 22,784 elevators 18 16,599

4.2 Experimental design
The code was implemented in Python, with the TPOT Python li-

brary [13] providing the main TPOT implementation and Optuna

Python library [1] providing the Bayesian optimisation (BO) tools.

Implementation details and documentation for the BO-TPOT suite

of tools along with the source code are available via GitHub (link

withheld for anonymity during the review).

To observe their statistical behaviour, the algorithms in the

BO-TPOT suite were compared based on the results obtained from

21 runs, against the baseline provided by TPOT-BASE with default

TPOT parameters including population size 𝑛𝑃 = 100, evolved for a

total of 𝑛𝐺𝑡 = 100 generations, with mutation rate of 0.9, crossover

rate of 0.1 and 5-fold cross-validation of mean squared error during

fitting. For TPOT-BO-S, the set of input pipelines was the output

for TPOT-BASE after 80 generations and the number of evaluations

was 𝑛𝐸 = 2000. For TPOT-BO-ALT, the number of generations per

TPOT step was 𝑛𝐺𝑠 = 8 and the number of iterations was 𝑛𝐼 = 10.

All runs were carried out using both discrete and continuous

hyper-parameter spaces during the BO steps, in order to assess any

advantage that a fine-grained search might provide.

Because so many pipeline evaluations must be performed, the

run time of a single experiment can potentially span days. There-

fore, for problems with a large number of features and samples

(b_h, house_16h, elevators), the evaluation time per pipeline was

restricted to 1 minute; the rest were allowed the TPOT default of 5

minutes per pipeline.

5 RESULTS AND DISCUSSION
The results from the experiments are presented in Table 2 for each

problem, sorted by the size of the problem (smallest to largest).

For each problem, the best, worst, median and mean cross valida-

tion (CV) error and the standard deviation is listed based on 21 runs.

For TPOT-BO-S and TPOT-BO-ALT, the results are presented for

both discrete and continuous hyper-parameter spaces.

At a high-level, Table 2 shows that there is usually some benefit

gained by performing BO to fine-tune hyper-parameters, though

not necessarily a lot. With the exception of the single best run

for socmob and house_16h, and the median run for elevators;
the best, median and mean CV error values are all found in the

TPOT-BO-S and TPOT-BO-ALT columns. Of these, the majority

were obtained when continuous parameter spaces were used in

the BO step, with the results split evenly between TPOT-BO-S

and TPOT-BO-ALT. TPOT-BO-S fared better when applied to the

quake, abalone and elevators problems, but not so well on b_h
and house_16h. Table 2 also provides the win/tie/loss results from

a pairwise comparison of both TPOT-BO-S and TPOT-BO-ALT (for

discrete and continuous parameter spaces) against TPOT-BASE,

using the Mann-Whitney-Wilcoxon (MWW) statistical test [12].

Here, method 𝐴 is said to “win” over method 𝐵 (and 𝐵 “lose” to

𝐴), if the mean CV error of 𝐴 is less than that of 𝐵, with a p-value

less-than-or-equal-to 0.05. If the p-value is greater than 0.05, we

cannot say with any confidence that the samples are drawn from

different distributions, and the result is deemed a “tie”.

Tables 3 and 4 provide some deeper insights into the reasons

for the obtained results. Table 3 provides the results for each prob-

lem from a single run and compares the results obtained from

TPOT-BASE, TPOT-BO-S and TPOT-BO-ALT for that same run.

The run chosen for this comparison is the run for which the pipeline

selected after 80 TPOT generations had the median CV error value

across all 21 runs. Table 4 gives statistics about the number of

pipelines evaluated up to 80 TPOT generations, number of pipelines

with unique structures among them, the number of non-dominated

solutions (i.e., solutions for which there does not exist another so-

lution that is better or equal in all objectives, and strictly better in

at least one) considering CV error and number of operators as the

metric, the number of operators in the chosen pipeline, the number

of hyper-parameters in the pipeline and the number of matching

pipelines evaluated so far. One can note that the best pipeline (small-

est CV error) for quake and house_16h had 6 operators each, but

their associated number of hyper-parameters are different, i.e., 30

and 22. The number of hyper-parameters dictates the size of the

BO search space as opposed to the number of operators, although

TPOT uses number of operators (and CV error) as a metric.

Results of the median runs of abalone and socmob provide some

reasons as to why TPOT-BO-S might perform well on some prob-

lem instances, but not others. During its operation, TPOTmaintains

a set of pipelines representing the Pareto front approximation that

demonstrates the trade-off between pipeline complexity (number

of operators) and predictive performance (CV error). By the time

the population (of size 100) has been evolved by TPOT for 80 gener-

ations, approximately 8000 pipelines have been evaluated. Of these

∼8000 pipelines, many have identical structures and can be grouped

together. When selecting a pipeline for the BO step, TPOT-BO-S

https://openml.org/
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Table 2: Experimental results. Values in parentheses represent (number of variables/sample points) for a given data set. Also
given are wins/ties/losses against TPOT-BASE with a p-value less-than-or-equal-to 0.05 considered significant.

TPOT-BASE TPOT-BO-S TPOT-BO-ALT

at 80 gens Complete Discrete Continuous Discrete Continuous

quake (3/2178)
best 3.519215e-02 3.518110e-02 3.519215e-02 3.507130e-02 3.503905e-02 3.511628e-02

median 3.534442e-02 3.532573e-02 3.533886e-02 3.532163e-02 3.540126e-02 3.537806e-02

mean 3.534209e-02 3.532918e-02 3.533423e-02 3.531965e-02 3.534641e-02 3.533432e-02

std dev 8.501796e-05 8.567492e-05 8.072723e-05 9.721603e-05 1.041078e-04 9.508804e-05

socmob (5/1156)
best 1.344280e+02 1.317632e+02 1.344280e+02 1.344280e+02 1.356928e+02 1.346952e+02

median 1.624169e+02 1.598869e+02 1.586976e+02 1.579499e+02 1.676150e+02 1.608166e+02

mean 1.594125e+02 1.577441e+02 1.584519e+02 1.574076e+02 1.600386e+02 1.557128e+02
std dev 1.023297e+01 1.045449e+01 9.799378e+00 1.043645e+01 1.411075e+01 1.140616e+01

abalone (8/4177)
best 4.219117e+00 4.216435e+00 4.196940e+00 4.201264e+00 4.184635e+00 4.181162e+00
median 4.254765e+00 4.251526e+00 4.239837e+00 4.240244e+00 4.249577e+00 4.253169e+00

mean 4.254398e+00 4.250179e+00 4.241122e+00 4.238250e+00 4.240930e+00 4.250218e+00

std dev 1.684278e-02 1.760437e-02 1.845866e-02 1.851458e-02 2.434576e-02 2.005804e-02

b_h (12/10692)
best 4.077523e+01 4.077434e+01 4.076721e+01 4.076779e+01 4.076762e+01 4.075871e+01
median 4.081545e+01 4.081435e+01 4.080794e+01 4.081545e+01 4.081387e+01 4.080403e+01
mean 4.080993e+01 4.080751e+01 4.080497e+01 4.080556e+01 4.080048e+01 4.079465e+01
std dev 1.952899e-02 2.063165e-02 2.136754e-02 2.186512e-02 2.069696e-02 2.440020e-02

house_16h (16/22784)
best 8.897154e+08 8.857484e+08 8.897154e+08 8.890021e+08 8.902213e+08 8.713201e+08

median 9.280501e+08 9.255052e+08 9.245483e+08 9.199194e+08 9.195092e+08 9.144056e+08
mean 9.278689e+08 9.256198e+08 9.235675e+08 9.187529e+08 9.126147e+08 9.024381e+08
std dev 1.380190e+07 1.491871e+07 1.498829e+07 1.682181e+07 1.356531e+07 1.196513e+07

elevators (18/16599)
best 3.446479e-06 3.442113e-06 3.438447e-06 3.439498e-06 3.491153e-06 3.488053e-06

median 3.621078e-06 3.581124e-06 3.593705e-06 3.593557e-06 3.634452e-06 3.641495e-06

mean 3.583750e-06 3.575972e-06 3.570815e-06 3.573468e-06 3.589411e-06 3.595229e-06

std dev 6.418178e-08 6.544894e-08 6.791904e-08 6.622412e-08 5.055332e-08 5.341751e-08

wins/ties/losses: 0/6/0 1/5/0 1/5/0 1/5/0

Table 3: Detailed results by problem, for the run with pipeline selected for BO step after 80 TPOT generations having median
CV error value from 21 runs, and the results obtained from TPOT-BASE, TPOT-BO-S and TPOT-BO-ALT on the same run.

TPOT-BASE TPOT-BO-S TPOT-BO-ALT

Problem at 80 gens Complete Discrete Continuous Discrete Continuous

quake 3.534442e-02 3.534442e-02 3.531071e-02 3.528877e-02 3.528311e-02 3.525003e-02
socmob 1.624169e+02 1.620516+e02 1.579280+e02 1.624169e+02 1.661091e+02 1.578522e+02
abalone 4.254765e+00 4.252000e+00 4.229589e+00 4.225819e+00 4.261785e+00 4.253169e+00

b_h 4.081545e+01 4.081435e+01 4.081545e+01 4.081545e+01 4.076762e+01 4.078809e+01

house_16h 9.280501e+08 9.274642e+08 9.228110e+08 9.199194e+08 9.057001e+08 9.015522e+08
elevators 3.621078e-06 3.621078e-06 3.621078e-06 3.621078e-06 3.619228e-06 3.615875e-06

Table 4: Statistics at 80 TPOT generations for the same runs
as detailed in Table 3. Given are the total numbers of: evalu-
ated pipelines; unique pipeline structures; non-dominated
pipeline structures, based on CV and number of operators;
operators, hyper-parameters of the pipeline selected by
TPOT-BO-S and pipelines with a structure matching it.

Pipelines Selected pipeline

Problem Evaluated Unique ND Operators HPs Matching

quake 7525 1031 6 6 30 9

socmob 7791 2948 5 5 27 16

abalone 7816 938 4 4 17 75

b_h 7536 1540 6 7 0
†

1

house_16h 7495 1176 5 6 22 1

elevators 7763 1823 4 4 20 63

†
Selected b_h pipeline consisted only of RidgeCV, CombineDFs, StandardScaler and Max-

AbsScaler operators — none of which require any hyper-parameters.

chooses the one with the lowest CV error. However, the lowest

CV error is not the only consideration that is important. Partition-

ing the evaluated pipelines by unique structure means that the

mean CV error, standard deviation and probability density function

can be computed for each group. Figure 1 provides plots of these

probability density functions for all of the unique, non-dominated

pipeline structure groups for abalone and socmob, respectively —

along with an indication of which group the pipeline selected for

the BO step of TPOT-BO-S belongs to.

Assuming the pipeline CV errors are normally distributed (as

CV is bounded to one side, it is unlikely the distribution is truly

normal, but the assumption is made for illustrative purposes), these

plots can be used to estimate the likelihood a pipeline may yield

a better CV error value after improvement. This likelihood is rep-

resented by the area under the curves to the left of a given CV

error. Figure 1(a) indicates that the choice of pipeline selected by

TPOT-BO-S was probably a good one, as there is no other curve

which has a significantly larger area beneath it to the left of the

orange curve. Conversely, Figure 1(b) suggests that the choice of



GECCO ’23, July 15–19, 2023, Lisbon, Portugal A. Kenny et al.

4 4.2 4.4 4.6 4.8

0

2

4

6

8

CV

pd
f(
C
V
,µ
,σ

)

selected for BO

(a) abalone

100 150 200 250 300

0

0.5

1

1.5

2

·10−2

CV

pd
f(
C
V
,µ
,σ

)

selected for BO

(b) socmob

Figure 1: Estimated distribution of non-dominated, unique
pipelines for (a) abalone and (b) socmob after 80 generations.

pipeline by TPOT-BO-S for this instance of socmob was probably
not the best since both the green and pink curves have significant

areas below them to the left of the orange curve (the blue one too,

but that has a too large standard deviation to provide any reliable

predictions). This indicates that there is a likelihood that better CV

errors can be achieved using those structures. This demonstrates

there is a significant amount of risk involved when selecting a

pipeline for improvement using best CV error as the sole criteria.

These inferences are both supported by the results in Table 3, where

TPOT-BO-S performed best for this run on abalone but not as well
on socmob. During the course of evolution, TPOT ranks pipelines

based on CV error value and the number of operators, but neither

of these attributes are necessarily a good indicator of how well the

BO step is likely to perform in TPOT-BO-S. Without a significant

number of samples, it is difficult to make any predictions about

the distribution of pipeline CV errors, and the more samples that

are provided to a BO model during its construction, the more re-

liable its predictions will likely be. This is reflected in the results

for abalone and house_16h in Table 4. The BO model for abalone
was constructed using information from 75 matching pipelines; in

contrast to the model for house_16h, which was initialised with

a single data point. Here, a lot of the budget must be invested in

sampling the parameter space to improve the fidelity model.

The performance of a BO model is strongly related to the accu-

racy of its surrogate. The number of variables and the number of pos-

sible values those variables can take are the two key considerations

when applying BO. In the case of TPOT-BO-S and TPOT-BO-ALT,

the variables are the hyper-parameters for the machine learning

models which comprise the operators for a given pipeline. Once a

pipeline is selected for a BO step, its structure is effectively frozen

and cannot change until the BO step is complete. The structure of a

pipeline is determined by its operators and the order in which they

appear, but an arbitrary operator can require any number of hyper-

parameters; which means the number of operators for a pipeline is

unlikely to be a useful predictor of BO complexity. This is visible

from the b_h results in Table 4, where the pipeline selected for the

BO step has 7 operators but, notably, no hyper-parameters at all.

Clearly, there is nothing BO could do to improve this pipeline.

Another example of the importance of number of hyper-

parameters is visible from the results for abalone in Table 4.

Here the chosen pipeline has few hyper-parameters, and this is
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Figure 2: house_16h convergence plots for median run
of TPOT-BO-S and TPOT-BO-ALT with discrete (left)
and continuous (right) parameter spaces. The phases of
TPOT-BO-ALT are coloured blue (TPOT) and red (BO).

also the problem instance where TPOT-BO-S performed the best.

However, one should not take the number of hyper-parameters, or

number of matching pipelines, to be an absolute measure to predict

the potential success of the BO step. The results in Table 4 for

elevators cautions against this: for the median run, the selected

pipeline had 20 hyper-parameters and 63 matching pipelines,

but TPOT-BO-S was unable to achieve any improvements. This

suggests that a more sophisticated approach is required.

Given that TPOT-BO-S only gets one chance to make its choice,

and then must invest its entire allocated BO computing budget in

whichever pipeline it selects, it makes sense that having a smaller

number of choices to select from will increase its chances of per-

forming well. TPOT-BO-ALT “hedges its bets” by investing smaller

portions of its BO budget incrementally, meaning it will not spend

long improving any single pipeline, but instead mitigates its risk

by improving pipelines periodically, e.g., every 8 generations.

Even when TPOT-BO-S did not perform as well, as with the

house_16h problem, there were differences in the performance be-

tween the discrete and the continuous variants of the BO search.

Figure 2 presents the convergence plots for the median run of

TPOT-BO-S and TPOT-BO-ALT on the house_16h problem. This

figure demonstrates the behaviour observed when the BO-TPOT

suite is applied to this problem with both discrete (left) and contin-

uous (right) parameter spaces. The plots show that there is clear

and noticeable improvement in the CV error when a continuous

parameter space is used. This cannot be attributed to the effect

of BO alone, as this improvement is not as dramatic when BO is

applied to the same pipeline using a discrete parameter space. It is

harder to judge the difference between the two parameter spaces

when used by TPOT-BO-ALT, as the populations diverge after the

first BO step. However, the initial improvement shown after this

first BO step using a continuous space is noticeably greater than

for the discrete space. This is also supported by Tables 2, 3 and 4.

Finally, although searching a continuous parameter space does

appear to provide some benefit, it is also worth noting that TPOT

already uses a reasonably fine grained descretization — steps of

0.05 in most cases — so there is only a limited room to improve

through this modification alone.
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Algorithm 4: TPOT-BO-AUTO
Input: 𝐷 : training data; 𝑛𝐺𝑡 : total number of generations;

𝑛𝑃 : population size; 𝜌 : GP parameters

Output: 𝑆 : set of evaluated pipelines

1: 𝑇 ← TPOTRegressor object initialized using 𝑛𝑃 and 𝜌

2: 𝑆 ← ∅, evaluated pipeline set

3: Δ𝑇 ,Δ𝐵 ← arbitrarily large values such that Δ𝑇 > Δ𝐵

4: DoTPOT← True

5: for 𝑛𝐺𝑡 − 1 generations
† do

6: if Δ𝑇 = Δ𝐵 then
7: DoTPOT← !DoTPOT — toggle from most recent operation

8: else
9: DoTPOT← Δ𝑇 > Δ𝐵

10: end if
11: if DoTPOT = True then
12: 𝑆 ← update with result of fitting𝑇 on 𝐷 and 𝑆 for 1 generation

13: else
14: 𝑆 ← TPOT-BO-S(𝐷,𝑇 ,𝑛𝑃, 𝜌 )
15: end if
16: Δ𝑇 ,Δ𝐵 ← update gradients

17: end for
18: return 𝑆

†𝑛𝐺𝑡 − 1 as 𝑛𝑃 evaluations required to construct the initial population.

Adaptive variant : TPOT-BO-AUTO
While dividing the computational budget into 𝑛𝐼 iterations allows

TPOT-BO-ALT to avoid investing all its resources into improving

just one pipeline, the choice of 𝑛𝐼 is still arbitrary and there is

a risk that the budget is not being used as efficiently as possible.

TPOT-BO-AUTO aims to address this by deciding whether to use

a TPOT or TPOT-BO-S step in each generation.

A population 𝑆 with size𝑛𝑃 is initialized and evolved for one gen-

eration using TPOT. BO is then applied for 𝑛𝑃 pipeline evaluations,

the equivalent of one TPOT generation. Then, for the remaining

𝑛𝐺𝑡 − 3 generations, the gradient of the best-so-far CV error values

is computed for the most recent execution of each process (Δ𝑇 ,Δ𝐵 )

and the process that produced the steepest gradient is selected for

the next 𝑛𝑃 evaluations. If both gradients are equal, then the pro-

cess which was not the most recent is selected. The pseudo-code

for TPOT-BO-AUTO is given in Algorithm 4.

As with the experiments in Section 4, TPOT-BO-AUTO was ap-

plied to the six OpenML problems for 21 runs each. The results

are presented in Table 5 along with the results of TPOT-BASE and

TPOT-BO-ALT, and their MWW statistical significance tests. They

show that TPOT-BO-AUTO has competitive, but ultimately slightly

worse over-all performance than its two counterparts. However,

notably, it performed best for the two largest instances. Figure 3

plots the convergence of TPOT-BO-AUTO against TPOT-BASE and

TPOT-BO-ALT, for the socmob (top) and abalone (bottom) prob-

lems using discrete (left) and continuous (right) parameter spaces.

It can be seen from these plots that, typically, TPOT-BO-AUTO

alternates between TPOT and BO while searching for improve-

ments that can be made. When a potential area for improvement is

identified using either process, the plots also show that it is able to

exploit this change, by persisting with the same process until there

is a local convergence. TPOT-BO-ALT deterministically switches

Table 5: TPOT-BO-AUTO results. Values in parentheses rep-
resent (number of variables/sample points) for a given data
set. Also given are wins/ties/losses against TPOT-BASE with
a p-value less-than-or-equal-to 0.05 considered significant.

TPOT-BASE TPOT-BO-ALT TPOT-BO-AUTO

Discrete Continuous Discrete Continuous

quake (3/2178)
best 3.518110e-02 3.503905e-02 3.511628e-02 3.514637e-02 3.528579e-02

median 3.532573e-02 3.540126e-02 3.537806e-02 3.528434e-02 3.535106e-02

mean 3.532918e-02 3.534641e-02 3.533432e-02 3.523471e-02 3.534614e-02

std dev 8.567492e-05 1.041078e-04 9.508804e-05 7.993021e-05 3.322743e-05

socmob (5/1156)
best 1.317632e+02 1.356928e+02 1.346952e+02 1.454596e+02 1.447175e+02

median 1.598869e+02 1.676150e+02 1.608166e+02 1.646004e+02 1.628094e+02

mean 1.577441e+02 1.600386e+02 1.557128e+02 1.649793e+02 1.611582e+02

std dev 1.045449e+01 1.411075e+01 1.140616e+01 9.099695e+00 7.553073e+00

abalone (8/4177)
best 4.216435e+00 4.184635e+00 4.181162e+00 4.232186e+00 4.233097e+00

median 4.251526e+00 4.249577e+00 4.253169e+00 4.270114e+00 4.263818e+00

mean 4.250179e+00 4.240930e+00 4.250218e+00 4.269536e+00 4.263825e+00

std dev 1.760437e-02 2.434576e-02 2.005804e-02 1.456893e-02 1.322812e-02

b_h (12/10692)
best 4.077434e+01 4.076762e+01 4.075871e+01 4.077620e+01 4.076998e+01

median 4.081435e+01 4.081387e+01 4.080403e+01 4.078665e+01 4.081343e+01

mean 4.080751e+01 4.080048e+01 4.079465e+01 4.080467e+01 4.080363e+01

std dev 2.063165e-02 2.069696e-02 2.440020e-02 2.299884e-02 2.323473e-02

house_16h (16/22784)
best 8.857484e+08 8.902213e+08 8.713201e+08 9.110699e+08 8.877822e+08

median 9.255052e+08 9.195092e+08 9.144056e+08 9.204535e+08 8.972125e+08
mean 9.256198e+08 9.126147e+08 9.024381e+08 9.211489e+08 9.021325e+08
std dev 1.491871e+07 1.356531e+07 1.196513e+07 5.188537e+06 1.243686e+07

elevators (18/16599)
best 3.442113e-06 3.491153e-06 3.488053e-06 3.477236e-06 3.448599e-06

median 3.581124e-06 3.634452e-06 3.641495e-06 3.592937e-06 3.577999e-06
mean 3.575972e-06 3.589411e-06 3.595229e-06 3.606481e-06 3.575885e-06
std dev 6.544894e-08 5.055332e-08 5.341751e-08 5.653632e-08 5.003173e-08

wins/ties/losses: 1/5/0 1/5/0 1/3/2 1/4/1

between TPOT and BO processes, introducing an extra parame-

ter that must be tuned, and pays no attention to whether a given

process is likely to produce further improvements, if it were given

more time. These results demonstrate that TPOT-BO-AUTO works

to address this in principle, even if though its design requires some

further improvements to improve the quality of results.

Limitations of TPOT and single BO selection
Although competitive, the results obtained by any of the meth-

ods were not significantly better than TPOT-BASE. They also sug-

gest that by 80 generations, TPOT-BASE has already done a lot

of the “heavy-lifting” — leaving little space for any improvement.

TPOT-BO-ALT and TPOT-BO-AUTO attempted to improve on this

by beginning their search from scratch, however all three methods

are limited by two main factors. Figures 4 and 5 illustrate these two

principles on the abalone data set. The first is the fact choosing a

single pipeline for improvement by BO means that some amount

of luck is involved in determining the quality of the result. Fig-

ure 4 plots the best 20 unique pipeline structures after 80 TPOT

generations, ordered by CV and indicated by large, pale green dots.

The remaining budget was applied to all 20 structures individually,

the results of which are given by the smaller dark purple dots. As

highlighted by the yellow and red circles, TPOT-BO-S selected the

structure with the best CV at 80 TPOT generations and improved

it from around 4.244 to 4.227; however, the plot shows there are

several other choices which have worse initial CV values, but which



GECCO ’23, July 15–19, 2023, Lisbon, Portugal A. Kenny et al.

0 2500 5000 7500 10000
Evaluations

150

175

200

225

250

B
es

t
C

V
er

ro
r

0 2500 5000 7500 10000
Evaluations

TPOT-BASE

TPOT-BO-ALT

TPOT-BO-AUTO

(a) socmob

0 2500 5000 7500 10000
Evaluations

4.3

4.4

4.5

4.6

B
es

t
C

V
er

ro
r

0 2500 5000 7500 10000
Evaluations

TPOT-BASE

TPOT-BO-ALT

TPOT-BO-AUTO

(b) abalone

Figure 3: Convergence plots for the median runs of
TPOT-BO-ALT and TPOT-BO-AUTO on socmob (top) and
abalone (bottom) for discrete (left) and continuous (right)
parameter spaces. The phases of TPOT-BO-ALT are coloured
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coloured purple (TPOT) and orange (BO).
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Figure 4: BO is applied to the best 20 pipeline structures.

produce a better result once BO was applied — demonstrating the

limitations of selecting a single pipeline structure for improvement,

especially when that selection is made by CV alone.

The second factor is the mechanism that TPOT itself employs

when selecting pipelines to carry forward to the next generation.

When deciding the active population for the next generation,

TPOT orders the set of previously evaluated pipelines using a

non-dominated sort on CV and number of operators and chooses

the best 𝑛𝑃 pipelines to carry forward. While this method ensures

that pipeline complexity is reduced — and important consideration

for the efficient operation of its genetic programming procedures

— the diversity of the population used to generate offspring can

become severely limited. Figure 5 tracks unique structures selected
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Figure 5: Tracked TPOT-BASE population diversity.

in each generation of TPOT-BASE. The horizontal axis represents

the index of any pipeline structure included in an active population

throughout the search, with the vertical axis being the generation it

was included. A pale green dot indicates that only one pipeline with

that structure was included in that generation’s active population,

and a dark purple dot indicates 100 was selected — i.e., the entire

active population. This plot clearly shows that the majority of

pipelines included in the active population for the entire search

were drawn from one single structure, with very little diversity

shown in the population after approximately 30 generations.

6 CONCLUSION AND FUTUREWORK
The experimental results presented in Section 5 suggest that CV and

number of operators, as used in native TPOT, are not particularly

effective when deciding where to apply BO. Due to the nature of

TPOT’s selection mechanism, the initial search is skewed towards

pipeline structures with fewer operators, meaning more complex

pipeline spaces are not explored. While this is important to keep

the GP processes that TPOT is based on in check, it also results in

less diversity in the set of evaluated pipelines, which is detrimental

when constructing BO models. Even if a given pipeline structure is

theoretically optimal, it is unlikely to produce a good CV error if

very few sets of hyper-parameters have been sampled from it. Con-

versely, sampling a sub-optimal pipeline structure many times gives

it more chances to produce a better CV error — especially if it has

fewer operators. The results in this study show that there is often an

initial “jump” in quality of pipelines when BO is applied, especially

in the case of continuous parameter spaces, but this quickly tapers

off. This could be capitalized on by dividing the BO budget among

multiple pipelines that can be optimized simultaneously; competing

for resources and improving the overall quality of the pipelines

in the population. This leads to three fundamental questions to

consider moving forward (a) How should the pipelines for BO be

selected? (b) How many pipelines should be selected? and (c) How

to best divide the allocated budget amongst them? The first has

been partially addressed in the main experiments conducted as a

part of this study. The other two still present interesting challenges

and the insights gained from the study can be leveraged to develop

more efficient hybridization strategies.
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