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A frequent starting point of quantum computation platforms are two-state quantum systems, i.e.,
qubits. However, in the context of integer optimization problems, relevant to scheduling optimization
and operations research, it is often more resource-efficient to employ quantum systems with more
than two basis states, so-called qudits. Here, we discuss the quantum approximate optimization
algorithm (QAOA) for qudit systems. We illustrate how the QAOA can be used to formulate a
variety of integer optimization problems such as graph coloring problems or electric vehicle (EV)
charging optimization. In addition, we comment on the implementation of constraints and describe
three methods to include these into a quantum circuit of a QAOA by penalty contributions to the cost
Hamiltonian, conditional gates using ancilla qubits, and a dynamical decoupling strategy. Finally, as
a showcase of qudit-based QAOA, we present numerical results for a charging optimization problem
mapped onto a max-k-graph coloring problem. Our work illustrates the flexibility of qudit systems
to solve integer optimization problems.

I. INTRODUCTION

Integer optimization problems [1, 2] are at the heart
of challenging real-world applications, such as schedul-
ing optimization [3], operations research [4] and port-
folio selection [5]. The practical importance of these
problems makes the development of efficient solution al-
gorithms a particularly active field of research. In re-
cent years, quantum information processing technology
has advanced substantially and a multitude of industry-
relevant problems have been approached with quantum
computing technology, for example with quantum an-
nealing [6, 7]. Many problems have also been addressed
by employing algorithms for gate-based universal quan-
tum computing, such as job-shop scheduling [8], graph
coloring [9–12] and flight-gate assignment [12, 13]. A
paradigmatic example for a hybrid classical-quantum al-
gorithm is the quantum approximate optimization algo-
rithm (QAOA), proposed in Ref. [14, 15]. Further, it
was recognized that the QAOA (i) is a computational
model itself [16], (ii) can lead to an optimal query com-
plexity [17], and (iii) exhibits the possibility for quantum
advantage [18]. Moreover, important research questions
involve the role of quantum effects [19], the choice of
the classical optimizer [20], and the performance of the
QAOA for low and high depth circuits [21, 22].

The typical starting point for the QAOA are qubits,
i.e., quantum mechanical systems with two basis states.
Several qubits can then be used to represent integer num-
bers. However, such a binary representation of integers
can lead to hardware overhead [12, 23–25], and it may

be more resource-friendly to work with quantum systems
of a finite basis size with dimension d > 2, called qudits.
Although, the representation of qudits with arbitrary di-
mension into elementary qubits is computationally effi-
cient, even small improvements in hardware requirements
can be of great practical importance in the era of noisy
intermediate-scale quantum (NISQ) devices [26]. In ad-
dition, there is an increased interest in employing qu-
dit systems as quantum information platforms [27], and
there has been great experimental progress in realizing
quantum information processing with qudits such as pho-
tons [28], ions [29], superconducting circuits [30], nuclear
magnetic resonance platforms [31], as well as Rydberg
atoms [24, 32].

In this article, we discuss the QAOA for qudit systems,
and its possible realization in cold atomic systems with
long range interactions, e.g., in cold atomic mixtures [33]
or quantum gases inside an optical cavity [34]. Specifi-
cally, we elaborate the representations of cost functions
and constraints of integer optimization problems with qu-
dits. Further, we give examples of integer optimization
problems such as graph coloring and electric vehicle (EV)
charging problems, where the qudit formulation provides
a convenient representation of integers. Finally, we nu-
merically benchmark a simplified charging optimization
problem for small instances.

The paper is organized as follows: In Sec. II, we dis-
cuss the QAOA for qudit systems and how to encode
integer cost functions into Hamiltonians employing an-
gular momentum operators and generalized Pauli oper-
ators. Further, we discuss different ways to implement
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linear constraints in qudit systems generalizing the work
of Ref. [15, 35]. In Sec. III, we illustrate the implemen-
tation of concrete integer optimization problems and in
Sec. IV, we numerically analyze the performance of the
QAOA for a simplified EV charging optimization prob-
lem, which amounts to a graph-k-coloring problem with
additional coloring cost.

II. QAOA FOR QUDIT SYSTEMS

This section revisits the QAOA approach and discusses
how to apply the QAOA to qudit systems. The approach
is analogous to the case of qubits, only with enlarged local
basis states and operators. We first discuss the Hilbert
space for qudits and operators acting on this Hilbert
space, namely angular momentum operators and general-
ized Pauli operators. These two classes of operators can
be implemented experimentally, for example, in atomic
mixtures [33] or trapped-ion setups [29]. Next, we give
a summary of the general structure of the QAOA [14].
Then, we give two different ways of encoding cost func-
tions into Hamiltonians employing angular momentum
operators and generalized Pauli operators. The two dif-
ferent encodings may prove advantageous for different ex-
perimental qudit implementations. This section mainly
provides background information necessary for the fol-
lowing sections.

FIG. 1. QAOA for qudits. General structure of the QAOA,
consisting of preparation of the initial state |ψ0⟩ which is the
equal superposition of all basis states, application of the al-
ternating QAOA-circuit (consisting of phase separation gate
UC(γ) and mixing gate UM (β)) and measurement together
with subsequent classical optimization of the variational pa-
rameters with respect to the expectation value of the cost
Hamiltonian.

A. Hilbert space and operators

We consider the N -fold tensor product of a d-
dimensional complex Hilbert space, i.e., H = ⊗N

i=1C
d.

The total dimension of the Hilbert space is dimH = dN

and a orthonormal basis for the d-dimensional Hilbert
space is denoted by |z⟩ with z ∈ {0, . . . , d − 1}. A state

vector |ψ⟩ ∈ H can be written as

|ψ⟩ =
d−1∑
z1=0

. . .

d−1∑
zN=0

αz1...zN |z⟩ , (1)

where αz1...zn is the complex amplitude and the states
|z⟩ = |z1, . . . , zN ⟩ form an orthonormal basis, i.e.,
⟨z|z′⟩ = δz,z′ .

The generalized Pauli Z and X-operators [27] for one
qudit are defined via

Z =

d−1∑
z=0

e2πiz/d |z⟩⟨z| , (2a)

X =

d−1∑
z=0

|(z + 1)mod d⟩⟨z| , (2b)

where the eigenvalues of Z are the roots of unity

Z |z⟩ = e2πiz/d |z⟩ . (3)

The definition of the generalized Pauli operators on H is
given by

Zj = 1⊗ · · · 1⊗︸ ︷︷ ︸
j−1

Z ⊗ 1 · · · ⊗ 1︸ ︷︷ ︸
N−j

, (4a)

Xj = 1⊗ · · · 1⊗︸ ︷︷ ︸
j−1

X ⊗ 1 · · · ⊗ 1︸ ︷︷ ︸
N−j

, (4b)

which only acts non-trivially on the jth qudit. By con-
struction the basis states |z⟩ are also eigenstates of prod-
ucts of generalized Pauli Z operators

N∏
j=1

Z
aj

j |z⟩ = e2πia·z/d |z⟩ , (5)

where a = (a1, . . . , aN ) with a ∈ ZN summarizes the
exponents in the previous expression.

In the following, we define angular momentum opera-
tors on the single qudit, which can be realized, for exam-
ple, in cold atomic gases, see Sec. A for details. First, we
define the vectors

|ℓ,m⟩ ≡ |z⟩ (6)

with ℓ = (d − 1)/2 and m = z − (d − 1)/2. Using this
basis we define the angular momentum operators acting
on the local Hilbert space

Lz |ℓ,m⟩ = m |ℓ,m⟩ , (7a)

L+ |ℓ,m⟩ =
√
(ℓ−m)(ℓ+m+ 1)|ℓ,m+ 1⟩ , (7b)

L− |ℓ,m⟩ =
√
(ℓ+m)(ℓ−m+ 1)|ℓ,m− 1⟩ . (7c)

Further, the raising and the lowering operators, L+ and
L−, allow us to define the x and y angular momentum
operators,

Lx =
1

2
(L+ + L−) , (8a)

Ly =
1

2i
(L+ − L−) , (8b)
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which generate rotations around the x and the y axis, re-
spectively. Finally, we can relate the angular momentum
operator to the generalized Pauli Z operator by

Z = e
2πi
d

[
Lz+(d−1)/2

]
, (9)

where we used that |z⟩ is an eigenvector of Lz.

B. Structure of QAOA

The goal of the QAOA is to find the state z0 which
minimizes a given cost function C(z). In the follow-
ing, we recount the building blocks and structure of the
QAOA [14, 15]. The starting point of the QAOA is the
initial state |ψ0⟩, for which we assume that it can be pre-
pared efficiently and with high fidelity experimentally.
We will frequently use the equal superposition state

|ψ0⟩ =
1

dN/2

∑
z

|z⟩ , (10)

which is an eigenstate to the generalized Pauli X oper-
ators of Eq. (4b). Other initial states are possible, for
example an eigenstate to angular momentum operator
Lx of Eq. (8a) or even an eigenstate to the Lz opera-
tor, e.g. |0, . . . , 0⟩. We tested several choices of initial
states in our numerical experiments and did not find any
qualitative differences between these choices. It should
therefore in principle not matter which initial state is
used, and the choice should be guided by which states
are most easily prepared in the experimental setup.

The quantum circuit of the QAOA starts from |ψ0⟩
with subsequent layers of gates (gray boxes in Fig. 1).
Each layer is composed of two parametrized quantum
gates, the so-called phase separation gate UC(γ) and the
mixing gate UM (β), which are applied alternatingly. The
generator of the phase separation gate is the cost Hamil-
tonian HC encoding the classical cost function

UC(γ) = e−iγHC (11)

with

HC |z⟩ = C(z) |z⟩ , (12)

where |z⟩ denotes the computational basis states.
The mixing gate is defined as

UM (β) = e−iβHM (13)

via a mixing Hamiltonian HM . Several forms of mixing
gates are discussed in the literature [15]. Regarding the
limitations of the current NISQ-hardware, both phase
separation and mixing gate should have an efficient de-
composition into the native gate set of the experimental
platform, which implements the QAOA.

The QAOA circuit of depth p ≥ 1 is defined as

U(γ,β) = e−iβpHM e−iγpHC . . . e−iβ1HM e−iγ1HC , (14)

where γ, β ∈ Rp are free variational parameters to be
determined during the execution of the algorithm and p
denotes the numbers of layers. The trial state

|γ,β⟩ = U(γ,β) |ψ0⟩ (15)

is the quantum state approximating a possible solution
to the optimization problem. The classical cost function,
which is optimized with the QAOA is

Eγ,β = ⟨γ,β|HC |γ,β⟩ , (16)

which is the expectation value of the cost Hamiltonian.
Typically the variational trial state |γ,β⟩ is a super-

position of the computational basis states and the expec-
tation value cannot be obtained in a single experimental
run. The expectation value Eq. (16) is estimated by sam-
pling from the trial wavefunction, see e.g. [36]. In each
sample, a specific configuration z = (z1, . . . , zN ) is ob-
tained from the quantum mechanical trial state with the
probability P(z) = |⟨z|γ,β⟩|2. The expectation value of
the cost Hamiltonian is then obtained via

Eγ,β ≈
∑

samples z

P(z)C(z) , (17)

where P(z) is estimated by sampling from the final
QAOA state |γ,β⟩. In order to obtain a solution to the
original optimization problem, one uses a classical opti-
mization method to find the parameters γ∗ and β∗ that
fulfill

{γ∗,β∗} = argmin
γ,β

Eγ,β. (18)

After the parameters of the QAOA circuit have been
optimized, measuring the output state reveals potential
solutions to the optimization problem. In the ideal case,
when the QAOA optimization finds an optimal solution,
the trial state is a single minimal energy state or a super-
position of minimal energy eigenstates of the cost Hamil-
tonian HC . In particular, when the cost Hamiltonian is
invariant with respect to a symmetry transformation and
the mixing operator does not break the symmetry, the fi-
nal state may be a superposition of lowest energy eigen-
states. However, frequently minimal energy state cannot
be reached, either because the variational trial state can-
not faithfully represent the ground state(s) or because
the optimization procedure might not find the global op-
timum. Therefore, the final QAOA state may have con-
tributions from various computational basis states, which
are low-energy states and have energies close to the op-
timal state.

Candidate solutions for the optimization problem are
the computational basis states with substantial proba-
bilities. Frequently, the final state needs to be prepared
several times in order to sample from the trial state. In an
experiment, the selection of the candidate solutions needs
to consider the measurement error of the state sampling.
In contrast, in numerical studies, the probabilities can
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be evaluated precisely, and we employ a fixed number of
candidate solutions and select the ones with the lowest
cost. For analyzing the theoretical performance of the
QAOA, we neglect any effect of finite sampling.

C. Cost function Hamiltonian

This subsection discusses two possibilities of mapping
certain classical cost functions C to cost Hamiltonians
HC . We first discuss a mapping employing generalized
Pauli Z operators and then a second mapping using an-
gular momentum operators Lz.

Mapping using generalized Pauli Z operators. The def-
inition of the cost Hamiltonian in Eq. (12) implies the
following diagonal representation

HC =
∑
z

C(z) |z⟩⟨z| . (19)

In order to rewrite the cost Hamiltonian HC as a polyno-
mial of generalized Pauli Z operators we use the discrete
Fourier transform of the cost function, Ĉ. The Fourier
transform and its inverse are given by

C(z) =
1

dN

∑
a

Ĉ(a)e2πia·z/d , (20a)

Ĉ(a) =
∑
z

C(z)e−2πia·z/d , (20b)

with a ∈ ZN and 0 ≤ aj ≤ d − 1. Using the Fourier
transform Ĉ we can rewrite the cost Hamiltonian as

HC =
1

dN

∑
z

∑
a

Ĉ(a)e2πia·z/d |z⟩⟨z| . (21)

Employing Eq. (5) the Hamiltonian becomes

HC =
1

dN

∑
a

Ĉ(a)

N∏
j=1

Z
aj

j , (22)

which is a polynomial in the generalized Pauli Z oper-
ators [35]. This encoding is especially useful when the
Fourier transform of the cost function has few nonzero
Fourier coefficients.

Mapping using Lz operators. Here we focus on polyno-
mial functions C(z) in the variables zm. We obtain the
cost Hamiltonian by substituting zm → (ℓ + Lz,m) into
the cost function leading to

HC = C
(
ℓ+ Lz,1, . . . , ℓ+ Lz,n

)
. (23)

For examples and representations of cost functions we
refer to Sec. III and Appendix B.

D. Mixing Hamiltonian

The mixing operator has to be able to traverse the
allowed state space of the optimization problem, see
Ref. [15]. For the local qudit Hilbert space with d levels,
d2 − 1 local operators are in principle necessary to form
an operator basis. However, as shown previously [33, 37]
a reduced set of three operators is sufficient to generate
any state by (possibly many) repeated finite rotations.
In this work, the cost Hamiltonians include linear and
higher order terms in Lz, which allows us to consider a
mixing Hamiltonian based only on the angular momen-
tum operator in the x direction

HM =

N∑
i=1

Lx,i , (24)

which fulfills the above mentioned criteria for uncon-
strained integer optimization problems. As detailed in
appendix A, this mixing operator can be experimentally
implemented in atomic qudit systems. Another viable
choice would be to use the generalized Pauli X opera-
tors of Eq. (4b) as basis for the mixing Hamiltonian. In
principle this should not make a qualitative difference,
which we explicitly confirmed by testing both choices in
our numerical experiments.

E. Constraints

In many important optimization problems, the vari-
ables of the cost function must satisfy constraints, which
can be given by equalities or inequalities, i.e.,

gm(z) ≤ 0 or gm(z) = 0 (25)

with m = 1, . . . ,M . Hence, it is an important question
how to incorporate constraints in the QAOA. One com-
mon way to enforce constraints into QAOA circuits is by
adding appropriate penalty terms to the cost function.
Alternatively, one can engineer the mixing operator such
that the evolution of the quantum state only takes place
in the space of feasible solutions [15]. In this subsection,
we explicitly implement strategies to enforce constraints
in the QAOA. The results developed here are applicable
to both qudit and qubit systems.

A standard route to implement constraints in classi-
cal optimization is by adding penalty terms to the cost
function

C̃(z) = C(z) +
∑
m

λmPm[gm(z)] , (26)

where λm are the penalty factors, Pm are the penalty
functions, and gm(z) are the constraints given by Eq.
(25). Adding penalty terms is typical for black-box opti-
mization [38–40]. Possible penalty functions [41] are

Peq [g(z)] = |g(z)|a (27)
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for equality constraints g(z) = 0, and

Pineq [g(z)] = max [0, g(z)]a (28)

for inequality constraints g(z) ≤ 0, with typical values
for the exponents being a = 1 and a = 2. One way to
implement the modified cost function C̃(z) in the QAOA
is to use the cost Hamiltonian HC generated by C(z)

for the quantum circuit, but employ C̃(z) in the classical
optimization loop with the cost function

Ẽγ,β =
∑
z

| ⟨z|γ,β⟩ |2
{
C(z) +

∑
m

λmPm [gm(z)]

}
.

(29)

In addition, one has to tune the penalty parameters
during the optimization process. Not including the con-
straints into the cost Hamiltonian simplifies the experi-
mental realization of the phase separation gate and re-
laxes the requirements on the hardware. However, de-
pending on the optimization problem and, in particular,
on how the constraints confine the feasible search space,
the trial states may produce infeasible solutions for ran-
domly chosen γ and β.

In a situation where the cost Hamiltonian and the
mixer are invariant with respect to a symmetry, the trial
state is also symmetric. However, if one constraint vi-
olates the symmetry (not implemented in the Hamilto-
nian), the trial state will not be able to reflect this vi-
olation of the symmetry. This scenario may render the
QAOA less effective because more candidate solutions
must be sampled.

An alternative is to implement the constraint in the
circuits. Here, we present three different ways to imple-
ment constraints into the quantum circuit: (i) including
penalty terms in the cost Hamiltonian, (ii) using condi-
tional gates, and (iii) employing dynamical decoupling.

1. Penalty terms in the cost Hamiltonian

One can include constraints into the QAOA by using
HC̃ instead of HC , see [6, 7] for details. The penalized
cost Hamiltonian is given by

HC̃ = HC +
∑
m

λmPm(Gm) , (30)

where we introduced the constraint operator Gm via

Gm |z⟩ = gm(z) |z⟩ . (31)

The cost Hamiltonian including the constraints also has
a diagonal representation

HC̃ =
∑
z

C̃(z) |z⟩⟨z| , (32)

where C̃(z) is given by Eq. (26). Using the results of
Sec. II C one can write the penalized Hamiltonian HC̃

FIG. 2. QAOA with conditional gates for constraints:
In order to enforce constraints one performs a conditional
gate Ug and measures the ancilla qubit |0⟩. If the measure-
ment returns the value 0, the constraint is fulfilled and we do
not change the cost function. If the measurement yields the
value 1, then the constraint is violated and we forward the
measurement result into the cost function and use the Hamil-
tonian HC̃ and penalize the violation of the constraint.

with the help of generalized Pauli Z or angular momen-
tum operators, where the angular momentum encoding
works when C̃(z) is a polynomial. Again, constructing
the Hamiltonian HC̃ with generalized Pauli operators in-
volves a discrete Fourier transform, see Eq. (20), which
results in polynomials of generalized Pauli Z operators.
Here, the max function in the inequality constraint may
introduce higher powers of generalized Z operators.

Using the cost Hamiltonian HC̃ in the unitary evolu-
tion of Eq. (14) leads to variational states |γ,β⟩ that
satisfy the constraints gm for appropriate choice of the
penalty parameters λm. A major disadvantage of includ-
ing penalties in the cost Hamiltonian is the necessity for
tuning the penalty factors λm. The penalty factors di-
rectly affect the cost function landscape and thus signif-
icantly influence search performance.

2. Constraints via conditional gates

Here we enforce equality and inequality constraints via
conditional gates [35]. Specifically, we introduce the uni-
tary operator Ug that acts on theN computational qudits
and on one ancilla qubit |y⟩ = α |0⟩+ β |1⟩ via

Ug |z⟩|y⟩ =
{
|z⟩|y⟩ for g(z) = 0 or g(z) ≤ 0 ,

|z⟩X |y⟩ otherwise .
(33)

If the quantum state |z⟩ does fulfill the constraint the
ancilla qubit does not change, whereas we apply X on
the ancilla, if the constraint is not fulfilled. The operator
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Ug belongs to the class of conditional operators:

Ug(Q) =
∑

z:g(z)≤0

|z⟩⟨z| ⊗ I +
∑

z:g(z)>0

|z⟩⟨z| ⊗Q , (34a)

Ug(Q) =
∑

z:g(z)=0

|z⟩⟨z| ⊗ I +
∑

z:g(z)̸=0

|z⟩⟨z| ⊗Q , (34b)

where the first line is for inequalities and the second line
for equalities. Further, I is the identity operator and Q is
an arbitrary unitary operator. The conditional operator
Ug(Q) does only apply the operatorQ on the ancilla qubit
if the quantum state |z⟩ does not fulfill the inequality
g(z) ≤ 0 or equality g(z) = 0.

We represent Ug(Q) as a matrix exponential in order to
discuss the implementation with an appropriately chosen
Hamiltonian. Direct calculation [35] shows

Ug(Q) = e−iHg⊗HQ , (35)

with

Hg =
∑
z

[
1− δmax[g(z),0)],0

]
|z⟩⟨z| , (36a)

Hg =
∑
z

[
1− δg(z),0

]
|z⟩⟨z| (36b)

and

HQ = (π/2)X . (37)

Particularly, we can implement Hg again using the Pauli
operator encoding. In order to enforce one constraint g
after one layer of the QAOA circuit, we initialize the an-
cilla qubit in |0⟩ and apply the conditional gate Eq. (33)
on the quantum state |ψ⟩, which we assume fulfills all
constraints, leading to

Uge
−iβHM |ψ⟩ |0⟩ (38)

and measure the ancilla qubit |y⟩. If the measurement
on the ancilla qubit returns the value zero, the constraint
is fulfilled, and we apply the unconstrained cost function
Hamiltonian HC . On the other hand, if the measurement
of the ancilla qubit yields the result one, the inequality is
violated, and we use HC̃ and the mixing Hamiltonian in
the next step. Then we apply the conditional unitary op-
erator Ug again and iterate this procedure. The quantum
circuit illustrating this approach is schematically shown
in Fig. 2.

Using conditional gates is more involved as it requires
an additional qubit for tracking the constraint. Finally,
conditional gates as described above effectively imple-
ment the max function in the cost Hamiltonian for in-
equality constraints.

3. Equality constraints via dynamical decoupling

Another way to implement equality constraints is via
dynamical decoupling [42, 43], a quantum control tech-

nique suppressing coupling to an environment. The tech-
nique dates back to nuclear magnetic resonance experi-
ments [44–46], for a review see [47]. Dynamical decou-
pling techniques can also be employed to suppress tran-
sitions to undesired subspaces, see for example [48, 49] in
the context of quantum simulations of lattice gauge the-
ories. Here we discuss how to use dynamical decoupling
to enforce constraints.

To apply dynamical decoupling to the QAOA, we
choose an initial state |ψ0⟩ that already fulfills all equal-
ity constraints

Gm |ψ0⟩ = 0 (39)

for all m. The unitary operator U(γ,β) of the QAOA
may lead to a trial state |γ,β⟩ where the constraints are
not fulfilled, i.e. ,

Gm |γ,β⟩ ≠ 0 . (40)

The goal is to construct a unitary mixing operator that
does not evolve the initial state out of the feasible sub-
space given by the equality constraints. Therefore, the
mixing term must commute with all constraints. In or-
der to obtain such a unitary mixing term, we employ a
dynamical decoupling strategy.

For simplicity, we assume that Gm has only integer
eigenvalues and denote the largest eigenvalue by Λm. We
start from the identity

e−iθGm |ψ0⟩ = |ψ0⟩ ∀ θ ∈ R , (41)

which follows from Eq. (39). We define the symmetriza-
tion operation of any operator O by

Ō =
∏
m

∫ 2π
Λm

0

dθm
(2π/Λm)

e−iθmGmOeiθmGm . (42)

Specifically, the symmetrization implies

e−iϕGmŌeiϕGm = Ō (43)

for all m, which follows from using the integer spec-
trum of Gm and shifting the integration variables. The
above equation is equivalent to [e−iϕGm , Ō] = 0 for all m.
Equality constraints with rational spectrum can always
be reformulated as constraints with integer spectrum by
multiplying with the least common multiple, while con-
straints with an irrational spectrum can be approximated
with a rational spectrum. Employing Eq.(42) we sym-
metrize the mixing Hamiltonian according to

H̄M =
∏
m

∫ 2π
Λm

0

dθm
(2π/Λm)

e−iθmGmHMe
iθmGm , (44)

which leads to [e−iϕGm , H̄M ] = 0 for all m and its in-
finitesimal version [Gm, H̄M ] = 0 for all m. Using the
symmetrized mixing Hamiltonian we engineer a new uni-
tary mixing operator

UM (β) = eiβH̄M (45)
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that does not commute with the cost Hamiltonian [15]
but guarantees that the final state

GmU(γ,β) |ψ0⟩ = 0 , (46)

also fulfills the constraints given Gm |ψ0⟩ = 0.
Implementing the continuous integral of the the dy-

namical decoupling strategy of Eq. (42) in a circuit is
challenging. One strategy is to sample or discretize the
integral into a finite sum and use Floquet engineering to
determine an appropriate discretization, see, e.g., [47].
Because of this sampling at each layer, the dynamical de-
coupling strategy is only possible for low circuit depth.
However, in order to reduce the number of decoupling
layers one can selectively introduce the dynamical de-
coupling, especially in the last layer.

III. APPLICATIONS

This section discusses optimization problems involving
integer variables, which can be addressed with the QAOA
based on qudits. Primarily, we illustrate the encodings of
section IIC, which leads to feasible implementations in
current qudit systems. Specifically, we treat a graph col-
oring problem and the optimization of an electric vehicle
charging plan. Further integer optimization problems,
i.e., a knapsack problem, multiway number partitioning,
job-shop scheduling, and their respective qudit encod-
ings, can be found in Appendix B.

A. Graph coloring

Let G = (V,E) be a graph with N vertices and
M edges. A proper vertex k-coloring of G is given,
if one can assign one of k colors to each vertex such
that adjacent vertices have different colors. If one can
find such a proper vertex k-coloring, the graph G is k-
colorable [15, 23]. We denote the assignment of colors to
the vertices by z = (z1, . . . , zN ) with zi ∈ {0, . . . , k − 1}.
The coloring task can be expressed as finding the mini-
mum of an objective function which counts the number
of edges between nodes with the same color, i.e.,

C(z) =
∑

(n,m)∈E

δzn,zm , (47)

where n and m denote vertices of the graph, zn and zm
denote the color of the vertices, and E is the set of edges
of the graph.

Minimizing C(z) leads to the largest induced subgraph
that can be properly k-colored. Moreover, the cost func-
tion can be encoded with Pauli Z operators [50] into the

cost Hamiltonian

HC =
1

kN−1

∑
(n,m)∈E

k−1∑
a,b=0

δ
(
(a+ b) mod k, 0

)
Za
nZ

b
m

=
1

kN−1

∑
(n,m)∈E

(
1 +

k−1∑
a=0

Za
nZ

k−a
m

)
, (48)

where we used the Fourier transform of the Kronecker-
delta, δ̂(a, b) = kδ[(a + b) mod k, 0]. For k = 3 this
becomes

HC =
1

3N−1

∑
(n,m)∈E

(
1 + Z3

m + ZnZ
2
m + Z2

nZm

)
. (49)

This expression can be reformulated in terms of angular
momentum operators Lz,n resulting in a polynomial in
powers of Lz,n and Lz,m with Ld−1

z,mL
d−1
z,n as the largest

power.

B. Charging optimization

Many problems in the energy management domain re-
quire optimizing a schedule for the distribution of elec-
trical energy among technical devices. A representa-
tive problem is the charging schedule of electric vehi-
cles (EVs). Designing these schedules typically leads to
integer or mixed-integer programming problems, see for
example [3, 51–53]. We consider the following EV charg-
ing problem: An operator of charging stations needs to
charge N EVs during the working hours of a business
complex. The operator can purchase and sell energy for
real-time electricity market prices and charge/discharge
each EV. The goal is to minimize the electricity cost for
the operator while meeting operation constraints. Pos-
sible constraints are: (i) Each EV has a desired target
state of charge (SOC) of the battery, which needs to be
reached at the end of the time period. (ii) Each bat-
tery has a minimal and maximal SOC. (iii) There is an
upper and lower limit for the total cumulative charging
power of all vehicles at all times. A simple variant of the
EV charging problem without constraints and preemp-
tive charging was discussed in Ref. [54] using the QAOA
for qubits.

The charging plan for the EVs must be optimized for
the total time T , where we divide T into equidistant time
steps of duration ∆t. In each time step the EV n can
either be charged, not charged or discharged, which is
represented by the ternary variables Ln,t = 1, Ln,t = 0 or
Ln,t = −1 respectively. The total electricity cost function
is

C(L) =

N∑
n=1

T∑
t=1

∆tP 0
n

(
ect+edt

2 Ln,t +
ect−edt

2 L2
n,t

)
, (50)

where P 0
n is the charging and discharging power of vehicle

n, and the prices for buying and selling energy are ect and
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edt . Specifically, the charging costs for car n are ∆tP 0
ne

c
t ,

whereas the discharging costs are −∆tP 0
ne

d
t .

The SOC of each battery at time t is

En,t = Einit
n +

t∑
k=1

∆tP 0
n(Ln,k − δn L

2
n,k) , (51)

where Einit
n denotes the initial SOC of EV n, and δn ≥ 0

encodes conversion losses in the EV since the SOC in-
creases (decreases) by (±1 − δn)∆tP

0
n during charging

(discharging) with power P 0
n . The constraints on the

SOC of each battery are

En,T ≥ Etarget
n ∀n , (52a)

Emin
n ≤ En,t ∀n, t , (52b)
En,t ≤ Emax

n ∀n, t , (52c)

where Etarget
n is the required minimal final SOC at time

t = T , and Emin
n and Emax

n specify the generally allowed
SOC for vehicle n. The limits on the maximum charging
and discharging power are

Pmin ≤
∑
n

P 0
nLn,t ∀t , (53a)

Pmax ≥
∑
n

P 0
nLn,t ∀t , (53b)

with Pmin < 0 the largest possible discharging power and
Pmax > 0 the maximum charging power. This amounts
to N(1 + 2T ) + 2T constraints in total.

C. Combination of charging and graph coloring

Here we consider the EV charging optimization prob-
lem of the previous subsection with additional constraints
on the charging time slots. Therefore we consider a graph
where each vertex represents an EV, and each edge indi-
cates overlapping charging time slots. Furthermore, the
vertex color represents the number of the charging sta-
tion, whereby each charging station has different costs.
Finally, the constraint that two EVs cannot be charged at
the same station simultaneously is modeled by the condi-
tion that two connected vertices must not have the same
color. This charging problem is schematically illustrated
in Fig. 3.

A cost function, which combines the different charging
station costs and penalizes charging two vehicles at the
same station simultaneously, is

C(z) =

N∑
n=1

k−1∑
i=0

ciz
i
n + λ

∑
(u,v)∈E

δzu,zv , (54)

where zn is the color of node n, the parameters ci encode
the cost for each color, and λ > 0 is the penalty factor.
Note that we always use dimensionless cost functions and
thus the ci and the penalty factors λ are also dimension-
less. When all colors have equal costs, all coefficients ci

FIG. 3. Schematic representation of the simplified EV
charging problem. N cars need to be assigned to k charging
stations, where each car needs to be placed at a charging
station for a given time period Here, we consider N = 5 cars
and k = 3 charging stations. No two cars with overlapping
charging periods can be assigned to the same charging station
which can be formulated as a conflict graph where cars with
overlapping time slots are connected by an edge. If we denote
each charging station by a different color, the charging station
assignment can be formulated as a coloring problem of the
conflict graph. Further, we assume that each charging station
incurs different costs, which are dimensionless numbers.

for i > 0 are zero and this problem reduces to the pure
max-k-coloring problem of Sec. III A. For the case with
three colors, k = 3, and associated costs c−1, c0 and c1,
the cost Hamiltonian is

HC =

N∑
n=1

(
c0 +

c1−c−1

2 Lz,n + c1+c−1−2c0
2 L2

z,n

)
+ λ

∑
(n,m)∈E

[
1− L2

z,n − L2
z,m +

1

2
Lz,nLz,m +

3

2
L2
z,nL

2
z,m

]
,

(55)

where the vertices are denoted by n and m. Specifically,
the coloring constraint induces two-site interactions with
up to quadratic terms in Lz on each vertex.

IV. NUMERICAL RESULTS

In the following, we discuss numerical results of the
QAOA for the cost Hamiltonian Eq. (55) for three colors
k = 3. We consider different graphs ranging from N = 4
to N = 9 and include the graph-coloring constraint term
with a penalty factor λ = 20 directly in the quantum
circuit, as detailed in section II E 1. Further, we con-
sider two cases for the costs: (i) (c−1, c0, c1) = (0, 0, 0),
where the charging problem reduces to max-k-graph col-
oring, and (ii) (c−1, c0, c1) = (0, 1, 2). A recent work [50]
benchmarked QAOA on pure max-k-graph coloring with
qutrits (k = 3) on random 3-colorable constant-degree
graphs up to a size of N = 300, which was possible for
p = 1 (a circuit with one layer). In contrast, we employ
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several layers ranging from p = 1 to p = 8, introduce
an additional cost contribution for each vertex color and
focus on individual instances of highly connected graphs.
Further, we compare the performance of two classical op-
timization algorithms for the cost function encoded by
Eq. (55).

We employ two classical optimization algorithms:
the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm [55] and the covariance matrix
adaptation evolutionary strategy (CMA-ES) [56] taken
from [57]. For each setting (graph, cost function, and cir-
cuit depth), we execute 50 different QAOA optimization
runs of the CMA-ES with randomly chosen initial values
for γ and β. The population-based CMA-ES evaluates
between 6 and 12 candidate solutions in each generation,
depending on the search space dimension 2p. For the
L-BFGS optimizer, we use between 300 and 600 opti-
mization runs to be comparable to the number of circuit
evaluations with CMA-ES.

Fig. 4 shows the probability distribution of the compu-
tational basis states determined by the final QAOA state
for N = 6, different circuit depth, and with/without col-
oring cost. For example, the pure graph coloring problem
without coloring cost has twelve optimal states for the
graph given in Fig. 4. The probability distribution of the
computational basis states is shown in panels (a) and (c),
where example graph colorings are depicted in panel (e).
However, lifting the color symmetry by including costs
for different colors leads to a single optimal solution, as
can be seen from the asymmetric probability distribution
in panels (b) and (d).

In Fig. 5, we show results for a representative exam-
ple of the simplified charging problem on a graph with
N = 6 nodes and three colors (k = 3) with and without
coloring cost. Fig. 5a and Fig. 5b show the optimality
gap, i.e., the difference between the exact minimum and
the minimum obtained from the QAOA cost function for
different circuit depths p ≤ 8. The exact minimum was
obtained by exhaustive search of the whole state space,
which was possible for the limited problem size consid-
ered here. Generally, the lowest value of the optimality
gap decreases for both optimizers with increasing circuit
depth, indicating that a deeper circuit can, in principle,
achieve smaller values of the cost function [21, 58]. How-
ever, there are considerable variations in the optimality
gap between the runs.

This behavior of the optimality gap is understandable
as the cost function landscape of the QAOA is typically
highly multi-modal with many local minima and max-
ima, as can be seen in Fig. 5c and Fig. 5d where a part
of the p = 1 two-dimensional search landscape is shown.
The multi-modal and in particular the ridge-like struc-
ture of the cost function landscape makes the optimiza-
tion problem considerably harder for algorithms like L-
BFGS which use gradient information, as it introduces
saddle-point like features known to cause problems in
many settings including deep-learning applications [59–
61]. Hence, the L-BFGS optimization process may end

(a) (b)

(c) (d)

(e)

FIG. 4. Probability distributions of the optimized
state and optimal solution graphs. Probability distri-
bution of representative final QAOA states for a N = 6 graph
without coloring cost, see (a) and (c) and with coloring cost
(c−1, c0, c1) = (0, 1, 2), see (b) and (d). The upper row (a) and
(b) depicts results for shallow circuits with depth p = 1 while
the middle row (c) and (d) shows results for depth p = 5.
The red dashed lines indicate the 12 (1) optimal solutions
without (with) coloring cost. The insets in panels (c) and (d)
shows the energy spectra of the respective Hamiltonian in ar-
bitrary units. (e) Candidate solutions for the simplified charg-
ing problem where the colors red, green, and blue have cost
c−1, c0, and c1, respectively. Without coloring cost all shown
graphs are optimal solutions and the additional eight optimal
solutions can be generated by pairwise color exchange. With
coloring cost (c−1, c0, c1) = (0, 1, 2), only the leftmost graph
of panel (e) is optimal.

up in a local minimum with a high probability, essentially
determined by the location of the random initial starting
point. In contrast, the CMA-ES is a population-based
global optimizer capable of dealing with this cost func-
tion landscape and finds lower cost minima more reliably.

However, for larger circuits, particularly for p ≳ 4, the
CMA-ES may also result in sub-optimal local minima, a
common behavior for evolutionary algorithms in a larger
search space. In Fig. 6 we show the progress of the CMA-
ES optimization runs as a function of the internal gen-
eration number. For the more straightforward problem
with p = 1 shown in panel (a), the CMA-ES converges
rather quickly in about 200 generations. In contrast, for
the more challenging optimization problem with p = 5,
we can observe that some runs do not converge even af-
ter 1400 generations. In principle, this limitation can be
removed by running the algorithms for more generations,



10

(a) (b)

(c) (d)
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−π−π/20
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N = 6, (c−1, c0, c1) = (0,0,0)
cost

β
γ −π/2
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−π−π/20

60
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N = 6, c = (0,1,2)cost
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γ

FIG. 5. Optimality gap and cost function landscape.
Optimality gap of the final QAOA states for a graph with
N = 6 (a) without coloring cost, i.e., (c−1, c0, c1) = (0, 0, 0),
and (b) with coloring cost (c−1, c0, c1) = (0, 1, 2), as a function
of the circuit depth p and for the two optimizers L-BFGS
(orange) and CMA-ES (blue). The plots show the best result
for each of the 50 (300) CMA-ES (L-BFGS) runs. Panels (c)
and (d) show the cost function landscape for circuit depth
p = 1 in a certain parameter region of the search space for
the same N = 6 graph without (c) and with (d) coloring cost.

(a) (b)

FIG. 6. Optimization progress. Optimality gap values
of 50 CMA-ES optimization runs as function of the internal
optimization generation number for a N = 6 graph without
coloring cost and with a circuit depth of p = 1 (a) and p = 5
(b). Each color represents one individual optimization run
with different initial values for the search parameters γ and
β

which comes at the cost of more circuit evaluations.
It is instructive to investigate how the improvement

of the optimality gap for deeper circuits (c.f. Fig. 5) is
reflected in the probability distribution. For shallow cir-
cuits, i.e., p = 1, the global minima are clearly visible, as
indicated by the red dashed lines in Fig. 4a and Fig. 4b.
However, other states with higher energy do have sizable
contributions in the probability distribution of the final
state. Increasing the circuit depth leads to better sep-
aration of the optimal states compared to sub-optimal
states and a smaller value of the cost function, see panels
Fig. 4c and Fig. 4d .

Comparing the probability distribution of the case

(a) (b)

(c) (d)

(e) (f)

FIG. 7. Distribution of optimal solutions over several
QAOA runs. Number of optimal solutions found in one
QAOA optimization run for simplified charging problem in-
stances on graphs with N = 5 (panels (a) and (b)), N = 6 [(c)
and (d)] and N = 8 [(e) and (f)] without [(a), (c), and (d)]
and with charging cost. The colored bars show the number of
found optimal solutions in each run, where larger width im-
plies larger number of found solutions. Lines show the mean
number of found solutions aggregated over all 50 and 300−600
different optimization runs using CMA-ES and L-BFGS, re-
spectively.

without color cost in Fig. 4a and c and with color cost in
Fig. 4b and d shows a qualitative difference, which can
be understood from the spectrum of the cost Hamilto-
nian. The spectrum of the pure graph coloring Hamil-
tonian, see the inset of Fig 4c, has a large gap between
the (degenerate) ground state manifold and the first ex-
cited states. As the QAOA circuit is an approximation
to an adiabatic time evolution, a large energy gap be-
tween the ground state and excited state is beneficial for
finding the ground state. In contrast, we do not observe
a clear energy gap when considering coloring costs, see
the inset of Fig 4d. Especially the appearance of multiple
low-lying energy states makes the problem of separating
those states in the quantum circuit harder. Consequently,
non-optimal states have higher amplitudes for the prob-
lem containing coloring costs compared to the pure graph
coloring problem.

By preparing and sampling from the final QAOA state,
one can then extract multiple candidates for the optimum
of the cost function. We extract several candidate solu-
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tions and test for optimality for different graphs for the
simplified charging problem with and without coloring
cost. In addition, we perform several optimization runs
and depict the average number of optimal solutions (with
and without coloring costs) in Fig. 7. The vertical axis
of Fig. 7 always extends to the total number of optimal
solutions (determined by a classical optimizer), and the
error bars indicate the minimal and maximal numbers of
solutions found with the QAOA after the classical opti-
mization loop. In most cases, we can find β and γ such
that the QAOA state allows for detecting all optimal so-
lutions regardless of the circuit depth, the optimization
algorithm, and the problem instance. Exceptions, where
the QAOA could not find all optimal solutions are shown
in Fig. 7f for N = 8 and p ≤ 3 with coloring costs, and
for N = 8 and p = 1 without coloring cost.

Inspecting the average number of found optimal solu-
tions, we can observe that the variation between different
runs is substantial. In particular, for the instance with-
out coloring cost on a graph with N = 5 nodes shown
in Fig. 7(a), the QAOA reliably finds almost all 42 opti-
mal solutions when employing the CMA-ES for not too
deep circuits, while introducing coloring cost on the same
graphs, see Fig. 7(b), leads to a situation where on aver-
age almost none of the two optimal solutions are found.
We point out that finding all optimal solutions with the
CMA-ES becomes more difficult with increasing circuit
depth, which is a typical behavior for evolutionary al-
gorithms when increasing parameter space. Both opti-
mization algorithms show lower performance in finding
all optimal solutions in one run on average for the prob-
lem with color cost than the pure graph coloring problem.
This effect results from lifting the degeneracy by intro-
ducing the coloring cost, which leads to multiple low-
lying states close in energy. The relation between the
spectrum of the Hamiltonian and the performance of the
QAOA is a field of current study [21].

V. CONCLUSION

In this article, we discussed the QAOA for current or
upcoming qudit experiments. First, we described how
to map cost functions onto cost Hamiltonians utilizing
generalized Pauli or angular momentum operators. Ad-
ditionally, we illustrated different ways to incorporate
equality or inequality constraints. Therefore, we laid
out a scheme to include constraints into the classical
optimization loop. We also presented three alternative
methods to incorporate constraints into the quantum
circuit. The first method adds penalty functions for
the constraints into the cost Hamiltonian. The second
method realizes equality and inequality constraints us-
ing conditional gates and ancilla qubits, similar to an
error-correcting code. Finally, the third approach imple-
ments constraints by exploiting dynamical decoupling,
which suppresses computational basis states which vio-
late equality constraints.

As an application of the QAOA with qudits, we
discussed theoretical and industry-relevant optimization
problems, for example, the graph k-coloring or an EV
charging problem with global power constraints. Since
these problems only involve bounded integer variables,
they can be mapped on qudits. Motivated by current
experiments with ultracold atoms or ions, we propose
to use the x-angular momentum operator Lx as a mix-
ing operator. Finally, we numerically studied a simpli-
fied EV charging optimization problem, which amounts
to a max-k-graph coloring problem with an additional
color cost term on the vertices. We compared solutions
of the QAOA obtained with the gradient-based classical
L-BFGS optimizer and the global evolutionary CMA-ES
optimizer for our numerical studies. Our results showed
that the global evolutionary optimizer was less sensitive
to the initialization of the search and reliably produced
better results than the gradient-based approach for the
instances considered. This performance behavior can be
understood by the highly multi-modal cost function land-
scape. Starting from pure max-k-coloring and introduc-
ing a coloring cost function, the performance with both
optimizers typically decreased. This behavior is a direct
consequence of reducing the symmetry of the cost Hamil-
tonian.

We extracted solutions from the final state by selecting
states with the largest amplitudes. In our examples, we
could find multiple optimal solutions. In particular, the
final state is also symmetric when the cost Hamiltonian is
invariant with respect to a symmetry, and the mixing op-
erator does not break this symmetry. The final state thus
includes equal-weight superpositions of symmetry-related
states. Finding several candidate solutions is a highly de-
sirable feature for practical applications, as one has the
chance to obtain a large subset of all possible solutions.
However, these degeneracies may lead to detrimental per-
formance since the amplitude of the optimal states may
be distributed such that the sampling of the candidate so-
lutions becomes inefficient. Notably, the signal-to-noise
ratio between optimal and sub-optimal states may be re-
duced. In order to improve the signal-to-noise ratio, one
can single out optimal states by investigating ways to re-
duce the number of candidate solutions, e.g., via sparsity
constraint, on the QAOA trial state. This approach is
left for future study.

In this work, we studied a selection of optimization
problems. However, we expect that the insights gener-
ated here are relevant for general problem instances on
larger graphs and different types of problems. Specifi-
cally, the cost function landscape will generally be multi-
modal due to the structural form of the mixer and phase
separation operators. Therefore global black-box opti-
mizers are expected to be very useful for the QAOA [20].
Another promising and highly relevant aspect of qudit-
based implementations of QAOA is the possibility of
resource-efficient implementation on hardware, which
was shown in previous work [24]. The question how
this advantage over qubit-based implementations extends
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to the formulation of realistic problems including con-
straints in details is left for future research. In total, we
have extended the QAOA toolbox for qudit systems and
applied it to relevant theoretical and practical applica-
tions opening up the avenue for current and future qudit
platforms to solve integer optimization problems.

VI. ACKNOWLEDGEMENTS

We acknowledge fruitful discussions with R. Blatt,
A. Bottarelli, A. Garcia-Sala, D. Gonzalez-Cuadra,
M.K. Oberthaler, M. Ringbauer, H. Türeci, T.V. Zache,
and P. Zoller.

S. L. acknowledges support from project Quantum
Hub Thüringen, 2021 FGI 0047, Free State of Thuringia,
Thüringer Aufbaubank.

F.J. acknowledges the DFG support through the
project FOR 2724, the Emmy- Noether grant (Project-
ID 377616843). This work is supported by the DFG Col-
laborative Research Centre "SFB 1225 (ISOQUANT)",
by the Bundesministerium für Wirtschaft und En-
ergie through the project "EnerQuant" (Project- ID
03EI1025C) and the Bundesministerium für Bildung und
Forschung through the project "HFAK" (Project- ID
13N15632).

P.H. acknowledges support by Provincia Autonoma
di Trento, the ERC Starting Grant StrEnQTh (project
ID 804305), the Google Research Scholar Award Pro-
Gauge, and Q@TN — Quantum Science and Technology
in Trento.

V.K. and M.L. acknowledge support from: ERC
AdG NOQIA; Agencia Estatal de Investigación
(R&D project CEX2019-000910-S, funded by MCIN/
AEI/10.13039/501100011033, Plan National FIDEUA
PID2019-106901GB-I00, FPI, QUANTERA MAQS
PCI2019-111828-2, Proyectos de I+D+I “Retos Colabo-
ración” QUSPIN RTC2019-007196-7); Fundació Cellex;
Fundació Mir-Puig; Generalitat de Catalunya through
the CERCA program, AGAUR Grant No. 2017 SGR
134, QuantumCAT U16-011424, co-funded by ERDF
Operational Program of Catalonia 2014-2020; EU Hori-
zon 2020 FET-OPEN OPTOLogic (Grant No 899794);
National Science Centre, Poland (Symfonia Grant No.
2016/20/W/ST4/00314); Marie Skłodowska-Curie grant
STREDCH No 101029393; "La Caixa" Junior Leaders
fellowships (ID100010434) and EU Horizon 2020 under
Marie Skłodowska-Curie grant agreement No 847648
(LCF/BQ/PI19/11690013, LCF/BQ/PI20/11760031,
LCF/BQ/PR20/11770012, LCF/BQ/PR21/11840013).

Appendix A: Realization of the qudit-QAOA with
atomic systems

This appendix discusses the experimental capabilities
of ultracold atoms to realize the angular momentum en-
coding of quadratic cost functions and the mixing Hamil-

tonian given in Eq. (24). Specifically, quadratic cost
functions can be experimentally realized in three dis-
tinct atomic platforms: cold atomic mixtures [33], cold
quantum gases in a cavity and Rydberg atoms [34, 62].
In both systems, the qudit is realized as a long collec-
tive spin by cooling atoms with internal degrees of free-
dom into the ground state of optical lattice sites. In the
mixture system, the effective interaction between differ-
ent qudits is mediated by phononic excitations, theoret-
ically proposed in [33]. In the cavity system, the long-
range interaction between the atoms is mediated via a
photonic mode, which was experimentally demonstrated
with high control over the interaction and the connectiv-
ity in Ref. [34].

Both the mixture and the cavity system are described
by the effective Hamiltonian

HC =
∑
x,y

U(x,y)Lz(x)Lz(y) +
∑
x

b(x)Lz(x), (A1)

where x and y denote the minima of the lattice potential,
U(x,y) is the long-range potential between the qudits,
and b(x) is a locally controllable energy shift. The mixing
Hamiltonian can be engineered by standard tools such as
global microwave pulses [63] that lead to terms of the
form

HM = Ω
∑
z

Lx(x) . (A2)

A major advantage of employing these two platforms
with high connectivity is the natural implementation of
quadratic cost functions.

However, quadratic Hamiltonians do not suffice to en-
code the cost functions for all problems we consider in
this work, e.g., the graph coloring of Sec. IIIA. Neverthe-
less, cost functions containing higher powers of angular
momentum operators may be implemented by Trotteri-
zation or by employing resource Hamiltonians, as demon-
strated in the context of variational quantum simula-
tion [64]. Another possibility is to employ a universal
quantum computer which is based on qudits. For exam-
ple, trapped ion platforms are able to implement general-
ized Pauli operators and can entangle qudits and as such
can implement the QAOA, see Ref. [29] for more details.

Appendix B: Other optimization problems

This appendix introduces several optimization prob-
lems whose cost functions are naturally expressed in
terms of qudits, namely the knapsack problem, multiway
number partitioning, and job-shop scheduling.

1. Knapsack problem

The knapsack problem consists in assigning a set of
items to a container [23]. There are N different items
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with c copies each. Further, each item i has a weight
wi and a value vi, and the goal is to maximize the total
value in the container while not exceeding a given weight
limit W . The cost function of the bounded knapsack
problem [65] is

C(z) =

N∑
i=1

vizi , (B1)

which has to be maximized and is subject to the weight
constraint

N∑
i=1

wizi ≤W , (B2)

where zi ∈ [0, c].
The bounded knapsack problem can be straightfor-

wardly mapped to qudits by using the angular momen-
tum encoding discussed in Sec. II C promoting the integer
variables zi to qudits with d = c + 1. Using the angular
momentum operator Lz,i for ℓ = c/2 we obtain the cost
function

HC = −
N∑
i=1

viLz,i , (B3)

where we included a minus sign in order to trans-
form the problem into minimization problem. The con-
straints (B2) are linear in the angular momentum op-
erators and can be implemented by using the methods
developed in Sec. II E.

2. Multiway number partitioning

The number partitioning problem is the task of parti-
tioning a list S of n positive integers, S = (s1, s2, . . . , sn),
into k subsets S1, S2, · · · , Sk, such that the numbers are
as equally distributed as possible. That is, the sum of the
numbers in different subsets Vi =

∑
l∈Si

sl for 1 ≤ i ≤ k
is requested to be as similar as possible. For instance,
if S = (1, 1, 2, 3, 4, 5) and k = 2, the optimal partitions
are (1, 1, 2, 4) and (3, 5), which in this case yields a com-
pletely balanced partition with V1 = V2 = 8. For the
case of k = 2 the decision version of number-partitioning
problem is NP-complete [66], though there are various al-
gorithms that solve the problem efficiently in many cases.
A trapped-ion setup for two-way number partitioning has
been proposed in Ref. [67].

The multi-way number partitioning can be cast into a
mathematical cost function as follows. The sum of the
elements in the set Si is

Vi(z) =

n∑
l=1

slδi,zl , (B4)

where the value of the variable zl = 1, . . . , k indicates the
subset Si of which sl is a member. We then choose the

cost function

C(z) =
∑
a<b

[Va(z)− Vb(z)]
2 , (B5)

which minimizes the differences between the sum of the
partitions with the vector z = (z1, . . . , zn).

The implementation in k-level systems zl automati-
cally ensures that each sl is member of exactly one set
Si with i = 1, . . . , k. In general, the realization of δi,zl in
Eq. (B4) requires a polynomial of order k in the zl. For
example, for k = 3, δ1,zl = 3−5zl/2+z

2
l /2. Importantly,

these higher-order terms within Vi(z) act locally, but the
qudits are then coupled in a pair-wise fashion via C(z).

In the literature there exist various other approaches
to mathematically formulate the multiway number par-
titioning problem, which become equivalent in the case
of k = 2, see [68]. Here, we have opted for a cost func-
tion that employs integer variables and leads to a direct
construction using only two-qudit interactions.

3. Job-shop scheduling

FIG. 8. Job-shop scheduling. Table representation of a
job schedule. The horizontal line denotes the discretized time,
whereas the vertical axis denote the machine. Filling the box
corresponds to using the machine with the job jn,k.

The problem consists of the task to schedule the execu-
tion of N jobs j on M machines. Each job is subdivided
into K operations, where jn,k denotes the operation k
of job n, and each operation has a predefined process-
ing duration pn,k, where n ∈ [1, N ] and k ∈ [1,K]. The
operations of one job must be executed in a predefined
order jn,1 → jn,2 → · · · → jn,K and must not overlap.
Further, each operation jn,k has to be executed on one
specific machine mn,k ∈ [1,M ] and operations executed
on one machine must not overlap. A schematic represen-
tation of this problem is shown in Fig. 8.

An encoding based on qudits is formulated by dis-
cretizing the time into T equally space time intervals,
t = 1, . . . , T . The problem is then formulated with the
variables tn,k ∈ {1, . . . , T} which specify the time at
which the execution of operation jn,k on machine mn,k

starts.
There are two constraints to be respected. First, two

operations of the same job must not overlap, i.e., the
predecessor operation must finish before the successor
can start:

tn,k + pn,k < tn,k+1 , (B6)
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which needs to to be fulfilled for all k ∈ [1,K−1] and all
jobs n. Second, two operations on one machine must not
overlap, i.e., only one operation can run at any given time
on one machine. This means that for any two operations
jn,k and jn′,k′ to be executed on the same machine, the
one operation must either be finished before the other
operation or start after it, i.e.,

(tn,k + pn,k < tn′,k′)XOR (tn,k > tn′,k′ + pn′,k′) (B7)

for all machines m and all (n, k), (n′, k′) ∈ om where
om = {(n, k)|mn,k = m} is the list of operations to be
run on machine m. The latter condition can also be
transformed into a quadratic constraint

(tn,k + pn,k − tn′,k′)(tn,k − tn′,k′ − pn′,k′) > 0 . (B8)

Depending on the application scenario, multiple dif-
ferent cost functions can be employed [69, 70]. A typical
cost function is given by the average job completion time,

C(t) =
1

N

N∑
n=1

(tn,K + pn,K) , (B9)

which represents overall machine-usage efficiency and
needs to be minimized.

Another cost function is the makespan, which is the
finishing time of the last operation,

C(t) = max
n

(tn,K + pn,K) . (B10)

In order to avoid the nonlinear max-function, a linear cost
function can be formulated with an additional auxiliary
variable,

C ′(t′) = tN+1,K , (B11)

which needs to fulfill N additional linear constraints

tn,K + pn,K < tN+1,K (B12)

for all jobs n = 1, . . . , N .
The above formulation directly lends itself to address-

ing the job-shop scheduling problem with QAOA by re-
placing the classical variable tn,k with an angular mo-
mentum operator with total spin ℓ = (T − 1)/2. All
constraints and the cost functions can be expressed as
operators by replacing the classical variables with these
Lz-operators. Thus, we need kN qudits (kN + 1 qudits)
for the average completion time (makespan) formulation,
where each qudit has dimension d = T .
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