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Abstract. Achieving climate neutrality will require a major transformation of the 

transportation sector, likely leading to a surge in demand for electric vehicles 

(EVs). Charging EVs with renewable electricity poses a challenge to grid stabil-

ity due to supply fluctuations. At the same time, EVs offer the potential to im-

prove grid stability through managed charging. The complexity of this charging 

process can limit user flexibility and require more cognitive effort. Smart charg-

ing agents powered by artificial intelligence (AI) can address these challenges by 

optimizing charging profiles based on grid load predictions, but users must trust 

such systems to attain collective goals in a collaborative manner. In this study, 

we focus on traceability as a prerequisite for understanding and predicting system 

behavior and trust calibration. Subjective information processing awareness 

(SIPA) differentiates traceability into transparency, understandability, and pre-

dictability. The study aims to investigate the relationship between traceability, 

trust, and prediction performance in the context of smart charging agents through 

an online experiment. N = 57 participants repeatedly observed cost calculations 

made by a schematic algorithm, while the amount of disclosed information that 

formed the basis of the cost calculations was varied. Results showed that higher 

amount of disclosed information was related to higher reported trust. Moreover, 

traceability was partially higher in the high information group than the medium 

and low-information groups. Conversely, participants’ performance in estimating 

the booking costs did not vary with amount of disclosed information. This pattern 

of results might reflect an explainability pitfall: Users of smart charging agents 

might trust these systems more as traceability increases, regardless of how well 

they understand the system. 

Keywords: smart charging, human-machine cooperation, explainability, trust, 
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1 Introduction 

The EU aims for climate neutrality by 2050, which necessitates a comprehensive trans-

formation of the transport sector, including a 90% reduction in emissions [11]. Conse-

quently, the demand for electric vehicles (EVs) will rise strongly within the next years. 

It has been argued that this demand will pose a challenge for the stability of the power 

grid [19] – particularly if EVs are charged with renewable electricity, which is subject 

to large fluctuations in supply and might not be flexible enough to meet the also fluc-

tuating energy demands by users at all times [5]. Conversely, EVs offer a great potential 

for increasing grid stability through managed and bidirectional charging, that is, EVs 

can store or provide excess energy to the grid as needed [23]. As a consequence, the 

complexity of the charging process increases, limiting user flexibility or requiring more 

planning and technical understanding. Thus, the collective benefit of grid stability may 

come at a cost for the individual user, who might face a restriction of personal resources 

(e.g., time, comfort, cognitive resources [19]). 

Smart charging agents relying on techniques from the field of artificial intelligence 

(AI) offer one solution to combine protection of users’ personal resources with optimal 

utilization of renewable energy, for instance, by calculating and implementing optimal 

charging profiles based on grid load predictions [1]. From the user’s perspective, this 

means that their cognitive effort required to organize a complex charging process is 

minimized. What remains is that users of smart charging systems need to balance be-

tween different goals, either stemming from individual needs (e.g., flexibility) or col-

lective ones (e.g., sustainable energy consumption). Individual users may well pursue 

selfish goals in this regard (i.e., maximize their personal gain, e.g., by booking EVs 

from a car share fleet without delay), but overall, the finite and fluctuating nature of 

renewable energy resources requires that users also pursue collective goals (i.e., max-

imize the collective gain, e.g., by shifting their EV booking window) – in other words, 

users need to make a tradeoff between egoistic and altruistic behavior. Smart charging 

agents offer the potential to assist users in achieving not only individual, but also col-

lective goals. The usage of such a smart charging agent can thus be understood as a 

cooperative, joint activity [15, 18], because both partners (the user and the smart charg-

ing agent) are working towards (shared) goals that neither can achieve on their own. To 

realize the potential of smart charging agents for sustainable electromobility, it is cru-

cial to maximize users’ perception of advantages from cooperating with the system. 

One core variable for enhancing cooperation between users and an AI system such 

as a smart charging agent is trust [3]. Trust plays a role within human-agent interaction 

in the field of smart charging, because this interaction is characterized by degrees of 

uncertainty on part of the users (see [20]) – in contrast to the agent, users do not have 

access to all relevant technical information that determines the charging management 

(e.g., probability of peak load, distance to previous bookings in an EV carsharing con-

text). Hence, users have to rely on the agent’s functionality, i.e., trust the agent. Past 

research has suggested that trust in AI systems can be increased by AI explainability, 

i.e., providing comprehensible and transparent explanations of the algorithm’s deci-

sions [6, 26]. In this sense, explainability refers to enabling a deepened knowledge 

about the system’s general functionality [16]. A related concept that has been applied 
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to trust in AI systems is traceability, which can be related to situation awareness theory 

[10]. Traceability stresses that knowledge representations about how the system works 

(i.e., the mental model) does not capture the awareness of the system’s status (i.e., the 

situation model). However, awareness of the system’s status is necessary to understand 

momentary system behavior and to predict future states. For instance, a user cooperat-

ing with a smart charging agent in a car sharing fleet might know that the agent incor-

porates weather data (general knowledge). However, if the user is not made aware in a 

given situation that the weather data used by the system differs from the user’s expec-

tations, the calculated energy consumption of the EV may not be understandable to the 

user, which is likely to lead to incorrect predictions of the EV’s energy consumption in 

the future. Hence, for the present study, we focused on traceability because it captures 

more complex decision-making processes than explainability, which are relevant in the 

domain of cooperating with smart charging agents. 

The subjective information processing awareness (SIPA) has been proposed as a 

construct which differentiates traceability into three subfacets: transparency, under-

standability, and predictability [24]. Conceptually related situation awareness, SIPA 

refers to “the experience of being enabled by a system to perceive, understand and pre-

dict its information processing” [25]. A first study focusing on traceability of automated 

insulin delivery (AID) systems highlighted the importance of differentiating the three 

subscales and the close connection between SIPA and trust [24]. Based on results re-

garding the relationship between explainability, traceability, and trust, we test the fol-

lowing hypotheses: (H1) SIPA increases with an increase in relevant explaining infor-

mation disclosed by the smart agent; (H2) trust increases with an increase in relevant 

explaining information disclosed by the smart agent; and (H3) SIPA and trust are pos-

itively correlated. 

In addition to subjective assessments of traceability and trust, capturing behavioral 

variables is central to understanding the impact of efforts for human-centered design of 

AI systems: A system that is better traceable should enhance the user’s understanding 

and acceptance, and it should support the interaction success, which should become 

observable in the user’s behavior. Accordingly, better experienced predictability should 

be related to better predictions about the system’s behavior. Hence, we predict that (H4) 

prediction performance increases with an increase in relevant explaining information 

disclosed by the smart agent; and (H5) predictability and prediction performance are 

positively correlated. 

To investigate our hypotheses on the role of traceability for trust as a prerequisite for 

human-agent cooperation in the smart charging domain, we designed an online experi-

ment similar to the one reported in [24]. Specifically, a schematic EV car sharing book-

ing simulation was developed to create stimuli that participants were presented repeat-

edly. These stimuli depicted the booking calculations based on 10 sources of infor-

mation, of which a varying amount was disclosed to the participants (see Section 2.2).  
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2 Method 

A car-sharing booking simulation experiment was conducted using the online platform 

Labvanced [12] The study was approved by the ethics committee of the University of 

Lübeck (tracking number 21-375). 

2.1 Participants 

Complete datasets were gathered from N = 64 participants. Outlier detection was based 

on response times (according to [20]) and response patterns (i.e., data sets without var-

iance on the SIPA scale were excluded). N = 57 participants remained and were in-

cluded in the analyses. Of those, n = 42 (74%) were women, n = 13 (23%) were men, 

and n = 2 (4%) were non-binary. Age varied between 18 and 63 (M = 24.11, SD = 9.50). 

Ninety percent of participants were students. 

The majority of the participants did not have experience in driving electric vehicles: 

46 participants (81%) indicated that they had driven a combustion vehicle in the past, 

whereas only 3 (5%) had driven a BEV, 4 (7%) had driven a hybrid vehicle, and 2 (4%) 

had driven a plug-in hybrid vehicle. Eleven participants (20%) indicated not to have 

any driving experience. Seven participants (12%) reported to have used car sharing in 

the past. The sample was characterized by a slightly below-average affinity for tech-

nology interaction (M = 3.16, SD = 1.18, significant difference from the scale mean 3.5, 

t(56) = -2.20, p = .032, d = -0.29, weak effect; [13]). 

Students from the University of Lübeck were rewarded with course credits. In addi-

tion, the three participants with the best performance in the performance block could 

win €20 each. This additional prize was used to provide an extra incentive for motiva-

tion in the performance task. 

2.2 Experimental Environment and Procedure 

For assessing participants’ perception of the traceability of a smart charging agent 

within an online experiment, a schematic algorithm was designed. This algorithm cal-

culated the resource efficiency of booking an EV from a car-sharing fleet based on 

simulated data, displayed as abstract booking costs (i.e., tokens). The cost calculation 

was based on 10 features (e.g., time of booking start and end, expected network power 

demand, likelihood of a peak load). Fewer tokens indicated higher resource efficiency. 

For the present experiment, the algorithm was used to calculate 50 booking costs, which 

were presented to participants as the result of a supposed artificial intelligence system 

(i.e., this was a wizard-of-oz experiment, see Figure 1). 

In five subsequent observation blocks, the participants were asked to observe 10 cost 

calculations made by the algorithm. After each observation block, participants rated 

their subjective experience with the algorithm (T1-T5). To evaluate participants’ ability 

to predict the algorithm’s results, a performance block followed, in which participants 

were asked to estimate booking costs based on the disclosed information (20 estima-

tions in total). Participant’s performance was measured by comparing their estimates 
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with the actual booking costs (T6); however, this information was not provided to them 

to rule out learning effects.  

The traceability of the algorithm was experimentally manipulated by varying how 

much of information used for cost calculation was disclosed to the participant (low, 

medium, high information; between-factors design). Participants in the low-infor-

mation condition (n = 18) received information about the beginning and end of the 

booking, the expected kilometers, and the customer ID (the latter having no effect on 

the token calculation). Participants in the medium-information condition (n = 20) re-

ceived additional information about the distance to the previous booking in hours, the 

distance to the next booking in hours, the state of charge after the previous booking, 

and the minimum state of charge for the next booking. Participants in the high-infor-

mation condition (n = 19) received additional information about expected grid power 

demand, probability of peak load, expected charge consumption, and expected green 

power share (the latter having no effect on the token calculation).  

 

 

Fig. 1. Stimuli from the study as they were shown to participants for the three conditions. 

2.3 Measures 

To assess the reliability of the used scales, we calculated McDonald’s omega (ω) in 

addition to Cronbach’s alpha (α), since the latter is not well-suited for short scales [7]. 

For traceability facets, which consist of only two items each, the Spearman-Brown co-

efficient was used to assess their reliability [9]. 

For assessing traceability, the 6-item Subjective Information Processing Awareness 

(SIPA) scale [24] was used. The scale measures traceability on the three subscales 

transparency, understandability, and predictability with 2 items each. Responses were 

provided on a 6-point Likert scale from 1 (completely disagree) to 6 (completely agree). 

Regarding the overall scale, Cronbach’s alpha varied between α = .89 and α = .93 and 

McDonald’s omega varied between ω = .88 and ω = .92, which indicates good to ex-

cellent reliability. Regarding the transparency subscale, consistency varied between R 

= .62 and R = .94. The consistency of the understandability subscale varied between R 

= .93 and R = .94. The consistency of the predictability subscale varied between R = 
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.92 and R = .97. Hence, the consistency of the three subscales can be interpreted as 

moderate to high. 

Trust was assessed with the 5-item Facets of Systems Trustworthiness (FOST) scale 

[14]. Responses were provided on a 6-point Likert scale from 1 (completely disagree) 

to 6 (completely agree). Cronbach’s alpha varied between α = .91 and α = .96 and also 

McDonald’s omega varied between ω = .91 and ω = .96, which indicates excellent re-

liability. 

For assessing participant’s prediction performance, 20 of the 50 stimuli created with 

the booking simulation environment were changed in such a way that no prediction of 

the algorithm was displayed, but the different levels of information disclosure (depend-

ing on the condition). Participants were prompted to estimate the output of the algo-

rithm (i.e., the estimated number of tokens). The deviation of each estimate from the 

simulated number of tokens was determined per person and a sum value was calculated, 

which was used as an indicator of performance. 

3 Results 

3.1 Descriptive Analyses 

Table 1 depicts means and standard deviations for the dependent variables that were 

assessed after the five observation blocks (SIPA, SIPA subscales, FOST) for the whole 

participant group as well as for the three experimental conditions. 

Table 1. Descriptive statistics for the dependent variables assessed after the observation blocks. 

Variable N T1 T2 T3 T4 T5 

M SD M SD M SD M SD M SD 

SIPA 57 3.34 1.07 3.29 1.01 3.32 0.97 3.51 1.20 3.32 1.06 

Low info 18 3.39 1.17 3.16 0.97 3.18 0.83 3.10 1.06 3.10 0.86 

Medium info 20 3.57 1.15 3.24 0.95 3.22 0.84 3.24 1.15 2.89 0.78 

High info 19 3.04 0.84 3.46 1.12 3.56 1.19 3.68 1.15 3.68 1.24 

SIPA 

transparency 

57 4.13 1.20 4.12 1.19 4.14 1.10 4.01 1.31 3.96 1.22 

Low info 18 4.28 1.39 4.22 1.17 4.08 1.03 3.92 1.32 4.06 1.12 

Medium info 20 4.30 1.16 4.13 1.17 4.30 0.95 4.05 1.38 3.80 1.26 

High info 19 3.82 1.03 4.03 1.30 4.03 1.32 4.05 1.29 4.05 1.30 

SIPA 

understandability 

57 3.10 1.27 3.06 1.21 3.07 1.16 3.18 1.28 2.93 1.22 

Low info 18 3.08 1.22 2.81 1.23 2.94 0.92 2.83 1.18 2.72 1.10 

Medium info 20 3.33 1.47 3.08 1.23 2.78 1.16 2.98 1.37 2.45 0.93 

High info 19 2.87 1.10 3.29 1.21 3.50 1.28 3.71 1.17 3.63 1.32 
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SIPA 

predictability 

57 2.78 1.25 2.68 1.13 2.75 1.19 2.85 1.24 2.77 1.17 

Low info 18 2.81 1.38 2.44 1.20 2.50 1.26 2.56 1.38 2.53 1.14 

Medium info 20 3.08 1.43 2.53 0.99 2.58 1.13 2.70 1.06 2.43 0.89 

High info 19 2.45 0.81 3.08 1.14 3.16 1.26 3.29 1.21 3.37 1.27 

FOST 57 3.65 1.00 3.39 1.01 3.35 1.09 3.51 1.20 3.32 1.06 

Low info 18 3.50 1.15 2.79 0.77 3.03 0.23 3.12 1.17 3.01 0.80 

Medium info 20 3.90 0.84 3.65 0.98 3.41 1.10 3.55 1.22 3.04 0.93 

High info 19 3.53 1.00 3.68 1.02 3.58 1.14 3.83 1.16 3.90 1.21 

 

Table 2 depicts means and standard deviations for participants’ performance in estimat-

ing the booking costs calculated by the algorithm. As a performance indicator, the sum 

of deviations of participants’ estimates from the simulated booking costs was calcu-

lated. 

Table 2. Descriptive statistics for participants’ performance within the performance block. 

Variable N T6 

M SD 

Mean sum of deviations 

from estimated fit 

57 1509 706 

Low info 18 1613 1047 

Medium info 20 1486 424 

High info 19 1436 556 

3.2 Hypotheses Testing 

For analyzing differences between the three experimental conditions (H1, H2, H4), 

planned contrast analyses were conducted for each of the dependent variables and 

points of measurement [22]. The different amounts of information disclosed to each 

group and the corresponding relationship between attributes were used to determine the 

weights (i.e., lambda values). It was assumed that each attribute (i.e., a total of low info: 

4, medium info: 8, or high info: 12) could be related to each other attribute seen in one 

condition. The number of relations between attributes is given by the binomial coeffi-

cient (i.e., the number of attributes over two). Thus, the number of relations between 

attributes was for low info = 6, for medium info = 28, and for high info = 66. Following 

[2] to calculate the weights, the following lambda values for the contrast analysis were 

defined: λlow = -2.5, λmed = -0.5, λhigh = 3; for a similar approach see [24]. Results are 

depicted in Table 3. Effect sizes were interpreted according to [4]. 
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Table 3. Planned contrast analyses results. 

Variable T p 95% CI r(effect size) 

SIPA overall score 

T1 -1.16 .252 [-3.07, 0.82] .15 

T2 0.95 .347 [-0.98, 2.74] .13 

T3 1.28 .205 [-0.64, 2.91] .17 

T4 1.64 .108 [-0.38, 3.73] .22 

T5 2.07 .043 [0.06, 3.65] .27 

SIPA transparency 

T1 -1.28 .207 [-3.59, 0.79] .17 

T2 -0.49 .628 [-2.76, 1.68] .07 

T3 -0.28 .784 [-2.31, 1.75] .04 

T4 0.28 .780 [-2.09, 2.78] .04 

T5 0.11 .916 [-2.14, 2.38] .01 

SIPA understandability 

T1 -0.66 .514 [-3.10, 1.57] .09 

T2 1.18 .242 [-0.92, 3.55] .16 

T3 1.69 .097 [-0.33, 3.83] .22 

T4 2.25 .029 [0.28, 4.84] .29 

T5 2.79 .007 [0.80, 4.93] .35 

SIPA predictability 

T1 -1.21 .237 [-3.48, 1.06] .16 

T2 1.84 .072 [-0.17, 3.90] .24 

T3 1.80 .077 [-0.22, 4.09] .24 

T4 1.91 .060 [-0.10, 4.35] .25 

T5 2.54 .014 [0.55, 4.60] .32 

FOST 

T1 -0.13 .895 [-1.95, 1.71] .02 

T2 2.64 .011 [0.54, 3.97] .33 

T3 1.47 .148 [-0.53, 3.43] .19 

T4 1.77 .083 [-0.26, 4.09] .23 

T5 2.90 .005 [0.81, 4.46] .37 

Performance (Mean sum of deviations from estimated fit) 

T6 -0.72 .478 [-1776, 842] .10 

Note. Significant differences are bold-faced for better readability. 

 

Results showed that regarding the overall SIPA score, only at T5 a significant con-

trast was found with participants in the high-info group having a significantly higher 
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SIPA mean score than participants in the low-info and medium-info groups (moderate 

effect). Regarding the SIPA subscale transparency, the three groups did not differ in 

their ratings. Significant differences were found for understandability at T4 and T5, 

with participants in the high-info group having significantly higher scores than partici-

pants in the low-info and medium-info groups (moderate effect). Moreover, a signifi-

cant difference was found for predictability at T5, with participants in the high-info 

group again having significantly higher scores than participants in the low-info and 

medium-info groups (moderate effect). Thus, H1 was partially supported. 

In terms of trust, significant differences were found at T2 and T5, with participants 

in the high-info group having significantly higher scores than participants in the low-

info and medium-info groups (moderate to large effect). Hence, H2 was partially sup-

ported. One-tailed correlation analyses were conducted for testing the relationship be-

tween SIPA (subscales) and trust. Since multiple variables studied were not normally 

distributed, Spearman’s Rho was calculated. Results are depicted in Table 4. The size 

of correlation coefficients varied between rS = .46 and rS = .89, indicating a moderate to 

strong relationship. H3 was thus supported. 

For the performance indicator, the planned contrast analyses did not show any sig-

nificant differences. Thus, H4 was not supported. For testing the relationship between 

predictability and prediction performance, again one-tailed Spearman correlation anal-

yses were conducted. The correlation was only significant between performance and 

prediction at T1 (rS = .27, p = .023, medium effect). The support for H5 was therefore 

weak. 

Table 4. Correlations between trust and SIPA for each point of measurement. 

 Point of 

measure- 

ment 

SIPA 

Overall score Transparency Understandability Predictability 

rS p rS p rS p rS p 

Trust T1 .66 <.001 .49 <.001 .60 <.001 .64 <.001 

T2 .79 <.001 .54 <.001 .76 <.001 .72 <.001 

T3 .81 <.001 .47 <.001 .83 <.001 .71 <.001 

T4 .89 <.001 .73 <.001 .83 <.001 .78 <.001 

T5 .84 <.001 .46 <.001 .86 <.001 .76 <.001 

4 Discussion 

4.1 Summary of Results 

Using planned contrast analyses, it was shown that traceability partially varied with the 

amount of disclosed information (higher amount of information related to higher re-

ported trust). Moreover, trust was partially higher in the high information group than 

the medium and low information groups. Analyses of the three subscales of traceability 

revealed that effects were existent for understandability and predictability, while no 

effect was found for transparency. As expected, strong relationships between 
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traceability and trust were found. With respect to prediction performance, the results 

showed that participants’ performance in estimating the booking costs did not vary with 

the amount of disclosed information and only marginally with experienced predictabil-

ity. 

4.2 Implications 

While additional information enhanced subjective experiences of trust, understanda-

bility, and predictability of a smart charging agent for EV car sharing, they did not 

improve transparency ratings and estimation of the algorithm’s output. Together with 

the lack of a robust link between experienced predictability and prediction performance, 

the findings suggest that participants may have experienced an explainability pitfall [8]: 

Users of smart charging agents might trust these systems more as traceability increases, 

regardless of how well they understand the system. Thus, such systems may elicit the 

false impression that users understand the system’s functionality well enough to predict 

its outcomes, even though they are unable to do so, possibly causing unwarranted trust 

[17]. An alternative explanation for the findings could be that as information increases, 

the workload for attending to each piece of information and integrating it into a numer-

ical estimate increases, which could worsen prediction performance. In this case, how-

ever, the medium-info group should have scored higher than the high-info group, which 

was not the case.  

4.3 Limitations and Future Research 

An important limitation of the study is the sample composition: The participants were 

mostly students with little or no experience with EVs and carsharing. Although the 

understanding of the situation was increased by a contextual introduction and tested by 

knowledge questions at the beginning of the study, a sample consisting of actual users 

of EV carsharing services should be recruited to increase external validity. 

Furthermore, the way in which the participants’ prediction performance was as-

sessed should be questioned. In real-world scenarios, users of smart charging agents do 

not need to predict the results of the algorithm in such an explicit manner. Hence, it 

might be fruitful to develop a way to measure predictive performance that has higher 

ecological validity. 

4.4 Conclusion 

ToDo… 
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