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Robots and other assistive technologies have a huge potential
to help society in domains ranging from factory work to
healthcare. However, safe and effective control of robotic
agents in these environments is complex, especially when it
involves close interactions and multiple actors. We propose an
effective framework for optimizing the behaviour of robots
and complementary assistive technologies in systems
comprising a mix of human and technological agents with
numerous high-level goals. The framework uses a combination
of detailed biomechanical modelling and weighted multi-
objective optimization to allow for the fine tuning of robot
behaviours depending on the specification of the task at hand.
We illustrate our framework via two case studies across
assisted living and rehabilitation scenarios, and conduct
simulations and experiments of triadic collaboration in
practice. Our results indicate a marked benefit to the triadic
approach, showing the potential to improve outcome
measures for human agents in robot-assisted tasks.

1. Triadic collaboration
Human–robot collaboration involves the cooperation between
human and robotic agents, in order to achieve shared goals.
Unlike in traditional industrial robotics environments, where
robotic agents are often physically separated from human
workers via barriers to prioritize safety [1], collaborative robots
(often termed cobots [2,3]) exploit direct physical interaction
between humans and robots to assist with complex or physically
demanding tasks [4].
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Figure 1. Triadic collaboration lies at the intersection of human–robot teaming and pHRI.
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Human–robot collaboration scenarios can in some sense be characterized on a spectrum of physical
interaction and number of agents. On one extreme, human–robot teaming involves cooperation between
multiple humans and (potentially large numbers of) autonomous robotic agents [5,6]. Physical human–
robot interaction (pHRI) scenarios typically involve collaboration between a single human and robot,
with a heavy focus on the nature of the direct physical interaction between the two [7]. The
intersection of human–robot teaming and pHRI comprises problems which involve multiple human
and robotic agents, with physical interaction between some subset of the agents. We describe these
scenarios as triadic collaboration problems (figure 1).

Triadic collaboration scenarios are increasingly becoming ubiquitous throughout many industries
and domains ranging from factory-line work to rehabilitation centres. This is driven by the increasing
levels of adoption of robot and exoskeleton technologies in the workplace [8], where they are used to
increase productivity and reduce the physical stress on staff and healthcare professionals. Those who
engage in labour-intensive or physically repetitive tasks in the workplace have been shown to be at a
higher risk of developing musculoskeletal disorders (MSDs) over the course of their life [9–11].
Examples of such occurrences are numerous, ranging from nurses developing back injuries due to
lifting and otherwise assisting patients [12], to office workers being susceptible to neck pain and
injury due to ergonomically unsafe working postures [13]. MSDs cause a loss of productivity [14], and
can have significant negative physical and psychological effects on workers [15].

Concrete examples of triadic collaboration include:

(i) The introduction of a robotic workforce to augment and assist an existing human staff [16]. In this
scenario, human and robotic agents share the same physical space and collaborate to achieve
shared goals [17,18], while wearable robotic devices can be worn by workers to directly
provide assistive torques to the human joints, with the high-level aim of minimizing ergonomic
risk [19,20].

(ii) The assisted living and wider healthcare settings. While research in this area is in its early phase,
exoskeletons are thought to have great potential to assist healthcare professionals like nurses in
their daily tasks while reducing risk of injury [21,22].

(iii) In physiotherapy, where exoskeletons and other assistive technologies have shown potential as a
tool for improving rehabilitation outcomes [23,24].

Notably, these examples of triadic collaboration take place in various application domains and on the
surface appear to be entirely disparate problems, with scenarios differing in both the composition of
agents, as well as the nature of the physical interaction between agents. For instance, in scenario (i),
the composition of agents is mixed between humans and robots, whereas scenario (iii) features a
single human agent interacting with multiple technologies. Despite these differences, these examples
of triadic collaboration do share a set of characteristic features:

— one (or more) human agents collaborating with one (or more) robotic agents,
— physical interaction between at least some agents,
— a set of high-level common goals.



Figure 2. A general illustration of triadic collaboration. In the general case, this comprises a mixture of agents, of which at least one
is human and at least one is technological, with some level of physical interaction between agents. An example, as depicted, is a
nurse and robot collaborating to help a patient perform a sit-to-stand.
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We propose to encapsulate each of these examples, and more, within a generic framework for tackling
triadic collaboration scenarios, which we define as those exhibiting the three characteristic features
listed above.

2. A framework for triadic collaboration problems
The high-level aim of our framework is to determine the most optimal behaviours for robotic agents in
triadic collaboration scenarios (figure 2). When carrying out a triadic collaboration task, typically there
are one or more high-level objectives which are to be realized. For example, for a factory worker
engaging in a repetitive overhead task, an active assistive exoskeleton should be controlled to assist in
completion of the task, while also minimizing the risk of shoulder injury to the worker. The level of
ergonomic risk associated with a task, as well as the methodology for quantifying that risk, is highly
dependent on the task at hand. Therefore, our triadic collaboration framework has two key requirements:

(i) the ability to carry out motion tasks while minimizing ergonomic risk for human agents,
(ii) the ability to generalize to various triadic collaboration scenarios.

A natural setting which allows us to achieve these requirements is that of mathematical optimization.
More concretely, we consider an optimization problem whereby our objective function consists of a
weighted sum of ergonomics metrics, which describes the level of ergonomic risk associated with
specific tasks (box 1).

Our framework uses biomechanical models which introduce additional computational complexity in
return for a much more detailed appreciation of these ergonomics metrics, as we will see in the next
section.
2.1. Quantifying ergonomics via biomechanical modelling
As discussed previously, the use of exoskeletons and other robotic agents in the workplace is driven, at
least in part, by the desire to reduce the impact of MSDs in the workplace. Ergonomics metrics provide a
means of quantifying the level of risk of experiencing an MSD associated with certain motions or tasks—
and therefore are prime candidates for optimization via our triadic collaboration framework.

A well known and widely used ergonomics metric is the rapid entire body assessment (REBA) [25]. The
REBA metric assigns a score of 1–15 for a task according to the perceived ergonomic risk. The overall
score is dependent on multiple factors, including the effects of heavy loads and strenuous activities,
but is largely dependent on a kinematic analysis of various parts of the body such as the neck, torso
and legs. Other ergonomics measures have been developed [26] which typically share many features
with REBA—namely, a consideration of largely kinematic features (e.g neck angle, torso angle) with a
relatively coarse consideration of dynamic effects (i.e load carried), and a low temporal resolution,
whereby ergonomics scores are generated only for complete tasks or after observing a task for some
fixed amount of time.



Box 1. Optimization framework.

Our generic formulation of the triadic collaboration problem is as follows:

min
x

XK
k¼1

wkEkðxÞ,

s:t: MiðxÞ � 0, MjðxÞ ¼ 0, for M [ M
TiðxÞ � 0, TjðxÞ ¼ 0, for T [ T :

ð2:1Þ

Here, x [ Rn are the optimization variables, which represent decision variables for the combined
set of human and robotic agents, and Ek :Rn 7! R are ergonomics metrics, which together with
associated weights wk [ R define the objective function as a summation of K weighted ergonomics
metrics. In addition, our problem contains two categories of constraint: task constraints T [ T ,
which codify the constraints which are required to ensure task completion, and modelling
constraints M [ M, which represent system dynamics. These constraints are represented as a
combination of inequality constraints (Mi, Ti) and equality constraints (Mj, Tj).
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More recently, researchers have employed the use of musculoskeletal models (figure 3) in the analysis
of ergonomics [27–29]. These models represent the human body as a composition of bodies, joints and
muscles—which together constitute the human’s body system dynamics. They can be personalized to
match a particular subject via a process of model scaling and parameter specification, and can target a
level of complexity appropriate to the task at hand.1 A powerful feature of these models is the ability
to explicitly model the presence of muscle weakness or pathology via a direct adjustment of the
appropriate muscle parameters. In addition, external devices like exoskeletons can be physically
coupled to the human model (figure 3), thus directly impacting the system dynamics. Computing
ergonomics measures via musculoskeletal modelling is inherently more computationally complex than
existing, data-driven metrics like REBA. However, these approaches can offer numerous advantages,
including a typically higher temporal resolution (i.e. the ability to quantify risk at given points during
task execution as opposed to on a task-by-task basis), as well as the ability to consider the behaviour
of muscles and forces in addition to kinematic trajectories [31–33]. This level of granularity can be
important, particularly for triadic collaboration tasks that require a more careful consideration of
ergonomics, e.g. when controlling an exoskeleton to avoid or reduce the risk of injury to a particular
joint or set of muscle groups.
2.2. Optimizing the actions of robotic agents
Given appropriate biomechanical models and constraints T which describe a triadic collaboration task,
we can use the optimization framework outlined in System (2.1) to optimize robot behaviour—this
procedure is demonstrated further in the forthcoming case studies. There are two powerful
modifications we can make to the framework on a case-by-case basis to fine-tune robot behaviour as
needed:

(i) modifying the components (and relative weightings) of the objective function, to suit a large
variety of triadic collaboration tasks, or account for differences between human agents,

(ii) explicit modifications to the dynamics models, which can represent injury or muscle pathologies in
human agents.

In practice, the triadic collaboration framework involves a composition of predictive modelling,
optimization, and real-time control blocks as outlined in figure 4. The predictive modelling block
enables partner policy prediction, i.e the ability for robot agents to predict how their actions will affect
future actions of the human agents, and is an important component of human–robot collaboration
frameworks in general [18]. The precise implementation of the predictive modelling and real-time
control blocks are problem-specific.
1For example, lower-body investigations may rely on musculoskeletal models which abstract the upper-body geometry in to a single
‘torso’ body.



Figure 4. A schematic outlining the relationship between the key components of the triadic collaboration framework. This can be
interpreted as a control diagram showing inputs to and outputs from each component of the framework at time t. The formulations
discussed in this work refer to the optimization component, shown in green.

(a) (b) (c)

Figure 3. (a) A research participant wearing a lower-body exoskeleton, taking part in an investigation of sit-to-stand biomechanics.
(b,c) Snapshots from a reconstruction of the sit-to-stand motion. Musculoskeletal models, built in OpenSim [30], account for the
coupling between human and exoskeleton, and allow for detailed analysis of the behaviour of human joints and muscles.
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3. Case study i: assisted living and working
In this case study, we consider the example of a human patient being assisted in a sit-to-stand manoeuvre
by a combination of a robotic exoskeleton and a human carer. More generally, we can consider this as a
subcase of a more general scenario in which a human assistance seeker interacts with a human assistance
provider and a form of assistive technology (figure 5). An additional subcase is briefly outlined in box 2. The
assistive technology in these scenarios has a direct physical link to only the assistance seeker; therefore,
the assistive technology can only affect the behaviour of the assistance provider by first interacting with
the assistance seeker. This general specification exemplifies the use of assistive technology to assist
multiple human agents.
3.1. Problem formulation
The primary objective of both the assistive technology and the assistance provider is to ensure the safety
of the assistance seeker. A secondary but nevertheless important objective is to minimize the ergonomic
risk of injury to the human carer. In our framework, these objectives can be achieved via insertion of
appropriate ergonomics metrics into the objective function of our framework (system (2.1)):

— margin of stability of the assistance seeker, which describes fall risk,
— lumbar joint loading of the assistance provider, to reduce the risk of back injury.

Mathematically, given some motion which started at time t = 0 and ended at time t = tf, these ergonomics
metrics can be written as follows:

Es ¼
ðt f
0
c p þ cv

w0
dt ðstabilityÞ



Figure 5. A schematic illustrating the triadic collaboration framework instantiated in an assisted living scenario. Here, a human agent such
as a nurse or carer (the assistance provider) is providing physical assistance to a patient (the assistance seeker) with additional support from a
technological agent (e.g. an exoskeleton). The assistance seeker has direct physical interaction with both the technology and the assistance
provider, while the assistance provider interacts with the technology only in a supervisory fashion.

Box 2. Assisted working.

Already, state-of-the-art exoskeletons for ergonomics support are being employed in industrial
settings [35]. However, these applications remain largely dyadic in nature i.e. one human worker
being assisted by a robotic agent. The example instantiation of the triadic collaboration
framework presented here could naturally be extended to the case of assisted working (figure 6),
to unlock scenarios in which human agents and robots collaborate simultaneously. For example,
the composition of stability and lumbar loading in the objective function could be directly
applied to a manual lifting and carrying task.

Figure 6. Snapshots of an example triadic collaboration work task involving two human agents and an exoskeleton. One
human agent bears the brunt of the load, with the assistance of an exoskeleton providing ergonomic support. Meanwhile,
the second human agent carries out the finer manipulation.
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and

Eb ¼
ðt f
0
vTFb dt, ðlumbar loadingÞ

where cp, cv, respectively, denote the position and velocity of the centre of mass, w0 is a constant
determined by leg length, Fb is the six-dimensional vector of net forces and torques acting on the
carer’s back, and ω is an internal weighting vector which controls the relative importance of each
generalized force component. These metrics can be inserted into system (2.1) as follows:

min
x

wsEs þ wbEb, ð3:1Þ

where ws and wb encode the relative weighting of the ergonomics metrics.



Figure 7. Snapshots of a simulated assisted sit-to-stand transition. A patient (left) is assisted in completing a sit-to-stand by a
combination of a human carer (right) and an exoskeleton (highlighted in yellow). The red plane models a seat, while blue
spheres represent contact geometries.
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Next, we consider how to model the action of exoskeleton and external agent assistance in the form of
constraints for system (2.1). These take the following form:

MðqÞ€qþ cðq, _qÞ þ gðqÞ þ Fa ¼ th þ te ðdynamicsÞ
and

te ¼ feðxÞ: ðexoskeleton assistanceÞ
Here, the components Fa and τe represent the contributions of the assistive agent and the assistive
technology, respectively, to the general equation of multi-body system dynamics [34]. The function
fe(x) maps the generated exoskeleton motor torques on to the human body via an appropriate
exoskeleton force transmission model [32], where exoskeleton commands are now included in the
optimization variable vector x.

Finally, we include task constraints which encode the initial (sitting) and final (standing)
configuration of the assistance seeker as follows:

qð0Þ ¼ qs
qðt f Þ ¼ 0,

�
ðtask constraintsÞ

where q s corresponds to a sitting pose.
3.2. Indicative results
To evaluate the benefits of our formulation, we can leverage the use of digital twins to simulate triadic
collaboration scenarios. The assisted sit-to-stand scenario is modelled using open-source musculoskeletal
modelling software OpenSim [30] and shown for reference in figure 7. The human agents are represented
by a two-dimensional musculoskeletal model with 6 dof representing the movements of the back, hip,
knee, ankle, shoulder and elbow joints in the sagittal plane. The joints are actuated by torque
actuators which feature activation dynamics. The feet of each model are constrained to the ground,
with a geometric kinematic constraint used to link the hands of the human agents and allow the
transfer of force during the sit-to-stand movement. The agent representing the assistance seeker has
additional contact geometries to represent the initial sitting configuration. The robotic agent, shown in
yellow in figure 7, is a computer-aided design (CAD)-based representation of the active pelvis orthosis
(APO) exoskeleton [36], a powered mobile exoskeleton for movement assistance. In this model, it is
represented by its mass properties as well as two ideal torque actuators located on the hip and back
joints of the carer agent, which each have a peak torque of 150Nm.2

The objectives and constraints outlined in the problem formulation are implemented in OpenSim
Moco [37], an open-source software which uses direct collocation to solve optimal control problems
with OpenSim models. A range of simulations were conducted to investigate both the impact of
2In actuality, the torque limits of the APO are approximately 35 Nm of peak torque output and 15Nm of sustained torque output [36].
However, we have chosen to artificially increase the APO’s torque limits in simulation so as to allow for evaluation of severely
weakened human models.



Table 1. The experimental conditions for each sit-to-stand transition simulation. Note that the relative disparity between the
baseline values of wb and ws (10

−4 and 1, respectively) arises due to the difference in the typical order of magnitude of the
corresponding cost terms.

simulation assistance enabled joints weakened wb ws

1 no none 10−4 1

2 no back, hip, knee 10−4 1

3 yes back, hip, knee 10−6 1

4 yes back, hip, knee 10−4 10−2

5 yes back, hip, knee 10−4 1

6 yes ankle 10−4 1

Table 2. The system mass and joint strengths assigned to each of the simulated subjects corresponding to assistance seekers in
the case study i simulations.

subject mass (kg) joint strength (Nm)

1 65.9 200

2 75.2 172

3 67.9 208

4 73.2 208

5 67.2 174
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joint weakness on human sit-to-stand biomechanics, as well as the efficacy of an approach based on
triadic collaboration.

The parameters varied between simulations included the exoskeleton assistance level, the strength of
the musculoskeletal model representing the assistance seeker, and the form of the objective function used
in the optimal control problem. In two simulations, exoskeleton assistance was disabled, so as to gain
insight into dyadic human–human sit-to-stand strategies, while in the remaining simulations
exoskeleton assistance was enabled. In one simulation, both human agents were at full strength—this
represented a ‘healthy’ sit-to-stand, while in the remaining simulations the joint strengths of a subset
of the assistance seeker’s joints were reduced by 90% in order to simulate muscle weakness. Finally,
two simulations focused specifically on overweighting the stability and lumbar loading cost terms,
respectively, so as to provide a comparison for the influence of triadic collaboration. The test-cases
evaluated are summarized for reference in table 1.

To enable a statistical consideration of the results, each simulation case was run for five simulated
human subjects, corresponding to the assistance seeker in the scenario, which differed in their
mass properties and joint strengths. Subject 1 was implemented with peak joint torques of 200Nm and
a total mass of 65.9 kg. The remaining subjects were randomly assigned a peak joint torque and mass
within +20% of these baseline values. The model representing the assistance provider was unchanged
over the simulations. The system properties of the simulated subjects are summarized for reference
in table 2.

The results of the assisted sit-to-stand simulations are summarized in figure 8, and snapshots from
simulations 3–5 are shown in figure 9 to illustrate the changes in biomechanics induced by
modifications to the overall objective. Firstly, comparing the results of simulation 1 and simulation 2,
we note that the weakening of the assistance seeker has had a significant effect on the overall sit-to-
stand biomechanics, significantly increasing the lumbar loading metric. This is as expected, since
without exoskeleton assistance the burden of making up for the lack of strength lies solely with the
assistance provider, which places additional strain on the lumbar joint.

In simulations 3–6, where exoskeleton assistance is enabled, lumbar loading is markedly reduced.
Simulations 3 and 4 sacrifice lumbar loading for stability, and vice versa, as expected due to
the overweighted nature of the cost function in these cases. The equitable inclusion of the lumbar
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Figure 8. (a) The assistive torques generated by the APO in simulations 3–6. (b) The lumbar loading and stability costs for each
simulated test case. Lower costs indicate better performance.
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Figure 9. Intermediate snapshots from simulations 3 (a), 4 (b) and 5 (c) showing the agent configurations after 0.5 s of the sit-to-
stand transfer. Note in particular the more acute angle of the assistance provider’s back joint in Simulation 3, in which lumbar
loading is not optimized.
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loading cost term in the objective function of simulation 5 results in a marked reduction of lumbar
loading when compared with simulation 3, though a relative decrease in stability does occur in this
case. Interestingly, the relative variance in the stability cost is significantly larger than that of the
lumbar loading cost, and this is particularly true for certain simulations (1, 5 and 6), suggesting that
changes in mass and model strength have a stronger effect on stability than lumbar loading of the
carer. This is perhaps a natural consequence of the stability metric being largely based on the
dynamics of the assistance receiver. Simulation 6 was included to investigate the effect of different
musculoskeletal pathologies on sit-to-stand biomechanics, and differs from simulation 5 only in the
joints weakened in the musculoskeletal model. The optimized APO assistance results in decreases to
both the lumbar loading and stability costs.

The assistive forces generated by the APO in these simulations are shown for comparison purposes in
figure 8. Notably, the peak in assisted torques occurs much earlier than observed in human sit-to-stand
data [38]. The difficulty of hand-tuning such trajectories highlights the benefits of our optimization-based
approach.

It is particularly notable that despite no direct physical link between the exoskeleton and the
assistance provider, it is capable of reducing the physical strain experienced by this agent without
overly compromising the stability of the assistance seeker (i.e. comparing the mean stability from
simulation 1 with simulation 5). Alternative cost term weightings could be chosen based on the
desired outcome of the assistance pattern, i.e. the weighting from simulation 3 or 4 depending on
whether stability or lumbar loading are more important to the task at hand. This behaviour clearly
motivates the treatment of exoskeleton control in such scenarios as a triadic collaboration problem;
whereby multiple agent-specific objectives can be included and prioritized according to the nature of
the motion task.



Figure 10. A schematic illustrating the triadic collaboration framework instantiated in a specific rehabilitation scenario. Here, a
human agent carries out a prescribed motion with assistance from two technological agents—an exoskeleton and FES electrodes.
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4. Case study ii: robot-assisted rehabilitation
Here, we consider an instance of triadic collaboration involving two technological devices assisting a
single human agent. A typical real-world example of this is in rehabilitation centres, where
physiotherapists may use a combination of functional electrical stimulation (FES) and exoskeleton
assistance to achieve a desired rehabilitation plan (figure 10). The assistive agents in this scenario
share the goal of assisting the human to follow a kinematic trajectory; however, they do so with the
additional objective of fatigue minimization; if muscle fatigue is low, more FES is used to encourage
muscle strengthening, but if muscle fatigue is high, the exoskeleton picks up more slack to allow the
human muscles to rest. Therefore, we see that the relative balance of FES and exoskeleton assistance is
in a trade-off relationship with the level of muscle fatigue currently experienced by the assistance seeker.
4.1. Problem formulation
In our framework, the trade-off between muscle fatigue and assistance level is achieved via a
combination of goals and constraints. The goals take the following form:

Et ¼
ðt f
0
ðqref � qÞ2 dt, ðtrackingÞ

Eu ¼
ðtf
0
kuek2 dt ðassistanceÞ

E f ¼
ðt f
0
fmðq, _q, PÞdt, ðfatigueÞ

where q contains the human joint trajectories, which are desired to track reference trajectories qref, ue
represents exoskeleton torque commands, and fm is an equation modelling muscle fatigue [39]. To
represent the action of FES and exoskeleton assistance, we can introduce the modelling constraints
from the previous case study, in addition to a further constraint,

th ¼ tn þ fsðxÞ, ðFESÞ
which indicates that the combined human joint torques τh are now a composition of the natural
contribution τn and a FES-induced contribution modelled by the function fs. In this case, input
commands to the FES electrodes, as well as exoskeleton motor commands, are both now included as
optimization variables.

The relative magnitude of the weighting between trajectory tracking, exoskeleton assistance, and
muscle fatigue can be varied on a temporal basis as a patient’s condition progresses or improves
during the rehabilitation process. For example, a patient recovering from a recent stroke could at first
be assigned a high fatigue weighting which is gradually reduced as their strength improves. This
ability to fine tune the precise behaviour of triadic collaboration protocols depending on individual
requirements is a powerful feature of the optimization-based control framework we have presented
here (see equation (2.1) in box 1).
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4.2. Indicative results

To illustrate the optimization of hybrid robot-FES control parameters via our triadic collaboration
framework, we consider a simulation of an assisted trajectory tracking task (figure 11). In this case,
the musculoskeletal model representing the human-agent contains 10 dof and is actuated by 18
muscle-based actuators. A CAD-based representation of the H3 exoskeleton (Technaid, Spain) is
affixed to the model, and contains 6 active degrees of freedom across the hip, knee and ankle joints,
each of which is powered by an ideal torque actuator. The human-exoskeleton interface is modelled
via bushing forces, which act as six-dimensional spring-damper systems and represent the action of
the exoskeleton straps.

The equation of motion for the combined system of agents is as follows:

MðqÞ€qþ cðq, _qÞ þ gðqÞ þ Fa ¼ tn þ t f þ te: ð4:1Þ

Compared with case study i, we have an additional term τf, which results from the presence of FES in
the human component of the net torque vector, and the isolated human contribution is denoted as τn.
A linear model is used to approximate the effect of electrical stimulation on human muscle activity

ac ¼ ah þ a f , ð4:2Þ

where the subscripts c, h and f denote the combined activity, the activity due to human intention and the
activity due to FES, respectively—note that the combined activity of any muscle is constrained to lie
within [0, 1]. This simple model assumes that electrical activity from the FES electrodes are perfectly
transferred to the human neuromuscular system.

The human intention, in the form of prescribed muscle activity ah, was approximated using motion
capture and reconstruction [32] from subjects in the University of Edinburgh gait laboratory. The raw
motion data were obtained from an experimental set-up in which subjects followed a prescribed
tracking task while wearing the H3 exoskeleton in transparent mode [40]. Images of the experimental
set-up, including FES electrodes which were deactivated for this initial data collection procedure, are
shown in figure 12.

To estimate the muscle activation induced by FES, a f, a simplified muscle activation model is used
[41]. A linear function is used to obtain the induced activation for a given muscle based on the
stimulation pulse width u f, threshold u thr, and saturation pulse width u sat. This can be expressed
mathematically as follows:

a f ¼
0, u f , uthr,
u f�uthr

usat�uthr
, uthr , u f , usat,

1, u f . usat:

8><
>: ð4:3Þ

The pulse width, uf, is calculated based on a closed-loop feedback controller, described below, and the
resultant muscle activation is used to calculate the joint torques of the human model, τh = τn + τf,
according to OpenSim’s muscle activation dynamics. For this case study, the values used for uthr and
u sat were 100 and 600 μs, respectively, and were kept uniform across the stimulated muscles. The
stimulation frequency and amplitude were assumed to be constant.

Both technological agents in this simulation, i.e. the FES electrodes and exoskeleton, are governed by
parametrized closed-loop feedback control laws,

te ¼ KeDqþ BeD _q ð4:4Þ
and

u f ¼ K fDq, ð4:5Þ

where Δq denotes the measured joint error from the prescribed tracking trajectory. In practice, the gains
underpinning each controller are typically manually tuned, which can be a time-intensive process [42].
Using our triadic collaboration framework, coupled with Bayesian optimization as a sampling-based
optimizer, we can instead optimize the gains of these controllers to balance the relative impact of
fatigue, exoskeleton assistance level and tracking error. The results of such an optimization on the
recorded data of 10 healthy individuals are illustrated in figure 13, alongside simulations of dyadic
interventions (i.e. using only exoskeleton or only FES assistance).

It can be observed for the exoskeleton-only intervention, the personalized controller gains result in
higher assistive forces from the exoskeleton in order to reduce the tracking error and the weighted



(a) (b) (c)

Figure 11. Snapshots of a simulated assisted swing leg motion. A patient is assisted in completing the swing leg motion by a
combination of exoskeleton assistance and electrical stimulation. During the initial swing (a), the gluteus muscle is stimulated,
during the mid-swing (b) the hamstring muscles are stimulated and during the terminal swing (c) the vasti muscles are
stimulated. The stimulated muscles are presented in red and the non-stimulated muscles are presented in blue.

(a) (b)

Figure 12. (a) A subject undergoing familiarization with the FES electrodes. (b) A subject undergoing the trajectory tracking task
with the H3 in transparent mode, to obtain the baseline human intention.
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Figure 13. A comparison between three different rehabilitative interventions; exoskeleton-only assistance, FES-only assistance, and
hybrid exoskeleton-FES assistance. For each of the three interventions, the estimated tracking error, assistance and muscle fatigue are
compared between the case where baseline controller parameters are used and the case where the parameters are optimized for
triadic collaboration.
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Box 3. Assist-as-needed control.

A key concept in the wider area of robot-assisted rehabilitation is assist-as-needed control, whereby
robot control signals should only act to support humans when necessary, and otherwise should not
affect human efforts. This arises as a natural consequence of the balancing of muscle fatigue and
trajectory tracking in our optimization—if the human is already tracking the input trajectory well
enough, and fatigue is low, no additional inputs are required from the technological agents. On
the other hand, if tracking performance drifts, or measured fatigue becomes high, the assistive
technology is able to pick up the slack. The ‘slack’ offered by the technological agents can be
tuned on a person-specific basis by the physiotherapist by varying the relative magnitude of the
weighting terms wt and wf associated with the tracking and fatigue costs, respectively.
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sum of both, which is effectively a measure of the controller’s ability to provide assistance as needed
(box 3). On the other hand, for the FES-only intervention, it can be seen that with the optimized gains
for the FES controller both the tracking error and muscle fatigue can be reduced. In either case, we
see a measurable benefit in optimizing controller gains for individual subjects.

When the two interventions are combined, an obvious benefit in all three costs can be observed
compared with the dyadic scenarios. The tracking error, exoskeleton assistance and muscle fatigue are
all significantly reduced compared with the exoskeleton-only intervention and the FES-only
intervention cases, regardless of whether the baseline or personalized gains are used. This indicates
that due to the triadic collaboration of the three agents, all three costs can be reduced. Similarly as for
the dyadic cases, it can be seen that when the personalized gains are used, all three costs are
measurably reduced, which is particularly noticeable when compared with the weighted sum of the
cost terms. As in case study i, the relative weightings of the respective cost terms could be modified
to achieve more specific goals depending on the specific needs of the individual undergoing
rehabilitation.
5. Discussion
In this concept paper, we have introduced a framework for dealing with problems of dynamic
collaboration in multi-agent systems comprising a mixture of humans and robots. The key strengths of
our framework are:

— The ability to handle dynamic interaction between multiple human and robotic agents.
— Flexibility to handle various triadic collaboration scenarios via the selection of appropriate

ergonomics metrics and task constraints.
— High potential for personalization; modelling constraints can be implemented to represent

pathologies such as muscle weakness or injury; and the relative weighting of ergonomics metrics
can be changed on an as-needed basis. For example, an assistive exoskeleton for end-of-life care
could be driven by a different weight set than rehabilitative care, but otherwise use a similar
instantiation of the framework.

— Detailed resolution of ergonomics, enabled via the use of detailed biomechanical models, which in
turn enables the consideration of motion health on a deeper level than traditional methods based
on kinematics measures.

To illustrate these strengths, we contextualized the framework via two case studies of triadic collaboration:
an assisted sit-to-stand transition and hybrid robot/FES-assisted rehabilitation. Notably, each of these tasks
was well described by our triadic collaboration framework despite the differences in number of human
agents and between outcome measures. In both cases, the benefits of triadic collaboration were evident
in that task completion metrics were significantly improved by the addition of a third agent. We see
this concretely both in case study i, where the addition of exoskeleton assistance was able to improve
the stability of the caree and reduce the physical strain on the carer during the sit-to-stand task, and in
case study ii, where the combination of robotic and FES assistance significantly improves rehabilitation
outcome measures compared with either intervention individually. Furthermore, the potential to achieve
personalized assistance strategies is clear in both cases, and can be achieved via a simple modification
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of the relative weightings of the objective function. Our case studies also demonstrated the ability to

consider detailed biomechanics to a level appropriate for the problem: in case study i, stability and joint
loading were the dominant outcome measures, and so a model purely in joint-space was used, while
for case study ii muscle-activation dynamics were included to consider the action of the FES assistance.
In practice, more or less complicated biomechanical models could be used to represent human agents as
appropriate for the problem at hand.

As a source of immediate future work, experiments on healthy human subjects will be carried out to
validate the simulation-based results from our case studies and further demonstrate the potential of
exoskeletons and robots in multi-agent collaboration scenarios. As part of longer-term research goals,
we aim to explore how to optimize the selection of optimization criteria based on the specific motion
task. Furthermore, although in this work we have largely focused on the use of detailed biomechanical
models to allow for consideration of ergonomics, we aim to explore how other high-level metrics could
be employed in triadic collaboration tasks—for example, notions of ethics, or human trust and comfort
levels—as part of a human-centred approach [43] to human–robot cooperation.

Throughout our discussion of multi-agent collaborative systems, we have exclusively considered the
case of triadic collaboration, involving three agents. However, extensions to cases of more than three
agents (i.e. n-adic collaboration) can be achieved via the addition of additional constraints and goals as
needed, to represent additional agents. In real-world settings, the current state-of-the-art is dyadic
collaboration, where humans interact with robots and exoskeletons on a one-to-one basis, which can
be considered a special case of the triadic scenarios we have presented here. Our framework offers the
potential to extend the current state of the art to larger teams of mixed human and robotic systems,
and consequently unlock the associated societal benefit to productivity, ergonomic safety and the
well-being of patients and workers.
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