
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

An Evolutionary Approach for Scheduling a Fleet
of Shared Electric Vehicles

Steffen Limmer, Johannes Varga, Guenther Raidl

2023

Preprint:

This is a post-peer-review, pre-copyedit version of an article published in
Applications of Evolutionary Computation 2023. The final authenticated version
is available online at: https://doi.org/10.1007/978-3-031-30229-9_1

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

An Evolutionary Approach for Scheduling a Fleet
of Shared Electric Vehicles

Steffen Limmer1[0000−0003−2385−7886], Johannes Varga2[0000−0003−1413−7115], and
Günther R. Raidl2[0000−0002−3293−177X]

1 Honda Research Institute Europe GmbH, 63073 Offenbach, Germany
steffen.limmer@honda-ri.de

2 Institute of Logic and Computation, TU Wien, 1040 Vienna, Austria
{jvarga,raidl}@ac.tuwien.ac.at

Abstract. In the present paper, we investigate the management of a
fleet of electric vehicles. We propose a hybrid evolutionary approach for
solving the problem of simultaneously planning the charging of electric
vehicles and the assignment of electric vehicles to a set of reservations.
The reservation assignment is optimized with an evolutionary algorithm
while linear programming is used to compute optimal charging schedules.
The evolutionary algorithm uses an indirect encoding and a problem-
specific crossover operator. Furthermore, we propose the use of a surro-
gate fitness function. Experimental results on problem instances with up
to 100 vehicles and 1600 reservations show that the proposed approach
is able to notably outperform two approaches based on mixed integer
linear programming.

Keywords: Electric vehicles · Scheduling · Evolutionary algorithm ·
Mixed integer linear programming · eMaaS.

1 Introduction

There is an increasing trend towards electric, shared, and multimodal mobility
in order to tackle environmental issues and to respond to current and future
transportation needs of users [7]. Services, which integrate multiple transporta-
tion modes and shared electric mobility are commonly summarized under the
term electric Mobility as a Service (eMaaS) [4]. The operation of an eMaaS
service, like, for example, a dial-a-ride platform with electric vehicles (EVs),
typically requires planning ahead the usage and recharging of a fleet of electric
vehicles [2]. This in turn requires to solve an optimization problem. The runtime
of the optimization is a critical aspect, especially in a dynamic setting, in which
fast responses to newly arriving transportation requests are required.

In the present paper, we investigate the use of evolutionary computation to
accelerate the optimization for such type of scheduling problem: The EV Fleet
Charging and Allocation Problem (EVFCAP) [9]. In this problem, a fleet of
EVs (e.g., a company car fleet) is considered. The EVs can charge energy at a
common site (e.g., a company building), where the energy can be either drawn

2 S. Limmer et al.

from the power grid for time-varying electricity prices or from photovoltaics (PV)
overproduction, if available, for free. Users (e.g., company employees) can make
reservations of vehicles. For each reservation, a period of time, when a vehicle is
required, and an estimated energy consumption is given. The problem consists
in planning the charging of the EVs simultaneously with an assignment of the
individual EVs to the reservations with the objective to maximize the usage of
EVs for serving reservations while keeping the charging cost low.

The problem can be formulated as a mixed integer linear programming
(MILP) problem, which can be reasonably well solved as long as the number
of EVs and reservations is not too high. Betz et al. [1] use a MILP approach to
solve a variant of the EVFCAP where only a limited number of heterogeneous
charging stations are available for charging the EVs. They report that the largest
problem instance, which could be solved to proven optimality, comprises eight
EVs and about 30 reservations. Sassi and Oulamara [8] consider a problem vari-
ant where the total charging power is limited and reservations, which are not
assigned to EVs, have to be assigned to a limited number of combustion engine
vehicles. They propose a problem-specific heuristic for the solution of that prob-
lem and compare it to a MILP approach on problem instances with up to 200
vehicles and 320 reservations. Especially on larger problem instances, the MILP
approach is clearly outperformed by the heuristic approach. Varga et al. [9] con-
sider the same problem variant as considered in the present paper. They use
a Benders decomposition approach to speed up the optimization with a MILP
approach. The optimization is further accelerated by applying in early stages a
general variable neighborhood search heuristic to solve the master problem of
the Benders decomposition. The authors compare the proposed approach with
a standard MILP approach on problem instances with up to 100 EVs and 1600
reservations.

We propose and evaluate an evolutionary approach for the solution of the
EVFCAP. The assignment of reservations to EVs is optimized with an evolution-
ary algorithm (EA), which is hybridized with a linear programming approach in
order to compute optimal charging schedules. To ensure feasibility of solution
candidates, the EA uses an indirect encoding that does not encode the reser-
vation assignment directly but only the order in which reservations are passed
to an insertion operator. The optimization is supported by a problem-specific
crossover operator. Furthermore, a surrogate fitness function is employed in or-
der to accelerate the optimization. In experiments, the proposed approach is
evaluated and compared to a standard MILP approach and the improved MILP
approach proposed in [9] on publicly available problem instances from [9].

The rest of the paper is organized as follows: Section 2 provides a descrip-
tion of the problem. In Section 3, the proposed approach is explained in detail.
Section 4 describes the experiments and discusses their results. Finally, Section
5 provides conclusions.

An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 3

2 Problem Description

We consider a planning horizon T = {1, . . . ,T} of T discrete time steps of an
equal length of ∆t hours. There is a set N = {1, . . . ,N} of N EVs, each with a
maximum charging power of Pmax kW and with a battery capacity of Emax kWh.
At the beginning of the planning horizon, each EV n ∈ N has a certain initial
battery level of Einit

n kWh. The EVs can be charged at a common site. It is
assumed that at this site, there is a certain electrical base load (consumption)
and energy production by a PV system. If the PV production exceeds the base
load, there is a surplus energy, which can be used for EV charging. Let Surt
denote the amount of surplus energy in time step t. For time steps t, in which
the base load is higher than the PV production, Surt is zero. In addition to
the surplus energy, energy from the power grid can be used for EV charging.
It is assumed that the price for grid energy varies over time. Let pt denote the
electricity price per kWh in time step t. There is a set R = {1, . . . ,R} of R
reservations of vehicles by users. For each reservation r ∈ R, there is a time
period, in which a vehicle is required. Let tsr and ter denote the first and last time
step, respectively, of this period for reservation r. It is assumed that EVs are
not charged externally while they are used for a reservation. Thus, it has to be
ensured that EVs are sufficiently charged before they are used for a reservation.
Let Eres

r denote the amount of energy, which is required for serving reservation r.
An operator of the fleet has to decide for each reservation whether it is as-

signed to an EV or not and if assigned to an EV, to which one exactly. Unassigned
reservations might, e.g., be served by a fleet of combustion engine cars inducing
additional cost. In addition to the reservation assignment, the charging of the
EVs has to be planned. It is assumed that the operator of the fleet is interested
in three objectives:

1. Minimizing the amount of energy required for reservations that are not as-
signed to an EV, which corresponds to maximizing the usage of EVs.

2. Minimizing the electricity cost incurred by EV charging.
3. Minimizing the amount of energy missing in the batteries of the EVs at the

end of the planning horizon in order to increase the number of reservations
that can be served by EVs in the time after the planning horizon.

We introduce binary variables yr and xn,r, where yr indicates whether a
reservation r is assigned to an EV or not and xn,r indicates whether reservation
r is assigned to EV n or not. Furthermore, we introduce variables Pn,t for the
power by which EV n is charged in time step t. Let Egrid

t and Esur
t denote the

amount of charging energy consumed from the grid and from surplus energy,
respectively, in time step t, and let En,t denote the battery level of EV n in time
step t. The scheduling problem can be expressed as the following MILP problem:

min α
∑
r∈R

Eres
r · yr +

∑
t∈T

pt · Egrid
t + β

∑
n∈N

(Emax − En,T), (1)

4 S. Limmer et al.

subject to:∑
n∈N

xn,r + yr = 1 ∀r ∈ R, (2)

Pn,t ≤ Pmax · (1−
∑

r∈R|tsr≤t≤ter

xn,r) ∀n ∈ N ,∀t ∈ T , (3)

En,1 = Einit
n +∆t · Pn,1 −

∑
r∈R|tsr=1

xn,r · Eres
r ∀n ∈ N , (4)

En,t = En,t−1 +∆t · Pn,t −
∑

r∈R|tsr=t

xn,r · Eres
r ∀n ∈ N ,∀t ∈ T \ {1}, (5)∑

n∈N
∆t · Pn,t = Egrid

t + Esur
t ∀t ∈ T , (6)

0 ≤ Pn,t ≤ Pmax ∀n ∈ N ,∀t ∈ T , (7)

0 ≤ En,t ≤ Emax ∀n ∈ N ,∀t ∈ T , (8)

0 ≤ Egrid
t ∀t ∈ T , (9)

0 ≤ Esur
t ≤ Surt ∀t ∈ T , (10)

xn,r ∈ {0,1}, yr ∈ {0,1} ∀n ∈ N ,∀r ∈ R. (11)

The objective function is a weighted sum of the three objectives, with weights
α and β. The weight α could be, for example, set to the cost arising from trav-
eling the average distance corresponding to the consumption of one kW with a
combustion engine vehicle. Constraint (2) ensures that each reservation r ∈ R
is either assigned to exactly one EV or to no EV. Constraint (3) ensures that
an EV is not charged during time steps in which it is used for a reservation.
Furthermore, it ensures that an EV is not assigned to two or more temporarily
overlapping reservations, because for time steps in which the reservations over-
lap, the right-hand side of the constraint would be negative, making the problem
infeasible. Constraints (4) and (5) set the battery levels of the EVs after the first
and the following time steps, respectively. It is assumed that the energy required
by a reservation is consumed in the first time step of the reservation. Together
with the lower and upper bounds for the battery levels (8), these constraints
ensure that an EV has always a sufficient amount of energy before it is used for
a reservation and that EVs cannot be charged higher than technically possible.
Constraint (6) ensures that the energy charged in a time step t is consumed from
the grid and/or from the available surplus energy.

3 Evolutionary Algorithm

We propose an evolutionary algorithm for the solution of the described EV
fleet scheduling problem. More precisely, we apply a hybrid approach, where
the assignment of reservations to EVs is optimized with an EA and the charg-
ing scheduling is determined via linear programming. Furthermore, a surrogate
fitness function is used in order to accelerate the optimization. The following
subsections provide a detailed description of the approach.

An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 5

3.1 Encoding

An individual has to encode the assignment of reservations to EVs. An obvious
encoding would be a list of R integer variables i1, . . . ,iR between zero and N ,
where reservation r is assigned to no EV if ir is zero and to EV ir, otherwise.
However, with this encoding it is hard to ensure that the encoded assignment is
feasible. Thus, we use an indirect encoding, where the genotype is a permuta-
tion of the numbers 1, . . . ,R. To compute the phenotype (the actual reservation
assignment), the reservations are passed in the encoded order to an insertion
operator. The insertion operator computes a (feasible) reservation assignment
in the form of a list A = [A1, . . . ,AN] of N lists, where the list An contains the
reservations assigned to EV n = 1, . . . ,N . The EA makes use of two insertion
operators: basic insertion and random insertion. The basic insertion is outlined
in Algorithm 1. It starts with a list of empty lists and then iterates over the

Algorithm 1: Basic insertion operator.
Input: list P of reservations
Output: reservation assignment A

1 A = [[], . . . ,[]];
2 for r in P do
3 for n = 1, . . . ,N do
4 A′ = A[n] + [r];
5 if feasible(A′) then
6 A[n] = A′;
7 break; // go to next reservation
8 end
9 end

10 end
11 return A;

reservations in the order in which they were passed to the operator. For each
reservation r it goes through the EVs and inserts r in the list belonging to the
first EV for which the insertion does not lead to an infeasible reservation assign-
ment. The assignment of reservations to an EV is infeasible if two or more of
the assigned reservations overlap or if it is not possible to satisfy the energy re-
quirements of the reservations with the EV. The latter can be easily determined
by checking if the energy requirements are satisfied in the case of uncontrolled
charging (i.e., charging the EV in all time steps in which it is not used for a
reservation with the maximum possible power until the battery is full). The ran-
dom insertion operator works similar to the basic insertion operator with the
difference that it does not assign a reservation to the first possible EV it finds
but to an EV which is randomly selected from all possible EVs.

It is obvious that the order in which the reservations are passed to the in-
sertion operators has a big influence on the resulting reservation assignment.

6 S. Limmer et al.

Reservations at the beginning of the list have a high chance of being inserted,
while reservations at the end of the list often cannot be inserted since they over-
lap with already inserted reservations or lead to infeasible energy requirements.
The basic insertion operator is the main insertion operator used in the EA, since
it is deterministic. The random insertion operator is only used as part of the
initialization process (see Section 3.2). As already stated, the used encoding in
form of permutations, which are passed to the basic insertion operator in order
to compute the phenotype, has the advantage that an individual always encodes
a feasible reservation assignment. However, it has also a disadvantage: It cannot
encode all possible feasible reservation assignments. For example, if there are
two EVs and three reservations r1, r2, r3, which can be all assigned to the first
EV, then the basic insertion operator will always assign the reservations to the
first EV, no matter in which order they are passed. However, assigning one or
more of the reservations to the second EV or to no EV at all might yield a better
objective value. But as we will see from the experimental results, the encoding’s
advantage seems to outweigh its disadvantage.

3.2 Initialization

As already described in the previous subsection, reservations at the beginning
of the list, which is passed to the insertion operator, have a higher chance of
being inserted than reservations at the end of the list. Thus, it is preferable
to have promising reservations at the beginning of the list. Reservations with
high energy requirements and low durations can be considered to be promising.
They contribute much to the reduction of the first term of the objective function
while retaining a high flexibility in the charging schedule and/or in the insertion
of further reservations. Hence, in the initialization of the EA’s population, we
first sort the reservations in decreasing order of required energy per time step of
duration. The resulting list is then used to initialize the individuals as exemplary
illustrated in Figure 1 for a population of two individuals. For each individual,

[1,2,3,4,5,6]

[[2,5],[1]]

[[1,3,4],[2]]

[2,5,1]

[1,3,4,2] [1,3,4,2,5]

[2,5,1,3,4]

random

insertion
flatten fill-up

[1,2,3,4,5,6]

Ind1:

Ind2:

Fig. 1. Example of the initialization of a population of two individuals Ind1 and Ind2.

the sorted list of reservations is passed to the random insertion operator. The
resulting reservation assignment is then flattened. The resulting flattened list is
then filled up with the reservations that are not already in the list in decreasing
order of energy requirement per time step of duration. However, in the fill-up,
not all reservations are considered but only reservations which were inserted for
at least one individual. In the example, reservation 6 is not considered in the

An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 7

individuals. This means, the optimization will never assign this reservation to
an EV. It can be assumed that reservations which were not inserted at least
once are likely to be also not assigned to an EV in the optimal solution. By
excluding them from the optimization (and considering them as unassigned from
the beginning), a notable reduction of the search space can be achieved. For the
sake of simplicity, we assume in the rest of the paper that always the whole set
R of reservations is considered in the individuals.

3.3 Fitness Evaluation

In order to evaluate an individual, the encoded permutation of reservations is
passed to the basic insertion operator as described in Section 3.1. Given the
resulting reservation assignment, the charging of the EVs is optimized with re-
spect to the second and third term of the objective function (1). Optimizing
the charging for a fixed reservation assignment is a purely continuous problem,
which can be efficiently solved with linear programming. The resulting charging
schedule and the reservation assignment are then used to compute the overall
objective.

3.4 Crossover

The crossover operator produces an offspring individual from two parent indi-
viduals. There are different standard crossover operators for permutations, like
OX, PMX or alternating position crossover, which are popular for applications
like the traveling salesman problem [6]. However, in preliminary experiments we
noticed that such operators do not work well for the given EV fleet scheduling
problem. Instead, we use the following approach for the crossover: We select four
random integers s1, e1, s2, e2 with 1 ≤ s1 < e1 < s2 < e2 ≤ R. The reservations
between the positions s1 and e1 in the first parent are copied into the offspring.
Then, the reservations between the positions s2 and e2 in the second parent,
which are not already in the offspring, are copied into the offspring. Finally, the
gaps in the offspring are filled up with the reservations which are not already in
the offspring in decreasing order of energy requirement per time step of duration.
This is illustrated in Figure 2, where it is assumed that the energy requirement
per time step of duration of a reservation r1 is greater than or equal to that of
an reservation r2 iff r1 < r2. First, the reservations 4, 6, and 5 are copied from

10P1:

P2:

O:

3 1

1

1

2

2

2

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9 10

10

s1 s2e1 e2

Fig. 2. Example for the crossover of two parents P1, P2 to an offspring O. It is assumed
that the energy requirement per time step of duration of a reservation r1 is greater than
or equal to that of an reservation r2 iff r1 < r2.

8 S. Limmer et al.

the first parent into the offspring. Then reservation 10 is copied from the second
parent into the offspring. Reservation 6 is not copied from the second parent
since it is already in the offspring. Then the first so far unset position of the off-
spring is set to reservation 1, since from the reservations, which are not already
in the offspring, this is the reservation with the highest energy requirement per
time step of duration. Finally, analogously, the remaining unset positions are set
to reservations 2, 3, 7, 8, and 9.

3.5 Mutation

As mutation, two basic operations are applied: An exchange of two random
reservations in the permutation and a shift of a random reservation to another
position in the permutation. The complete mutation operator is outlined in Al-
gorithm 2. With a probability of pswap, reservations are swapped and otherwise

Algorithm 2: Mutation operator.
Input: list P of reservations
Output: modified list P ′ of reservations

1 P ′ = P ;
2 p = uniform_rand(0.0,1.0);
3 if p < pswap then
4 nswap = nswap_start;
5 p = uniform_rand(0.0,1.0);
6 while p < pn_swap do
7 nswap = nswap + 1;
8 p = uniform_rand(0.0,1.0);
9 end

10 perform nswap swaps of random pairs of reservations in P ′;
11 else
12 nshift = nshift_start;
13 p = uniform_rand(0.0,1.0);
14 while p < pn_shift do
15 nshift = nshift + 1;
16 p = uniform_rand(0.0,1.0);
17 end
18 perform nshifts shifts of random reservations to random positions in P ′;
19 end
20 return P ′;

reservations are shifted. If reservations are swapped, the number of swaps is de-
termined randomly. A certain minimum number nswap_start of swaps is always
executed. With probability pn_swap, nswap_start +1 or more swaps are executed,
with probability p2n_swap, nswap_start+2 or more swaps are executed, and so on.
Analogously, the number of shifts is randomly determined based on parameters
nshift_start and pn_shift.

An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 9

3.6 Optimization Process

We apply a steady-state generational scheme, where in each generation one off-
spring is generated and is considered for insertion in the population. With a
certain crossover probability pc, the offspring is produced by crossover of two
parent individuals and with probability 1−pc the offspring is produced by copy-
ing a parent individual. Parent individuals are selected with binary tournament
selection without replacement. The offspring is then mutated. If one or both of
the parameters nswap_start and nshift_start of the mutation operator are set to
zero, it might happen that the offspring is not changed by the mutation operator.
Hence, if an offspring was produced by copying a parent, we repeat its mutation
until at least one swap or shift was executed. After the mutated offspring is eval-
uated, it replaces the so far worst individual in the population, if the offspring
is better and if there is not already another individual with the same fitness in
the population (to increase the diversity in the population).

3.7 Surrogate-assisted Optimization

As outlined in Section 3.3, in the fitness evaluation the EV charging is optimized.
Although this optimization can be done very efficiently with the help of linear
programming, the fitness evaluation is responsible for a large fraction of the
runtime of the whole optimization process. We apply a surrogate model – i.e., a
fast approximation of the fitness function to accelerate the optimization. Popular
surrogate models used in the context of evolutionary optimization are data-
driven models like the Kriging model, radial basis functions or support vector
machines [3]. However, in our case we do not have to rely on a data-driven
approach. Instead, we can use a fast heuristic to set the charging powers and
use the objective with the resulting charging schedule as a surrogate for the real
fitness with globally optimal charging scheduling. We apply the following simple
heuristic: We assume that the EVs are charged uncontrolled, i.e. with maximum
possible power, when they are not used for reservations and are not fully charged
already. The objective value with uncontrolled charging should be already a
reasonable indicator for the real objective value with optimized charging. More
precisely, it provides an upper bound for the real objective value.

There are different options for integrating the surrogate in the evolution-
ary optimization. Popular strategies are the generation-based strategy and the
individual-based strategy [5]. In the generation-based strategy, the surrogate is
used in some generations and in the rest of the generations, the real fitness func-
tion is used. In the individual-based strategy, in each generation it is determined
with help of the surrogate, which offspring individuals are evaluated with the
real fitness function. In the experiments described later, we compare the stan-
dard version of the EA without any surrogate (EA) with two surrogate-assisted
versions (EA-SI and EA-SG). The EA-SI variant uses an individual-based strat-
egy. In each generation, N inter intermediate offspring individuals are generated
and are evaluated with the surrogate fitness function. Only the best of these
individuals (in terms of the surrogate fitness) is then evaluated with the real

10 S. Limmer et al.

fitness function and is considered for insertion in the population. In the EA-SG
variant, an extreme case of the generation-based strategy is applied: The whole
optimization works only on the surrogate fitness and only the best individual (in
terms of the surrogate fitness) of the final population is evaluated with the real
fitness.

4 Experiments

4.1 Experimental Setup

We executed the experiments on a compute cluster. Each process was run on a
separate node with an Intel(R) Xeon(R) E5-2623@3.00GHz 8-core CPU and 64
GB RAM. We use a single-threaded C/C++ implementation of the evolutionary
algorithm. We compare the EA to a standard MILP approach, which solves the
complete model (1–11), and to the improved MILP approach proposed in [9].
The improved approach (denoted as BDH) applies a Benders decomposition to
split the problem into a master problem and a subproblem, which are iteratively
solved in an alternating manner. In early stages of the optimization process, the
master problem is solved with a general variable neighborhood search heuristic.
For the solution of the subproblem as well as the master problem in later stages,
MILP is used. For all MILP optimizations and for the charging optimization in
the fitness evaluation of the EA, version 9.1 of the Gurobi solver is used and the
number of threads for the solver is set to one. For the BDH approach, we use
the same Julia implementation as in [9]. The parameters of the BDH approach
are set to the same values used in the experiments in [9]. To achieve a fair
comparison between the EA and the MILP approaches, which do not exhibit a
number of fitness evaluations, we use a time limit as termination condition for
the optimizations.

Depending on the concrete use case, there might be different runtime require-
ments. Hence, we observe the optimization results after 5min, 15min and 1 hour
of runtime. We evaluate the different approaches on artificially created problem
instances from [9]3. The instances have the naming scheme tmaxT_nN_rmaxR_I,
where T is the number of time steps of the planning horizon, N is the number of
EVs, R is the number of reservations and I is the index of the problem instance
between 1 and 30. The length ∆t of a time step is assumed to be 15min. EVs
can be charged with a maximum power of 3.3 kW and have a battery capacity of
20 kWh. See [9] for more details to the problem instances. For different problem
sizes, i.e. different values of T , N , and R, there are 30 instances per size. In the
experiments we use the first instance, i.e. with index I = 1, for each problem
size with T = 768 time steps. These are the largest problem sizes considered in
[9]. We are not interested in instances of small size, since these can be efficiently
solved with a standard MILP approach. In the experiments we execute 21 op-
timization trials per problem instance with each EA variant. The setting of the
parameters of the EA is discussed in the following subsection.
3 The problem instances are publicly available at https://www.ac.tuwien.ac.at/
research/problem-instances/#evfcap

https://www.ac.tuwien.ac.at/research/problem-instances/#evfcap
https://www.ac.tuwien.ac.at/research/problem-instances/#evfcap

An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 11

4.2 Parameter Setting and Analysis

Based on preliminary experimental results, we set the population size to 100 and
the number N inter of intermediate offspring per generation in the EA-SI variant
to 20. In order to investigate the influence of different settings of the crossover
rate pc and of the parameters of the mutation operator on the optimization
performance, we drew 2200 random settings of these parameters and performed
five optimization trials on the problem instance tmax768_n020_rmax0320_30
with each of these parameter settings. Please note that this problem instance
is not part of the evaluation instances used in the experiments described later.
The optimizations were done with the standard EA variant with a time limit of
1min per trial. The minimum and maximum of the considered parameter ranges
can be seen in Table 1. The ranges of continuous parameters are equidistantly
discretized with a step size of 0.1. For each of the random parameter settings we
computed the mean objective value over the five trials. The lowest mean objec-
tive value was obtained with the parameter setting show in Table 1. It yielded
a mean objective value of 206,553.86. We applied this parameter setting in all

Table 1. Parameter ranges considered in the sampling and parameter setting yielding
the lowest mean objective value.

Parameter pc nswap_start nshift_start pn_swap pn_shift pswap

Range (min,max) 0.1, 0.9 0, 4 0, 4 0.2, 0.8 0.2, 0.8 0.1, 1.0
Setting 0.3 2 0 0.3 0.4 0.0

206000 208000 210000 212000 214000 216000
Mean Objective

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

De
ns

ity

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pc

208000

210000

212000

214000

216000

M
ea

n
Ob

je
ct

iv
e

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pswap

208000

210000

212000

214000

216000

M
ea

n
Ob

je
ct

iv
e

(c)

Fig. 3. (a) Distribution of mean objective with evaluated parameter settings. (b) Box-
plot of mean objective values with different settings for the crossover rate pc. (c) Box-
plot of mean objective value with different settings for the probability pswap.

EA variants in the subsequent experiments. The distribution of the mean objec-
tive over all evaluated parameter settings can be seen in Figure 3(a). There are
two peaks, one around 208,000 and one around 214,000. The first arises from
parameter settings with a crossover rate pc > 0 and the second from parameter

12 S. Limmer et al.

settings with pc = 0. This can be seen from the boxplot of the mean objective
with different values for pc in Figure 3(b). Thus, the crossover has a clearly posi-
tive effect on the optimization. The best results are achieved with crossover rates
between 0.3 and 0.5. The probability pswap is zero in the best found parameter
setting. That means, only shifts and no swaps are performed in the mutation
operator. However, in the results of the parameter tuning there is no clear trend
towards any best setting for pswap as can be seen from the boxplot in Figure
3(c). The same holds for the other parameters of the mutation operator. Thus,
the EA seems not very sensitive regarding the setting of these parameters.

4.3 Experimental Results

Table 2 shows the objective values achieved with the standard MILP approach
(MILP), the improved MILP approach from [9] (BDH) and the EA variants
(EA, EA-SI, and EA-SG) on the different problem instances after a runtime of
5min, 15min, and 60min.

Table 2: Objective values obtained by the different approaches on
different problem instances after 5min, 15min, and 60min runtime.
The results of the EA variants are averages over 21 trials.

Time Limit
[min] MILP BDH EA EA-SI EA-SG

tmax768_n020_rmax0080_01

5 11,365.7811,365.78 11,580.85 11,445.632,3 11,521.203 11,990.64
15 11,358.2911,358.29 11,417.99 11,402.052,3 11,480.913 12,003.68
60 11,358.2911,358.29 11,396.97 11,381.072,3 11,441.683 12,009.36

tmax768_n020_rmax0160_01

5 55,066.20 45,734.72 44,794.47 43,68543,685.21211 43,749.391

15 50,240.80 44,684.07 43,964.40 43,41443,414.14141,3 43,627.421

60 43,716.90 44,462.71 43,495.71 43,19243,192.74741,3 43,568.40

tmax768_n020_rmax0320_01

5 N/A 215,110.85 208,850.95 205,906.861 205,210205,210.12121,2

15 223,243.76 210,163.65 206,598.62 205,109.221 204,693204,693.99991

60 217,205.15 207,150.76 205,208.35 204,219204,219.44441 204,301.361

tmax768_n050_rmax0200_01

5 N/A 30,193.53 28,00728,007.51512,3 28,138.483 28,762.28
15 27,222.7027,222.70 30,131.23 27,778.852,3 27,967.793 28,735.96
60 27,069.1627,069.16 27,913.11 27,506.532,3 27,727.193 28,789.72

tmax768_n050_rmax0400_01

5 N/A N/A 113,234.86 110,101.281 109,974109,974.88881

15 N/A 110,061.76 111,412.08 108,826108,826.50501 109,407.651

An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 13

60 N/A 110,028.34 109,559.97 107,634107,634.57571,3 108,990.141

tmax768_n050_rmax0800_01

5 N/A N/A 514,038.25 508,647.801 506,261506,261.09091,2

15 N/A N/A 510,606.16 505,195.211 503,542503,542.10101,2

60 N/A 510,663.74 505,904.61 502,171.331 501,239501,239.37371,2

tmax768_n100_rmax0400_01

5 N/A N/A 56,426.29 56,20856,208.45451,3 56,451.73
15 N/A 59,518.77 55,974.64 55,76555,765.65651,3 56,314.65
60 N/A 57,847.22 55,394.083 55,15055,150.19191,3 56,296.16

tmax768_n100_rmax0800_01

5 N/A N/A 242,928.36 237,856.311 235,740235,740.16161,2

15 N/A N/A 239,679.03 234,452.571 233,053233,053.13131,2

60 N/A 232,561.19 236,538.11 230,798.551 230,196230,196.62621

tmax768_n100_rmax1600_01

5 N/A N/A 1,014,829.75 1,009,492.521 1,005,5981,005,598.19191,2

15 N/A N/A 1,010,564.52 1,004,557.841 1,001,7651,001,765.96961,2

60 N/A N/A 1,005,903.36 998,538.391 996,443996,443.36361,2

For the EA variants, the shown objectives are averages over the 21 trials
per problem instance. The best results per time limit and problem instance are
highlighted in bold. An “N/A” denotes that no feasible solution was found. The
superscripts 1, 2, and 3 at the results of the EA variants indicate that the results
are statistically significantly lower (better) than the corresponding results of the
EA, EA-SI, and EA-SG variant, respectively. This was determined with pairwise
Wilcoxon rank sum tests with a significance level of 0.05.

On the smallest problem instance, the MILP approach performs very well. In
5min, it achieves an objective value, which is not achieved by the EA variants
in 60min. On the instance with 50 EVs and 200 reservations, the MILP is not
able to find a feasible solution in 5min, but it yields better results than the EA
variants after 15min and 60min. On the other instances, the MILP approach is
outperformed by the EA. On the five largest instances the MILP approach is not
even able to find a feasible solution within 60min4. The BDH approach scales
better than the standard MILP approach and finds feasible solutions within one
hour for all problem instances except the largest one. However, in most cases it
is also outperformed by the EA variants.

On most of the problem instances, the standard EA variant is outperformed
by at least one of the surrogate-assisted variants. With the EA-SG variant, the
4 Please note that we use a slightly different MILP problem formulation than [9]
(we use helper variables for the battery levels), since we noticed that this yields a
better performance. With the formulation from [9] the MILP approach is able to
find feasible solutions for the larger instances within 60min, but only the trivial
solutions, where no reservation is assigned to an EV.

14 S. Limmer et al.

results might get worse with a higher runtime since it uses only the surrogate
fitness to determine the quality of a solution. One can see a certain trend in
the results: On instances with a high total number of reservations or a high
number of reservations per EV, the EA-SG variant performs best. On instances
with a low total number of reservations or a low number of reservations per
EV, the standard EA variant yields better results than the other EA variants.
However, on these small instances, the MILP approach is also still efficient. On
instances with a medium total number of reservations or a medium number of
reservations per EV, the EA-SI variant performs best. An explanation for this
can be derived from Table 3, which shows detailed results on three problem
instances computed with the three EA variants with a runtime of one hour. The

Table 3. Detailed results on three problem instances after a runtime of one hour. The
results are averages over 21 trials.

EA Variant Unserved Cost Energy Cost Battery Cost #Served Generations

tmax768_n020_rmax0080_01

EA 62.3 11,318.8 0.0 78.0 33,956.7
EA-SI 62.3 11,379.4 0.0 78.0 51,032.6
EA-SG 62.3 11,947.1 0.0 78.0 4,445,403.3

tmax768_n050_rmax0400_01

EA 41,456.8 65,164.8 2938.4 329.1 20,585.3
EA-SI 39,454.3 65,312.1 2868.2 333.6 16,440.7
EA-SG 38,717.8 67,376.4 2896.0 336.3 476,646.6

tmax768_n100_rmax1600_01

EA 790,889.7 198,101.4 16,912.3 887.9 6,516.4
EA-SI 782,347.2 200,970.6 15,220.6 897.4 2,828.3
EA-SG 779,589.8 201,540.0 15,313.6 897.8 72,332.8

table lists the three parts of the objective separately (cost for reservations not
assigned to EVs, energy cost, and cost for missing energy in the batteries at the
end of the planning horizon), the number of reservations assigned to EVs and
the number of executed generations. The results are averages over the 21 trials.
One can see that with an increasing number of reservations per EV, the rate of
unassigned reservations increases and thus the cost for unassigned reservations
contributes more to the objective value. These cost are computed exactly in
the surrogate fitness and thus the surrogate becomes more accurate with an
increasing number of reservations per EV. Furthermore, the larger the instance,
the lower the number of generations, which can be executed and thus the higher
the benefit from using a surrogate. This explains why the standard EA is better
on smaller instances while the surrogate-assisted variants are better on the larger
instances.

An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 15

One can see in Table 3 that on the instance with 20 EVs and 80 reservations,
more generations are executed with the EA-SI variant than with the EA variant.
This appears counter-intuitive. However, we found that in the EA-SI variant
the (real) fitness evaluation tends to be faster than in the EA variant. This is
probably because the EA-SI variant tends to evaluate individuals with a higher
number of assigned reservations, which makes the charging optimization easier
since there are less time steps in which the EVs can charge. At the same time,
the computation of the surrogate fitness costs nearly no time on the smaller
problem instances. Figure 4 shows for the different EA variants the average and
standard deviation of the optimization progress of the 21 trials on the different
problem instances. From this one can see again the advantage of the surrogate-

0 500 1000 1500 2000 2500 3000 3500
Time [s]

11400

11500

11600

11700

11800

11900

12000

12100

Ob
je

ct
iv

e

tmax768_n020_rmax0080_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

44000

46000

48000

50000

52000

54000

Ob
je

ct
iv

e

tmax768_n020_rmax0160_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

205000

210000

215000

220000

Ob
je

ct
iv

e

tmax768_n020_rmax0320_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

27500

27750

28000

28250

28500

28750

29000

Ob
je

ct
iv

e

tmax768_n050_rmax0200_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

110000

115000

120000

125000

Ob
je

ct
iv

e

tmax768_n050_rmax0400_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

500000

510000

520000

530000

540000

Ob
je

ct
iv

e

tmax768_n050_rmax0800_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

55000

55500

56000

56500

57000

57500

Ob
je

ct
iv

e

tmax768_n100_rmax0400_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

230000

240000

250000

260000

270000

Ob
je

ct
iv

e

tmax768_n100_rmax0800_01

0 500 1000 1500 2000 2500 3000 3500
Time [s]

1.00

1.01

1.02

1.03

1.04

1.05

1.06

Ob
je

ct
iv

e

1e6 tmax768_n100_rmax1600_01

EA EA-SI EA-SG

Fig. 4. Average and standard deviation of optimization progress of the EA variants on
different problem instances.

assisted variants on the larger instances and the poor performance of the EA-SG
variant on instances with a small number of reservations per EV. There is also
a comparatively high variance in the results of EA-SG on such instances.

16 S. Limmer et al.

5 Summary and Conclusion

We proposed a hybrid evolutionary algorithm (EA) for the electric vehicle fleet
scheduling problem, which employs an indirect encoding in order to improve the
handling of constraints. Furthermore, a problem-specific crossover operator is
used. An analysis of the influence of the parameters of the EA revealed that
this crossover is clearly beneficial for the optimization. We further propose the
use of a problem-specific surrogate fitness. In experiments we evaluated two
variants, EA-SI and EA-SG, of the surrogate-assisted EA and compared it to
the standard EA and to two MILP-based approaches. The MILP approaches are
clearly outperformed by the EA variants on the considered problem instances.
Furthermore, the experimental results show that the use of the surrogate fitness
is beneficial. There is no clear winner among the EA-SI and EA-SG variants,
but the EA-SI variant appears to be a good compromise between the standard
EA without surrogate and the completely surrogate-based EA-SG variant – it
yields a reasonable performance on the smaller as well as on the larger problem
instances.

References

1. Betz, J., Werner, D., Lienkamp, M.: Fleet disposition modeling to maximize uti-
lization of battery electric vehicles in companies with on-site energy generation.
Transportation Research Procedia 19, 241–257 (2016)

2. Bongiovanni, C., Kaspi, M., Geroliminis, N.: The electric autonomous dial-a-ride
problem. Transportation Research Part B: Methodological 122, 436–456 (2019)

3. Díaz-Manríquez, A., Toscano Pulido, G., Barron-Zambrano, J., Tello, E.: A review
of surrogate assisted multiobjective evolutionary algorithms. Computational Intel-
ligence and Neuroscience 2016, 1–14 (2016)

4. Haveman, S., et al.: eMaaS project public summary report. Tech. rep., University
of Twente (2020)

5. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation 1(2), 61–70 (2011)

6. Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S.: Genetic algorithms
for the travelling salesman problem: A review of representations and operators.
Artificial intelligence review: An international survey and tutorial journal 13(2),
129–170 (1999)

7. Reyes García, J.R., Lenz, G., Haveman, S.P., Bonnema, G.M.: State of the art of
mobility as a service (MaaS) ecosystems and architectures — An overview of, and
a definition, ecosystem and system architecture for electric mobility as a service
(eMaaS). World Electric Vehicle Journal 11(1) (2020)

8. Sassi, O., Oulamara, A.: Electric vehicle scheduling and optimal charging problem:
Complexity, exact and heuristic approaches. International Journal of Production
Research 55(2), 519–535 (2017)

9. Varga, J., Raidl, G.R., Limmer, S.: Computational methods for scheduling the
charging and assignment of an on-site shared electric vehicle fleet. IEEE Access
10, 105786–105806 (2022)

