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Recent Advances in Bayesian Optimization

XILU WANG and YAOCHU JIN, Faculty of Technology, Bielefeld University, Germany

SEBASTIAN SCHMITT and MARKUS OLHOFER, Honda Research Institute Europe GmbH, Germany

Bayesian optimization has emerged at the forefront of expensive black-box optimization due to its data eiciency. Recent years

have witnessed a proliferation of studies on the development of new Bayesian optimization algorithms and their applications.

Hence, this paper attempts to provide a comprehensive and updated survey of recent advances in Bayesian optimization

that are mainly based on Gaussian processes and identify challenging open problems. We categorize the existing work on

Bayesian optimization into nine main groups according to the motivations and focus of the proposed algorithms. For each

category, we present the main advances with respect to the construction of surrogate models and adaptation of the acquisition

functions. Finally, we discuss the open questions and suggest promising future research directions, in particular with regard

to heterogeneity, privacy preservation, and fairness in distributed and federated optimization systems.

CCS Concepts: · General and reference→ Surveys and overviews; · Theory of computation→ Bayesian analysis; ·

Mathematics of computing→ Nonparametric statistics.

Additional Key Words and Phrases: Bayesian optimization, Gaussian process, acquisition function

1 INTRODUCTION

Optimization problems are pervasive in scientiic and industrial ields, such as artiicial intelligence, data mining,
bioinformatics, software engineering, scheduling, manufacturing, and economics. Among them, many applications
require to optimize objective functions that are noisy and expensive to evaluate, or do not have closed-form
expressions, let alone gradient information. For such problems, metaheuristics such as evolutionary algorithms
that rely on function values only are very popular. However, these algorithms usually require a large number
of function evaluations. By contrast, Bayesian optimization (BO) has emerged as a mainstream to tackle these
diiculties due to its high data eiciency, thanks to its ability to incorporate prior beliefs about the problem to
help guide the sampling of new data, and to achieve a good balance between exploration and exploitation in the
search.

Consider the maximization of an unknown function f that is expensive to evaluate, which can be formulated
as follows:

x∗ = argmax
x ∈X

f (x ) (1)

whereX denotes the search/decision space of interest and x∗ is the global maximum. In principle, BO constructs a
probabilistic model (also known as a surrogate model) that deines a distribution over the objective function, and
then subsequently reines this model once new data is sampled. Speciically, BO irst speciies a prior distribution
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over the function, which represents our belief about the objective function. Then, conditioned on the observed
data and the prior, the posterior can be calculated using the Bayes rule, which quantiies our updated belief about
the unknown objective function. As a result, the next sample can be identiied by leveraging the posterior. This is
achieved by optimizing some auxiliary functions, called acquisition functions (AFs) in BO. The worklow of BO is
presented in the Supplementary material.

The origin of BO can be dated back to the work by Harold Kushner [99], where Wiener processes were adopted
for unconstrained one-dimensional optimization problems and the probability of improvement is maximized to
select the next sample. Mockus [124] developed a new AF, called expectation of improvement (EI), which was
further used in [219]. Bayesian optimization was made popular in engineering after Jones et al. [86] introduced
Eicient Global Optimization (EGO). In EGO, a Kriging model, called Design and Analysis of Computer Exper-
iments stochastic process model [157], is adopted to provide best linear unbiased predictions of the objective,
which is achieved by minimizing the Mean Squared Error of the predictor [97]. In BO, by contrast, a Gaussian
process (GP) is adopted as the surrogate model, which is it by maximizing the likelihood. Hence, the original
formulation of Kriging is diferent from the GP [30]. An introduction to Kriging can be found in the Supplementary
material. More recently, various variants of Kriging have been developed [79, 181] by accounting for constraints
and noise in the optimization. As a result, Kriging models in spatial statistics are equivalent to GPs in BO in
some papers, therefore the two terms will be used interchangeably in the rest of this paper. While GPs are
the most commonly used surrogate models in BO, various alternatives have been proposed, such as Bayesian
neural networks [61, 70], Bayesian linear regression [9, 169], deep GPs [65], random forests [81], ensembles
[62], and dropout deep neural networks [63]. The past decades have witnessed a rapid development of BO in
many real-world problems, including materials design and discovery, sensor networks, inancial industry, and
experimental design. More recently, BO became popular in machine learning, including reinforcement learning
[179], hyperparameter tuning [14], and neural architecture search [93].

1.1 Related Surveys

There are already a few comprehensive surveys and tutorials on methodological and practical aspects of BO,
each with a speciic focus. Sasena [158] gave a review of early work on Kriging and its extension to constrained
optimization. A tutorial on BO with GPs was given in [21], focusing on extending BO to active user modeling in
preference galleries and hierarchical control problems. Shahriari et al. [164] presented a comprehensive review of
the fundamentals of Bayesian optimization, elaborating on the statistical modeling and popular AFs. In addition,
Frazier [47] discussed some recent advances in Bayesian optimization, in particular in multi-idelity optimization
and constrained optimization. However, none of the above review papers provides a comprehensive coverage
of abundant extensions of BO. Moreover, many new advances in BO have been published since [164]. Hence,
an updated and comprehensive survey of this dynamic research ield will be beneicial for researchers and
practitioners.

1.2 Contributions and Organization

This paper starts with a brief introduction to the fundamentals of Bayesian optimization in Section 2, including
GPs and commonly used AFs. Section 3 provides a comprehensive review of the state-of-the-art, where a taxonomy
of existing work on BO is proposed to ofer a clear structure of the large body of research reported in the literature,
as illustrated in Fig. 1. In this taxonomy, we divide most existing BO algorithms into nine groups according to the
nature of the optimization problems. For each group, we attempt to include representative and state-of-the-art
algorithms and methodologies. Since there is no systematic empirical comparison of all these algorithms, this
paper predominantly provides conceptual and qualitative comparisons. We further introduce a color-coding
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Fig. 1. Taxonomy of Bayesian optimization algorithms. In the diagram, BO stands for Bayesian optimization, GP for Gaussian

process, AF for acquisition function, MOEA for multi-objective evolutionary algorithm, MFO for multi-fidelity optimization,

and MTO for multi-task optimization.

scheme to highlight the focuses of each group, where red, blue and yellow blocks indicate, respectively, a focus
on AFs, surrogates, or both. Finally, this survey explores the challenges and a few emerging topics in BO.

2 FUNDAMENTALS OF BAYESIAN OPTIMIZATION

GPs and AFs are two main components of BO, which are introduced in the following.

2.1 Gaussian Process

GP is the most widely used probabilistic surrogate model for approximating the true objective function in
BO. GP is characterized by a prior mean function µ (·) and a covariance function κ (·, ·) [152]. Consider a inite

collection of data pairs Dn = (X, y) of the unknown function y = f (X) + ϵ with noise ϵ ∼ N
�
0,σ 2

ϵ

�
, where

X = [x1, x2, · · · , xn]
T is the input and y = [y1,y2, · · · ,yn]

T is the output resulting from the true objective
evaluations, and n is the number of samples. The GP model assumes that the observed data are drawn from a
Gaussian distribution. Therefore, for a new data point x, the joint distribution of the observed outputs y and the
predicted output y are "

y

y

#
∼ N

 
0,

"
K (X,X) + σ 2

ϵ I K (X, x)

K (X, x)T κ (x, x)

#!
(2)

where T denotes matrix transposition, K (X,X) = [κ (xi , xj )]xi ,xj ∈X denotes an n × n correlation matrix, and
K (X , x) = [κ (xi , x)]xi ∈X denotes a correlation vector evaluated at all pairs of training and test points. As described
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in [152], the conditional distribution p (y | x,X, y) ∼ N (µ (x),σ 2 (x)) is then a multivariate Gaussian distribution,
where the mean and variance of the predicted output y can be estimated as

µ (x) = K (x,X) (K (X,X) + σ 2
ϵ I)
−1y

σ 2 (x) = (x, x) − K (X, x)T (K (X,X) + σ 2
ϵ I)
−1K (X, x) .

(3)

Commonly used kernel functions are the squared exponential (Gaussian) kernel and the Matérn kernel [47],
where hyperparameters, such as length scale, signal variance, and noise variance need to be speciied. Take the
squared exponential kernel as an example, let x and x′ denote the inputs of two points,

kSE (x, x
′) = σ 2

f exp

 
−
(x − x′)2

2ℓ2

!
(4)

where ℓ deines the length-scale parameter, and σf is the single variance. In general, the free parameters, i.e., ℓ,
σf , and σϵ are called hyperparameters, denoted as θ = (ℓ,σf ,σϵ ).

Typically, the optimal hyperparameters are inferred by maximizing the log marginal likelihood,

logp (y | X,θ ) = −
1

2
yTK−1y y −

1

2
log

���Ky
��� −

n

2
log 2π (5)

where Ky = K (X,X) + σ 2
ϵ I.

2.2 Acquisition Function

AFs are the utility functions that guide the search to reach the optimum of the objective function by identifying
where to sample next, which is crucial in BO. The guiding principle behind AFs is to strike a balance between
exploration and exploitation according to the uncertainty and optimality of the response surface, which is
achieved by querying samples from both known high-itness-value regions exploitation) and regions that have
not been suiciently explored so far (exploration). In the following, we briely revisit the commonly used AFs
and an illustration for some commonly used AFs can be found in the Supplementary material.
Without loss of generality, we consider a maximization problem. Let f ∗ denote the optimum obtained so far,

and Φ(·) and ϕ (·) denote the normal cumulative distribution function (CDF), and probability density function
(PDF) of the standard normal random variable, respectively. The earliest AF is to maximize the probability of

improvement (PI) [99] over the current best value f ∗, formulated as

PI(x;Dn ) = P ( f (x) ≥ f ∗) = Φ

 
µ (x) − f ∗

σ (x)

!
, (6)

where P is the probability for inding a better objective function value at position x than the currently best value
f ∗. Alternatively, expected improvement [124] calculates the expected improvement with respect to f ∗,

EI(x;Dn ) = E
�
max (0, f (x) − f ∗)

�

= (µ (x) − f ∗) Φ

 
µ (x) − f ∗

σ (x)

!
+ σ (x)ϕ

 
µ (x) − f ∗

σ (x)

!
,

(7)

where E denotes the expectation value. Interested readers are referred to [207] for a comprehensive review of
many variants of EI. Note, however, that EI tends to explore around the initial best point before the algorithm
begins to search more globally, as only points that are close to the current best point have high EI values.
An idea closely related to EI is Knowledge Gradient (KG) [48], maximizing the expected incremental value

of a measurement; however, it does not depend on the optimum obtained so far. Let µn denote the mean of
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the posterior distribution after n samples, and a new posterior distribution with posterior mean µn+1 will be
generated if we take one more sample. Hence, the KG is formulated as

KG(x;Dn ) = En
�
max(µn+1) −max(µn )

�
(8)

where En[·] := E [· | X, y] indicates the conditional expectation with respect to what is known after the irst n
measurements.

The conidence bound criteria, upper conidence bound (UCB) for maximization problems and lower conidence

bound (LCB) for minimization problems, are designed to achieve optimal regret in the multi-armed bandit
community by combining the uncertainty and the expected reward [173]. The UCB is calculated as

UCB (x;Dn ) = µ (x) + βσ (x), (9)

where β > 0 is a parameter to navigate the exploitation-exploration trade-of (LCB has a minus sign in front of
the β term). Another promising AF for multi-armed bandit problems is Thompson sampling (TS) [3]. TS randomly
draws each arm sampled from the posterior distribution, and then plays the arm with the highest simulated
reward. A more recent development is the entropy-based AFs motivated by information theory, which can be
further divided into input-entropy-based and output-entropy-based AFs. The former maximizes information about
the location x∗ of the global optimum where the information about x∗ is measured by the negative diferential
entropy of the probability of the location of the global optimum, p (x∗ | Dn ) [68, 73]. Hennig and Schuler [68]
proposed entropy search (ES) using mutual information I ({x,y}; x∗ | Dn ),

ES = I ({x,y}; x∗ | Dn )

= H
�
p (x∗ | Dn )

�
− Ep (y |Dn,x)

�
H

�
p (x∗ | Dn ∪ {(x,y)})

� �
,

(10)

where H[p (x)] = −
R
p (x) logp (x)dx denotes the diferential entropy and Ep[·] denotes the expectation over a

probability distribution p. However, the calculation in Eq. (10) is computationally intractable. To resolve this
problem, Lobato et al. introduced predictive entropy search (PES) by equivalently rewriting Eq. (10) as

PES = H
�
p (y | Dn , x)

�
− Ep (x∗ |Dn )

�
H

�
p (y | Dn , x, x

∗)
� �
. (11)

Compared with the previous formulation, PES is based on the entropy of predictive distributions, which is
analytic or can be easily approximated. Following the same information-theoretic idea, output-entropy-based
AFs maximize the reduction of the information about the maximum function value y∗, the mutual information
I ({x,y};y∗ | Dn ) instead [192]. The max-value entropy search (MES) is formulated as

MES = I ({x,y};y∗ | Dn )

= H (p (y | Dn , x)) − Ep (y∗ |Dn )

�
H (p (y | Dn , x,y

∗))
�
.

(12)

Intuitively, MES is computationally much simpler than ES and PES as MES uses one-dimensional p (y∗ | Dn )

while ES and PES estimate the expensive and multidimensional p (x∗ | Dn ). Empirical results have demonstrated
that MES performs at least as good as ES and PES [192].
Note that the above mentioned AFs are all designed for single-objective optimization, and therefore, many

recent eforts have been dedicated to developing new AFs to account for a diverse and wide range of applications.

3 RECENT ADVANCES IN BAYESIAN OPTIMIZATION

In this section, we provide an overview of the state-of-the-art BO algorithms, focusing on the most important
research advances. In the following, we categorize and discuss the existing work according to the characteristics
of the optimization problems to provide a clear picture of the abundant literature.
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3.1 High-dimensional optimization

High-dimensional black-box optimization problems are extremely challenging yet commonly seen in many
applications [129, 190]. Note that the number of dimensions in BO may vary from dozens to thousands or even
one billion [191]. Despite successful applications of BO to low-dimensional expensive and black-box optimization
problems, BO is known to perform poorly when the dimension of the search space is larger than 10ś20 [94, 105].
Hence, its extension to high-dimensional problems remains a critical open challenge. Speciically, the following
major diiculties can be identiied for BO of high-dimensional problems. 1) Nonparametric regression, such as GPs,
is inherently diicult as the search space grows exponentially with the dimension. First, it becomes harder to learn
a model in a high-dimensional space with the commonly used distance-based kernel functions, as the search spaces
grow considerably faster than afordable sampling budgets. Second, the number of hyperparameters generally
increases along with the input dimension, as a consequence, the training of the model becomes increasingly
hard. 2) Generally, AFs are multi-modal problems, with a large mostly lat surface [150]. Hence, the optimization
of AFs is non-trivial, in particular for high-dimensional problems and when the number of samples is limited.
Note that the above problem is related to, but distinct from the scalability of GPs. To construct a reliable GP in
higher dimensional space, more observed data may be required, which results in a challenge of scalability for the
GP due to its cubic complexity to the data size. Although scalable GPs have been extensively studied in recent
years to accommodate many observations [16, 112], these methods focus on the scenario where there exist a
large amount of data while the dimension remains to be small or medium. Moreover, even if one can it a GP
for high-dimensional problems, one would still face the diiculty of the optimization of AFs, because AFs are
typically multi-modal problems and require much more evaluations of the surrogate model to be optimized in
high dimensions compared to low dimensions. Therefore, we are interested in scalable BO algorithms for tackling
high dimensionality, rather than constructing high-dimensional GPs only.
Most existing BO algorithms for high-dimensional problems make two structural assumptions with few

exceptions: 1) the high-dimensional objective function has a low active/efective dimensional subspace, which
motivates the development of variable selection and embedding-based methods; 2) the original objective function
can be a sum of several low-dimensional functions, which gives rise to additive structure based methods.
Addressing high-dimensional BO with a large amount data generally involves alternative models, local modeling,
and batch selection in a parallel manner. In the following, we will discuss in detail existing work handling
high-dimensional optimization problems.

3.1.1 Variable selection. To alleviate the curse of dimensionality, a straightforward idea is to adopt a dimension
reduction technique. To achieve this, an important assumption often made is that the original objective function
varies only within a low-dimensional subspace, called active/efective subspace [23]. To identify the most
contributing input variables, some sensitivity analysis techniques that evaluate the relative importance of each
variable with respect to a quantity of interest have been exploited [171]. In [23] two strategies, the inite diference
sequential likelihood ratio test and the GP sequential likelihood ratio test, are proposed to screen the most
contributing variables. Another commonly used quantity is the values of the correlation lengths of automatic
relevance determination covariances [196]. The basic idea is that the larger the length scale value, the less
important the corresponding variable.

3.1.2 Linear/non-linear embedding. Instead of removing the inactive variables to reduce the dimension, more
recent developments exploit the active dimensionality of the objective function by deining a latent space based
on a linear or non-linear embedding. For example, Wang et al. [194] noted that given any x ∈ RD and a random
matrix A ∈ RD×d , at a probability of 1, there is a point y ∈ Rd such that f (x) = f (Ay). This observation allows
us to perform BO in a low-dimensional space to optimize the original high-dimensional function. Hence, an
algorithm, called BO with random embedding (REMBO), is proposed. Recently, several variants of REMBO have
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been reported [38, 105, 129]. Apart from the success in the random embedding methods, many algorithms have
been proposed to learn the intrinsic efective subspaces, such as unsupervised learning based on variational auto-
encoders (VAE) [6], supervised learning [208], and semi-supervised learning [166]. Most of the above-mentioned
methods based on the structural assumption use linear projections to scale BO to high dimensions. Recently, a
few advanced techniques have been developed to further investigate the structure of the search space by using
non-linear embeddings [125]. Compared with linear embeddings, non-linear embedding techniques, also known
as geometry-aware BO [134], can be considerably more expressive and lexible. However, these methods require
even more data to learn the embedding and assume that the search space is not Euclidean but various manifolds,
such as Riemannian manifold [83].

3.1.3 Addictive structure. The low active dimensionality assumption behind the aforementioned methods is too
restrictive as all the input variables may contribute to the objective function. Hence, another salient structure
assumption, called addictive structure, has been explored in the context of high-dimensional BO. The addictive
structure has been used in addictive GPs [39]. An algorithm called Add-GP-UCB was proposed in [94], assuming
that the objective function f (x) : X → R with input space X = [0, 1]D is a sum of functions of small, disjoint
groups of dimensions,

f (x) = f (1)
�
x(1)

�
+ f (2)

�
x(2)

�
+ · · · + f (M )

�
x(M )

�
(13)

where x(j ) ∈ X (j )
= [0, 1]dj are disjoint subsets of variables. Instead of directly using addictive kernels, a set of

latent decompositions of the feature space is generated randomly and the one with the highest GP marginal
likelihood is chosen, with each kernel operating on subsets of the input dimensions. Markov Chain Monte Carlo
(MCMC) [50], Gibbs sampling [193] and Thompson sampling [192] were also introduced to more efectively learn
the addictive structure. Another major issue concerning Add-GP-UCB is the restriction of disjoint subsets of
input dimensions, which have been lifted in subsequent work [108, 153]. Li et al. generalized the two structure
assumptions, i.e., the low active assumption and the addictive structure assumption, by introducing a projected-
addictive assumption. In [76, 153], overlapping groups are allowed by representing the addictive decomposition
via a dependency graph or a sparse factor graph.

3.1.4 Large-scale data in high-dimensional Bayesian Optimization. While there have been ample studies on BO to
account for problems with large-scale observations and high-dimensional input spaces, very few have considered
high-dimensional problems with a large amount of training data. This optimization scenario is indispensable as
more data is required for constructing surrogates in high-dimensional spaces. Earlier research has shed some
light on the potential advantages of replacing GPs with more scalable and lexible machine learning models. A
natural choice is Bayesian neural networks due to their desirable lexibility and characterization of uncertainty
[172]. Guo et al. [63] developed an eicient dropout neural network (EDN) to replace GPs in high-dimensional
multi/many-objective optimization. The core idea in EDN is that the dropout is executed during both the training
and prediction processes, so that EDN is able to estimate the uncertainty for its prediction. Alternatively, random
forests [81] and the quadrature Fourier feature approximation [127] have been adopted to replace GPs to address
large-scale high-dimensional problems. More recently, a few methods have been proposed that resort to local
modeling and batch selection in a parallel manner to scale BO to problems with large-scale observations and
high-dimensional input spaces. Wang et al. [190] proposed ensemble BO to alleviate the diiculties of constructing
GPs and optimizing AFs for high-dimensional problems. Ensemble BO irstly learns local models on partitions of
the input space and subsequently leverages the batch selection of new queries in each partition. Similarly, an
MOEA with a heterogeneous ensemble model as a surrogate was proposed [62], in which each member is trained
by diferent input features generated by feature selection or feature extraction. The trust region method is adopted
to design a local probabilistic approach (namely TuRBO) for handling large-scale data in high-dimensional
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spaces [43]. However, the trust regions in TuRBO are learned independently without sharing data, which may be
ineicient for expensive problems.

3.1.5 Discussions. The two structural assumptions beneit the GP modeling in high-dimensional spaces, but
may be violated in real-world applications, where the objective function or the search space is not decomposable.
The remaining open questions include how to efectively learn the low-dimensional latent space. Recently, the
presence of high-dimensional combinatorial optimization and graph structure objective functions pose challenges
for BO, which deserves further investigation. Moreover, while most research work consider high-dimensional
search spaces, investigation of high-dimensional multi-output BO still lacks.

3.2 Combinatorial optimization

The optimization of black-box functions over combinatorial spaces, e.g., integer, sets, sequences, categorical, or
graph structured input variables, is ubiquitous and yet challenging task in real-world applications. Without loss
of generality, suppose there is an expensive black-box objective function f : H → R. The goal of combinatorial
optimization is:

h∗ = argmax f (h) (14)

whereH denotes the search space. For problems over a hybrid search space,H = [C,X], C and X denote the
discrete and continuous search space, respectively. Speciically, discrete variables can be divided into ordinal
and nominal (or quantitative and qualitative) variables according to whether a relation of order between the
possible values of a given variable can be deined [139]. For example, categorical variables refer to an unordered
set. BO has emerged as a well-established paradigm for handling costly-to-evaluate black-box problems. However,
most Gaussian process-based BO algorithms explicitly assume a continuous space, incurring poor scalability to
combinatorial domains. This can mainly be attributed to the diiculty in deining kernels and distance measures
over combinatorial spaces to account for complex interactions between variables. Note that gradient-based
methods for optimizing AFs are not directly applicable in the presence of discrete variables. Moreover, BO sufers
seriously from the fact that the number of possible solutions grows exponentially with the parameters in the
combinatorial domain (known as combinatorial explosion). Consequently, there are two major challenges for
combinatorial BO. One is the construction of efective surrogate models over the combinatorial space, and the
other is the efective search in the combinatorial domain for the next structure for evaluation according to the
AF. A straightforward way is to construct GPs and optimize AFs by treating discrete variables as continuous, and
then the closest integer for the identiied next sample point with real values is obtained via a one-hot encoding
strategy [52]. Clearly, this approach ignores the nature of the search space and may repeatedly select the same
new samples, which deteriorates the eiciency of BO. Alternatively, many studies borrowed the elegance of
VAEs to map high-dimensional, discrete inputs onto a lower dimensional continuous space [57]. In the context of
BO, much efort has been dedicated to handling expensive combinatorial optimization problems by introducing
surrogate models for combinatorial spaces.

3.2.1 Inherently discrete models. To sidestep the diiculties encountered in the GP-based BO, some inherently
discrete models (e.g. neural networks [176] and random forests) are employed as surrogate models, among
which tree-based models are the most widely used ones. For example, random forests have been applied to
the combinatorial BO in [80]. Unfortunately, this approach sufers from performing undesirable extrapolation.
Hence, a tree-structured Parzen estimator model has been used to replace the GPs in [14], which, however,
requires a large number of training data. An alternative idea is to use continuous surrogate models that guarantee
integer-valued optima, which motivates a method called IDONE [17] using a piece-wise linear surrogate model.
To improve the search eiciency of the AF in combinatorial optimization, search control knowledge is introduced
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to branch-and-bound search [37]. In addition, an algorithm called BOCS is proposed to alleviate the combinatorial
explosion of the combinatorial space [9].

3.2.2 Kernels with discrete distance measures. Another popular avenue for combinatorial BO is to modify the
distance measure in the kernel calculation of Gaussian processes, so that the similarity in the combinatorial
space can be properly captured. For example, the Hamming distance is widely used to measure the similarity
between discrete variables, and an evolutionary algorithm is generally adopted to optimize the AF [80]. More
recently, graph presentations of combinatorial spaces has emerged at the forefront, contributing to graph kernels
in GPs. Oh et al. [135] proposed COMBO, which constructs a combinatorial graph over the combinatorial search
space, in which the shortest path between two vertices in the graph is equivalent to the Hamming distance.
Subsequently, graph Fourier transforms are utilized to derive the difusion kernel on the graph. To circumvent
the computational bottleneck of COMBO, the structure of the graph representation is further studied and a small
set of features is extracted [36]. Note that graph-based combinatorial BO has been widely applied to neural
architecture search [93, 155].

3.2.3 Bayesian optimization over mixed search spaces. Very few studies have considered mixed-variable combi-
natorial problems, where the input variables involve both continuous and discrete ones, such as integers and
categorical inputs. The kernels with new distance measures over discrete spaces have shed light on addressing
combinatorial optimization problems. Hence, some attempts have been made for combinatorial BO in a similar
fashion, i.e., combining kernels deined over diferent input variables [154]. Interestingly, Pelamatti et al. [138]
used a product of kernels deined over diferent domains to address constrained mixed-variable problems. Follow-
ing this, similar kernels are deined to address mixed-variable problems with varying-size search space [139].
While replacing the GPs in the framework of Bayesian optimization is a possible approach in the mixed-variable
setting [17], the bandit approaches have been integrated with BO by treating each variable as a bandit [130].

3.2.4 Discussions. While most combinatorial BO methods focus on the construction of surrogate models, the
combinatorial explosion problem remains challenging. The computational bottleneck and scalability challenges
require new research ideas and deserve to be further investigated. Moreover, due to the constraints involved in
combinatorial optimization, it is increasingly attractive to select new queries satisfying the constraints.

3.3 Noisy and robust optimization

Two assumptions about the noise in the data are made for constructing the GP in BO [120]. First, the measurement
of the input points is noise-free. Second, noise in observations is often assumed to follow a constant-variance
normal distribution, called homoscedastic Gaussian white noise. However, neither of these assumptions may hold
in practice, rendering poor optimization performance. Hence, BO approaches accounting for noisy observations,
outliers, and input-dependent noise have been developed.

3.3.1 Bayesian optimization for output noise. For an optimization with noisy output, the objective function can
be described by f : X → R resulting from noisy observations y = f (x) + ϵ , where ϵ is addictive/output noise.
Most BO approaches for problems in the presence of output noise employ the standard GP as the surrogate model
and focus on designing new AFs [145]. Firstly, the extension of the noise-free EI (Eq. 7) to noisy observations
has been studied extensively [207]. One major issue is that the current best objective value f (x∗) is not exactly
known. A direct approach is to replace f (x∗) by some sensible values, which is called expected improvement with
łplug-in" [145]. Huang et al. [79] developed an augmented EI by replacing the current best objective value and
subsequently added a penalty term to the standard EI. Alternatively, the β-quantile given by the GP surrogate is
used as a reference in [144]. In that work, an improvement based on the decrease of the lowest of the β-quantile
is further deined, yielding the expected quantile improvement (EQI) that is able to account for heterogeneous
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noise. Similar to EQI, the improvement is deined by the KG policy, and an approximate knowledge gradient
(AKG) is introduced [161]. Fundamentally, AKG is an EI based on the knowledge improvement; however, the
evaluation of AKG is computationally intensive. Another class of AFs that naturally handles output noise is
information-based AFs, such as the PES [73] and Thompson sampling algorithm [92].
A reinterpolation method was also proposed to handle output noise [46], where a Kriging regression is

constructed using noisy observations. Then, the sampled points with the predictions provided by the Kriging are
adopted to build an interpolating Kriging, which is called the reinterpolation, enabling the standard EI to select
new samples.

3.3.2 Bayesian Optimization for outliers. Besides the above mentioned measurement/output noise, the observa-
tions are often contaminated with outliers/extreme observations in real experiments due to irregular and isolated
disturbances, instrument failures, or potential human errors. As pointed out in O’Hagan [136], the standard GP
model that adopts Gaussian distributions as both the prior and the likelihood is sensitive to extreme observations.
Another reason is that GP is nonparametric and interpolant, and therefore it will (in the classical settings with
small variance noise) go through the outlier data.

Typically, BO adopts robust GPs that are insensitive to the presence of outliers to account for outliers. Mathe-
matically, the main idea behind robust GP models is to use an appropriate noise model with a heavier tail, instead
of assuming normal noise, to account for the outlying data [1]. The most commonly used noise model is Student-t
distribution [118, 182]. However, using the Student-t likelihood will not allow a closed form of inference of
the posterior distribution, therefore, some techniques of approximate inference are required. For example, the
Laplace approximation [182] is used for approximate inference. More recently, Martinez-Cantin [118] proposed
an outlier-handling algorithm by combining a robust GP with Student-t likelihood with outlier diagnostics to
classify data points as outliers or inliers. Thus, the outliers can be removed and a standard GP can be performed,
resulting in a more eicient robust method with a better convergence.

3.3.3 Bayesian optimization for corrupted inputs. The input-dependent noise was irst considered in modeling
GP [55], where heteroscedastic noise was introduced by allowing the noise variance to be a function of input
instead of a constant. Hence, the noise variance is considered as a random variable and an independent GP is
used to model the logarithms of the noise level. The inference in heteroscedastic GP regression is challenging,
since, unlike in the homoscedastic case, the predictive density and marginal likelihood are no longer analytically
tractable. The MCMC method can be used to approximate the posterior noise variance, which is, however, time-
consuming. Suggested alternative approximations include variational inference [102], Laplace approximation
[182] and expectation propagation [1].
The above mentioned methods handle datasets with input noise by holding the input measurements as

deterministic and changing the corresponding output variance to compensate. McHutchon and Rasmussen [120]
pointed out that the efect of the input-dependent noise is related to the gradient of the function mapping input
to output. Therefore, a noisy input GP (NIGP) was developed, where the input noise is transferred to output
based on a irst order Taylor expansion of the posterior. Speciically, NIGP adopts a local linearization of the
function, and uses it to propagate uncertainty from the inputs to the output of the GP [120]. The intuition behind
the above ideas is to propagate the input noise to the output space, which may, however, result in unnecessary
exploration. Nogueira et al. [133] addressed this issue by considering input noise in EI, so that the input noise
can be propagated through all the models and the function queries. More precisely, an unscented expected
improvement and an unscented optimal incumbent are deined using the unscented transformation (UT). UT irst
deterministically chooses a set of samples from the original distribution. Then, a nonlinear function is applied to
each sample to yield transformed points. Hence, the mean and covariance of the transformed distribution can be
formed according to the weighted combination of the transformed points.
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A closely related term to input-dependent noise is input/query uncertainty [13]. That is, the estimation of the
actual query location is also subject to uncertainty, such as environmental variables [119] or noise-corrupted
inputs. When extending BO to problems with input uncertainty, two classical problem formulations, a probabilistic
robust optimization and worst-case robust optimization, from a probabilistic and deterministic point of view
have been adopted. In probabilistic robust optimization, a distribution of the input or environmental variables is
assumed. Hence, a prior is placed on the input space in order to account for localization noise, and performance is
assessed by the expected value of some robustness measurement. A representative work by Bland and Nair [13]
introduces noise-corrupted inputs, namely uncertainty, within the framework of Bayesian optimization. In this
case, a robust optimization problem is formulated as a constrained problem by integrating an unknown function
with respect to the input distributions. Hence, the noise factors can be integrated out and an AF similar to the
constrained EI is introduced to select new queries entirely in the decision space. By contrast, the worst-case
robust objective aims to search for a solution that is robust to the worst possible realization of the uncertain
parameter, which is formulated as a min-max optimization problem,

max
x

min
c∈U

f (x, c), (15)

where x denotes the decision vector, c ∈ U denotes uncertainties, where U is the uncertainty set. Marzat [119]
uses a relaxation procedure to explore the use of EGO for worst-case robust optimization, so that the design
variables and the uncertainty variables can be optimized iteratively. However, such a strategy is ineicient as
the previous observations are not reused. Ur Rehman et al. [180] proposed a modiied EI using a new expected
improvement.

3.3.4 Discussions. New AFs are designed for addictive output noise, while enhancements of GPs based on
Student-t distribution are developed to accommodate outliers. More recently, more complex problem settings
with new robustness requirements in realistic scenario have attracted increased attention. For example, how to
address adversarial corruptions [18] is one of the promising research directions. Moreover, robustness in batch
optimization and bandit optimization [18] will be of paramount importance.

3.4 Expensive constrained optimization

Many optimization problems are subject to various types of constraints, and the evaluation of both the objective
function and the constraints can be computationally intensive or inancially expensive, known as expensive
constrained optimization problems (ECOPs). Without loss of generality, an ECOP can be formulated as

minx f (x) = ( f1 (x), . . . , fm (x))

s.t. c j (x) ≥ aj , j = 1, 2, . . . ,q
hi (x) = bi , i = 1, 2, . . . , r
x ∈ X

(16)

where x = (x1,x2, . . . ,xd ) is the decision vector with d decision variables, X denotes the decision space, c j (x)
and hi (x) denote inequality and equality constraints, respectively. Since we consider both single-objective and
multi-objective problems, the objective vector f consists ofm objectives andm = 1, 2, · · · ,N . BO for ECOPs
can be roughly classiied into two groups. 1) With the help of GPs, new AFs are proposed to account for the
constraints within the framework of BO, known as constrained BO (CBO). Recently, CBO has become popular,
especially for addressing single-objective constrained problems. According to the diferent AFs in CBO, we classify
various CBO algorithms into three sub-categories: probability of feasibility based, expected volume reduction
based, and multi-step look-ahead methods. 2) To circumvent the computational burden encountered in ECOPs,
BO is adopted in existing constraint-handling methods, typically, evolutionary algorithms. We refer to these as
surrogate-assisted constraint-handling methods. In the following, each group is introduced and discussed.
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3.4.1 Probability of feasibility. The combination of the existing AFs with constraint feasibility indicators, such
as probability of feasibility, ofers a principled approach to constrained optimization. The most representative
work is the extension of the well-established EI, known as EI with constraints (EIC) [8]. One of the previous
EIC methods, called constrained EI (cEI) or constraint-weighted EI, aims to maximize the expected feasible
improvement over the current best feasible observation. Typically, cEI multiplies the EI and the constrained
satisfaction probabilities, formulated as follows:

cEI(x) = EI (x)

qY

j=1

Pr
�
ĉ j (x) ≤ aj

�
(17)

where each constraint is assumed to be independent, all expensive-to-evaluate functions are approximated by
independent GPs, and ĉ j denotes the model prediction for the j-th constraint. Interestingly, similar ideas have been
discussed in [160] and revisited in [51]. As indicated in Equation (17), cEI faces several issues. First, the current
best observation is required, which is untenable in some applications, such as noisy experiments. Hence, a recent
work by Letham et al. [106] directly extends cEI to noisy observations with greedy batch optimization. Second, cEI
can be brittle for highly constrained problems, because the product of feasibility probabilities approaches zeros
near the feasibility border where the optimum is located, resulting in very small values of cEI in the interesting
regions [8].

3.4.2 Expected volume reduction. Another class of AFs is derived to accommodate constraints by reducing a
speciic type of uncertainty measure about a quantity of interest based on the observations, which is known as
stepwise uncertainty reduction [26]. As suggested in previous studies [26], many AFs can be derived to infer any
quantity of interest, depending on diferent types of uncertainty measures. In [143], an uncertainty measure based
on PI has been deined, where constraints are further accounted for by combining the probability of feasibility.
Using the same principle, integrated expected conditional improvement in [15] deines the expected reduction in
EI under the constrained satisfaction probabilities, allowing the unfeasible area to provide information. Another
popular uncertainty measure is entropy inspired by information theory, which has been explored in [73, 142].
Hernández-Lobato et al. [71] extended PES to unknown constrained problems by introducing the conditional
predictive distributions, with the assumption of the independent GP priors of the objective and constraints. A
follow-up work [72] further investigated the use of PES in the presence of decoupled constraints, in which subsets
of the objective and constraint functions can be evaluated independently. However, PES encounters the diiculty
of calculation, which motivates the use of max-value entropy search for constrained problems in a recent work
[142].

3.4.3 Multi-step look-ahead methods. Most AFs are myopic, called one-step look-ahead methods, as they greedily
select locations for the next true evaluation, ignoring the impact of the current selection on the future steps.
By contrast, few non-myopic AFs have been developed to select samples by maximizing the long-term reward
from a multi-step look-ahead [206]. For example, Lam and Willcox [101] formulated the look-ahead BO as a
dynamic programming (DP) problem, which is solved by an approximate DP approach called rollout. This work
subsequently was extended to constrained BO by redeining the stage-reward as the reduction of the objective
function satisfying the constraints [100]. The computation burden resulting from rollout triggers the most recent
work by Zhang et al. [214], where a constrained two-step AF, called 2-OPT-C, has been proposed.

3.4.4 Surrogate-assisted constraint-handling methods. The above-mentioned constraint-handling techniques
focus on the AFs within the BO framework, where a GP model generally serves as a global model. In the
evolutionary computation community, many attempts have been made to combine the best of both worlds in the
presence of expensive problems subject to constraints. One avenue is to use MOEAs to optimize the objectives
and constraints simultaneously. For example, instead of maximizing the product of EI and the probability of
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feasibility, the two AFs can be served as two objectives and optimized by an MOEA, and a set of new samples are
randomly selected from the obtained Pareto optimal candidates[211].

3.4.5 Discussions. Most constraint-handling BO methods are achieved by introducing new AFs, with a few
attempts adopted augmented Lagrangian relaxation to convert the constrained optimization problems into simple
unconstrained problems [60]. For highly constrained problems, it is diicult to construct surrogates with good
quality for the entire search space due to limited or even unavailable feasible samples. A promising direction is to
search the feasible region irst, and then approach to the best feasible solution. For example, conducting both
local and global search to accelerate the search for feasible points [85] is very promising, but further research is
required. In many applications, evaluation costs, user’s preference and fairness can be deined as constraints
[141], which is an interesting future research direction.

3.5 Multi-objective optimization

Many real-world optimization problems have multiple conlicting objectives to be optimized simultaneously,
which are referred to as multi-objective optimization problems (MOPs) [217]. Mathematically, an MOP can be
formulated as

minx f (x) = ( f1 (x), f2 (x), . . . , fm (x))

s.t. x ∈ X
(18)

where x = (x1,x2, . . . ,xd ) is the decision vector with d decision variables, X denotes the decision space, and
the objective vector f consists ofm (m ≥ 2) objectives. Note that for many-objective problems (MaOPs) [107],
the number of objectivesm is larger than three. Here the target is to ind a set of optimal solutions that trade
of between diferent objectives, which are known as Pareto optimal solutions. The whole set of Pareto optimal
solutions in the decision space is called Pareto set (PS), and the projection of PS in the objective space is called
Pareto front (PF). The aim of multi-objective optimization is to ind a representative subset of the Pareto front
and MOEAs have been shown to be successful to tackle MOPs [217].

The objective functions in an MOP can be either time-consuming or costly. Thus, only a small number of itness
evaluations is afordable, making plain MOEAs hardly practical. Recall that GPs and AFs in BO are designed
for single-objective black-box problems, therefore new challenges arise when BO is extended to MOPs, where
sampling of multiple objective functions needs to be determined, and both accuracy and diversity of the obtained
solution set must be taken into account. To meet these challenges, multi-objective BO is proposed by either
embedding BO into MOEAs or converting an MOP into single-objective problems. Multi-objective BO can be
largely divided into three categories: combinations of BO with MOEAs, performance indicator-based AFs, and
information theory based AFs. Note that some of them may overlap and are thus not completely separable.

3.5.1 Combinations of Bayesian optimization with MOEAs. Since MOEAs have been successful in solving MOPs,
it is straightforward to combine Bayesian optimization with MOEAs. This way, GPs and existing AFs for single-
objective optimization can be directly applied to each objective in MOPs. According to the way in which Bayesian
optimization and evolutionary algorithms work together, the combinations can be further divided into two
groups, evolutionary Bayesian optimization (EBO) and Bayesian evolutionary optimization (BEO) [148]. In EBO,
as shown in Fig. 2 (a) Bayesian optimization is the basic framework in which the AF is optimized using an
evolutionary algorithm. By contrast, in BEO, as shown in Fig. 2 (b), the evolutionary algorithm is the basic
framework, where the AF is adopted as a criterion for selecting ofspring individuals to be sampled. However,
the objective functions in environmental selection of the MOEA may be diferent from the AFs. The diferences
that distinguish these methods lie in the adopted MOEAs and the strategy for selecting new samples. Typically,
decomposition based MOEAs use a scalarizing function, such as the Tchebychef scalarizing function or the
weighted sum, to generate a set of single-objective problems. ParEGO [98] is an early EBO in this category:
the augmented Tchebychef function with a set of randomly generated weight vectors is adopted to construct
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Fig. 2. Two main approaches combining between evolutionary algorithms with Bayesian optimization: (a) evolutionary

Bayesian optimization, and (b) Bayesian evolutionary optimization. In (b), the fitness functions for environmental selection

in the evolutionary algorithm may be diferent from the acquisition function in infilling samples.

multiple single-objective optimization problems, to which the traditional AFs can be directly applied to identify
new samples. By contrast, an MOP can be decomposed into multiple single-objective sub-problems, as done in the
multiobjective evolutionary algorithm based on decomposition (MOEA/D) [209] and the reference vector guided
evolutionary algorithm (RVEA) [25]. After that, Bayesian optimization can be applied to solve the sub-problems.
For example, an EBO method, MOEA/D-EGO [210], uses the Tchebychef scalarizing function to decompose
an MOP into a set of single-objective subproblems and selects a set of new samples from the population by
optimizing EI. Alternatively, a BEO method, Kriging-assisted RVEA (K-RVEA) [27], decomposes the MOP into a
number of sub-problems using reference vectors. Then, the most uncertain solution is selected for sampling for
each sub-problem if the diversity of the overall population needs to be promoted; otherwise, the solution having
the best penalized angle distance according to the predicted objective values will be selected for each sub-problem.
RVEA is also adopted as the optimizer in [186] to address expensive MOPs, where the predicted objective value
and the uncertainty are weighted together as an AF, and the weights are tuned to balance exploration and
exploitation.
Non-dominated sorting is another approach widely adopted in MOEAs. For example, Shinkyu et al [84]

proposed an extension of EGO using a non-dominated sorting based MOEA (Multi-EGO), which is an EBO
method. Multi-EGO maximizes the EIs for all objectives simultaneously, thus the non-dominated sorting is
employed to select new samples. In recent work [12, 156], non-dominated sorting is used to select a cheap Pareto
front based on the surrogate models. Similarly, multi-objective particle swarm optimization using non-dominated
sorting is adopted in [109, 115] in combination with Bayesian optimization.

3.5.2 Performance indicator-based AFs. Performance indicators were originally developed to assess and compare
the quality of solution sets (rather than a single solution) obtained by diferent algorithms [221]. Various quality
indicators have been proposed, including inverted generational distance [216] and hypervolume (HV) [220]. HV
calculates the volume of the objective space dominated by a set of non-dominated solutions P and bounded by a
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reference point r,

HV(P) = VOL
�
∪y∈P[y, r]

�
(19)

where VOL(·) denotes the usual Lebesgue measure, [y, r] represents the hyper-rectangle bounded by y and r .
Hence, algorithms achieving a larger HV value are better.
Interestingly, performance indicators can be incorporated into MOEAs in diferent manners. They can be

adopted as an optimization criterion in the environmental selection [199] since they provide an alternative way
to reduce an MOP into a single-objective problem. For this reason, various multi-objective Bayesian optimization
methods with a performance indicator-based AF have been developed, among which HV is the most commonly
used performance indicator. An early work is S-Metric-Selection-based eicient global optimization (SMS-EGO)
[146], which is based on the S metric or HV metric. In SMS-EGO, a Kriging model is built for each objective,
then HV is optimized to select new samples, where the LCB is adopted to calculate the itness values. Similarly,
TSEMO [20] uses Thompson sampling on the GP posterior as an AF, optimizes multiple objectives with NSGA-II,
and then selects the next batch of samples by maximizing HV.

Indeed, the combination of the EI and HV, which is known as expected hypervolume improvement (EHVI), is
more commonly seen in the context of expensive MOPs. Given the current PF approximation P, the contribution
of a non-dominated solution (x, y) to HV can be calculated by

I (y,P) = HV (P ∪ {y}) − HV (P), (20)

The EHVI quantiies the expectation of the HV over the non-dominated area. Hence, the generalized formulation
of EHVI is formulated as

EHVI(x) =

Z

Rm

I (y,P)

mY

i=1

1

σi (x)
ϕ

 
yi (x) − µi (x)

σi (x)

!
dyi (x). (21)

EHVI was irst introduced in [42] to provide a scalar measure of improvement for prescreening solutions,
and then became popular for handling expensive MOPs [110, 202]. Wagner et al. [184] studied diferent AFs
for MOPs, indicating that EHVI has desirable theoretical properties. The comparison between the EHVI with
other criteria [165], such as EI and estimation of objective values shows that EHVI maintains a good balance
between the accuracy of surrogates and the exploration of the optimization. Despite the promising performance,
the calculation of EHVI itself is computationally intensive due to the integral involved, limiting its application
to MOPs/MaOPs. A variety of studies have been done to enhance the computation eiciency for EHVI. In
[42], Monte Carlo integration is adopted to approximate the EHVI. Emmerich et al. [41] introduced a direct
computation procedure for EHVI, which partitions the integration region into a set of interval boxes. However,
the number of interval boxes scales at least exponentially with the number of Pareto solutions and objectives. In
a follow-up work, Couckuyt et al. [29] introduced an eicient way by reducing the number of the interval boxes.
Another commonly used indicator is based on distance, especially the Euclidean distance. Expected Euclidean
distance improvement (EEuI) [95] deines the product of the probability improvement function and an Euclidean
distance-based improvement function for a closed-form expression of a bi-objective optimization problem. A
fast calculation method for EEuI is proposed using the Walking Fish Group algorithm [29]. Alternatively, the
maximin distance improvement is adopted as the improvement function in [175].

3.5.3 Information theory based AFs. Given the popularity of information theoretic approaches in the context
of single-objective Bayesian optimization, it is not surprising that many information-based AFs for tackling
expensive MOPs have been proposed. For example, PES is adopted to address MOPs, called PESMO [69]. However,
optimizing PESMO is a non-trivial task: a set of approximations are performed; thus the accuracy and eiciency of
PESMO can degrade. A subsequent work is the extension of the output-space-entropy based AF in the context of
MOPs, known as MESMO [11]. Empirical results show that MESMO is more eicient than the PESMO. As pointed
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out in [174], MESMO fails to capture the trade-of relations among objectives for MOPs where no points in the
PF are near the maximum of each objective. To ix this problem, Suzuki at al. [174] proposed a Pareto-frontier
entropy search that considers the entire PF, in which the information gain is formulated as

I (F ∗; y | Dn ) ≈ H
�
p (y | Dn )

�
− EF ∗

�
H

�
p (y | Dn , y ⪯ F

∗)
� �

(22)

where F ∗ is the Pareto front, y ⪯ F ∗ denotes y is dominated or equal to at least one point in F ∗.

3.5.4 Discussions. BO methods for expensive MOPs mainly focus on the design of AFs and their applications
are generally limited to low-dimensional MOPs due to the scalability issue of GPs and the high computational
complexity of some AFs. Hence, possible future directions include the investigation of alternatives of GPs and
the efective AFs for high-dimensional MOPs/MaOPs. Moreover, due to the PS/PF in MOPs, more eforts should
be devoted to the selection of new samples in terms of balancing exploration and exploitation.

Fig. 3. The main diference between (a) multi-fidelity optimization, (b) transfer/meta learning in optimization, (c) multi-task

optimization, and (d) multi-objective optimization. The target optimization task (denoted by red rectangles) in the four

scenarios are diferent: while multi-objective optimization and multi-task optimization aim to efectively and concurrently

optimize several problems, multi-fidelity optimization and transfer/meta learning aim to accelerate the target optimization

task by utilizing useful knowledge acquired from low fidelity simulations or similar source optimization tasks (denoted by

blue rectangles). In multi-task optimization, all tasks are equally important and knowledge transfer occurs between any of

the related tasks. Finally, the diference between multi-objective optimization and multi-task optimization is that the former

handles conflicting objectives of the same task, while each task in the later can be a single/multi-objective problem.

3.6 Multi-task Optimization

Many black-box optimization problems are not one-of tasks. Instead, several related instances of the tasks can
be simultaneously tackled, which is known as multi-task optimization. Suppose there are K optimization tasks,
i = {1, 2, . . . ,K }, to be accomplished. Speciically, denote Ti as the i-th task to be optimized and Xi as the search
space ofTi . Without loss of generality, assuming each task is a minimization problem, and multi-task optimization

(MTO) aims to ind a set of solutions
(
x∗1, . . . , x

∗
K

)
satisfying
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x∗i = argmin
x∈Xi

Ti (x), i = 1, 2, . . . ,K . (23)

There exist some conceptual similarities and overlaps between multi-task optimization and some other terms,
such as multi-objective optimization, multi-idelity optimization and transfer/meta learning. Similarities and
diferences are illustrated in Fig. 3. While multi-idelity optimization and transfer/meta learning focus on the
target task (referred to as asymmetric dependency structure), MTO treats all tasks equal and knowledge transfer
occurs between any related tasks (referred to as symmetric dependency structure) [111]. Multi-task Bayesian
optimization aims to optimize a collection of related tasks at the same time, thereby speeding up the optimization
process by taking advantage of the common information across the tasks. There are two requirements to achieve
this. First, surrogate models that can learn the transferable knowledge between the tasks should be built. Second,
the AF should consider not only the exploration-exploitation balance, but also the correlation between the tasks,
so that the data eiciency of optimization can be further improved by transferring knowledge between the related
tasks. In the following, we present Bayesian optimization algorithms in which multi-task Gaussian models are
constructed and speciic AFs are designed for MTO.

3.6.1 Multi-task Gaussian process. MTO beneits from transferring knowledge across diferent tasks assuming
that the tasks are related to a certain degree. In the geostatistics community, the linear model of coregionalization
(LMC) expresses the outputs as linear combinations of Q independent random functions,

Ti (x) =

QX

q=1

ai,quq (x), (24)

where the latent function uq (x) is assumed to be a zero-mean Gaussian process with covariance as kq (X,X
′),

and ai,q is the coeicient for uq (x). In the context of machine learning, many Bayesian multi-task models can be
viewed as variations of the LMC with diferent parameterizations and constraints. A representative work is called
multi-task GP [195], which uses the intrinsic coregionalization model kernel. Besides the covariance function
over inputs kX (x, x′), a task covariance matrix kT (t , t ′) is introduced as coregionalization metrics to model the
inter-task similarities. Consequently, the product kernel can be derived as follows:

k ((x, t ), (x′, t ′)) = kX (x, x′) ⊗ kT (t , t ′) (25)

where ⊗ denotes the Kronecker product, and t , t ′ ∈ T , kT (t , t ′) is a positive semi-deinite matrix, which is
guaranteed by the Cholesky decomposition. The multi-task GP sufers from a high computational complexity of
O (K3n3). To address the scalability of multi-task GP, Matheron’s rule is used to exploit the Kronecker structure in
the covariance matrices to achieve faster predictive computations in [116]. In LMC models, the correlated process
is expressed by a linear combination of a set of independent processes. Such a method is limited to scenarios
where one output process is a blurred version of the other. Alternatively, convolution processes are employed
to account for correlations across outputs, and each output can be expressed through a convolution integral
between a smoothing kernel and a latent function [5].

3.6.2 Acquisition functions in MTO. Although many attempts have been made to propose multi-task models,
only recently a few multi-task Bayesian optimization algorithms have been proposed, especially in the ield of
hyperparameter optimization in machine learning. Swersky and Snoek [177] extend the multi-task GP [195] to
Bayesian optimization for knowledge transfer in tuning hyperparameters, where a new AF based on entropy
search is proposed by taking cost into consideration. Similar ideas that adopt multi-task GPs or design a new AF
introducing a trade-of between information gain and cost minimization can be found in [126]. Bardenet et al.
[10] considered the hyper-parameter optimization for deep belief networks with diferent features of the dataset,
and proposed collaborative tuning of several problems. In contextual policy search (CPS), a joint GP model over
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the context-parameter space is learned, allowing knowledge acquired from one context to be generalized to
similar contexts. More recently, Thompson sampling has been extended to multi-task optimization by sampling
from the posterior to identify the next task and action [22], which is theoretically guaranteed.

3.6.3 Discussions. Regarding the surrogate modeling of MTO, the commonly used LMC model is criticized for
its computational complexity. While some simple models are proposed to alleviate this issue, their prediction
qualities can be afected. Hence, the development of efective surrogate models for MTO is a promising direction.
Indeed, a few attempts have been made to address MTO by deining new AFs, most of which consider one target
task. In the future, it would be beneicial to select new samples for simultaneously optimizing all tasks.

3.7 Multi-fidelity optimization

Bayesian optimization generally assumes that only the target expensive objective function is available, which
is referred to as single-idelity optimization. In many practical problems, however, the evaluation of the target
function f (x) can often be run at multiple levels of idelity with varying costs,

�
f1 (x), . . . , fM (x)

	
, where the

higher the idelity m ∈ {1, 2, . . . ,M }, the more accurate but costly the evaluation will be. This is known as
multi-idelity optimization (MFO), which can be seen as a subclass of multi-task learning, where the group of
related functions can be meaningfully ordered by their similarity to the objective function.
MFO aims to accelerate the optimization of the target objective and reduce the optimization cost by jointly

learning the maximum amount of information from all idelity models. To achieve this, Bayesian optimization
undertakes two changes to make use of multiple idelity data, namely multi-idelity modeling and a new sample
selection, which will be discussed in detailed in the following.

3.7.1 Multi-fidelity models. Typically, multi-idelity Bayesian optimization builds surrogate models of diferent
levels of idelity either by learning an independent GP for each idelity [89], or jointly modeling multi-idelity
data to capture the correlation between the diferent idelity data, such as multi-output GP and deep neural
networks. Among them, one most popular multi-idelity model is Co-Kriging [128]. Kennedy and O’Hagan [96]
proposed an autoregressive model to approximate the expensive high-idelity simulation ŷH (x) by the sum of the

low-idelity Kriging model ŷL (x) and a discrepancy model δ̂ (x), formulated as

ŷH (x) = ρŷL (x) + δ̂ (x) (26)

where ρ denotes a scaling factor minimizing the discrepancy between ρŷL (x) and high-idelity model at the
common sampling points. Thus, high-idelity model can be enhanced by acquiring information from the low-
idelity inexpensive data. Later, a Bayesian hierarchical GP model is developed in [147] to account for complex
scale changes from low idelity to high idelity. To improve the computational eiciency, a recursive formulation
for Co-Kriging was proposed in [103], assuming that the training datasets for ŷH (x) and ŷL (x) have a nested
structure, i.e., the training data for the higher idelity levels is a subset of that of a lower idelity level. Hence,
the GP prior ŷL (x) in Eq. 26 is replaced by the corresponding GP posterior, improving the eiciency of the
hyperparameter estimations. Following this idea, the autoregressive multi-idelity model given in Eq. 26 has
been generalized by replacing the scaling factor ρ with a non-linear mapping function [140]. Alternatively,
multi-idelity deep GP models use a neural network to learn a non-linear transformation [31], which is further
extended to diferent input spaces in terms of parametrization forms and dimensionality [67].

3.7.2 Acquisition functions for multi-fidelity optimization. Based on multi-task models [96, 103], the design of
sophisticated AFs to select both the input locations and the idelity in the MFO setting has attracted much research
interest. Earlier multi-idelity AFs focused on the adaptation of EI. Huang et al. [78] proposed an augmented EI
function to account for diferent idelity levels of an inill point. Speciically, the proposed EI is the product of the
expectation term, the correlation between the low-idelity and high-idelity models, the ratio of the reduction
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in the posterior standard deviation after a new replicate is added [79], and the ratio between the evaluation
cost of the diferent idelity models. To enhance the exploration capability of augmented EI, Liu et al. [114]
proposed a sample density function that quantiies the distance between the inputs to avoid clustered samples.
UCB has been widely used in MFO, especially in bandit problems. An early work on principled AF based UCB for
MFO is MF-GP-UCB [89]. The MF-GP-UCB algorithm irst formulates an upper bound for each idelity, among
which the minimum bound is identiied to be maximized for selecting the new sample. Having selected the
new point, a threshold is introduced to decide which idelity to query. In a follow-up work [91], MF-GP-UCB is
extended to the continuous idelity space. Sen et al. [162] developed an algorithm based on a hierarchical tree-like
partitioning, and employed MF-GP-UCB to select the leaves. The motivation behind this method is to explore
coarser partitions at lower idelities and proceed to iner partitions at higher idelities when the uncertainty has
shrunk. Following this idea, Kandasamy et al. [90] adopted MF-GP-UCB to explore the search space at lower
idelities, and then exploit the high idelities in successively smaller regions. Recently, information-theoretic
approaches have become popular in MFO. For example, ES with the Co-Kriging model is adopted in [117] to
solve a two-idelity optimization. In [213], unknown functions with varying idelities are jointly modeled as a
convolved Gaussian process [5], then a multi-output random feature approximation is introduced to calculate
PES. Since it is non-trivial to calculate the multi-idelity AFs based on ES/PES, MES has been extended to MFO
due to its high computational eiciency [178].

3.7.3 Discussions. The multi-idelity models generally require strong assumptions: the low idelity and high
idelity are always linearly correlated and the search spaces are the same. These assumptions may not hold in real-
world applications, such as varying search space dimensions for diferent idelities. More eforts should be devoted
to the exploration of alternative models. For the AFs in MFO, there lack investigations for the continuous-idelity
setting. Moreover, existing multi-idelity BO techniques mainly address bandit problems and single-objective
problems, it is therefore interesting to extend them to MOPs and robust optimization.

3.8 Transfer/Meta Learning

Although Bayesian optimization ofers a powerful data-eicient approach to global black-box optimization
problems, it considers each task separately and often starts a search from scratch, which needs a suicient
number of expensive evaluations before achieving high-performance solutions. To combat such a "cold start"
issue, transfer/meta learning in Bayesian optimization has attracted a surge of interest in recent years. Given
a set of auxiliary/source domains Ds and optimization tasks Ts , a target domain DT and optimization task TT ,
transfer/meta learning in Bayesian optimization aims to leverage knowledge from previous related tasks Ts to
speed up the optimization for the target task TT . A well-studied example is hyperparameter optimization of
a machine learning algorithm on a new dataset (target) with observed hyperparameter performances on the
other datasets (source/meta-data). The availability of meta-data from previous related tasks in hyperparameter
optimization has motivated meta-initialization to initialize a hyperparameter search based on the best hyperpa-
rameter conigurations for similar datasets [45]. Typically, the two terms, i.e., transfer/meta learning, are used
interchangeably in the context of Bayesian optimization. Note that in the BO community, knowledge transfer has
also been investigated under the several umbrellas, including multi-task learning and multi-idelity optimization,
which may overlap with the broad ield of transfer learning. According to the method for capturing the similarity,
we classify the Bayesian optimization algorithms coupled with transfer learning techniques into the following
three groups.

3.8.1 Hierarchical model. Hierarchical models learned across the entire datasets arise as a natural solution to
making use of the knowledge from related source domains. For example, Bardenet et al. [10] noted that the loss
values on diferent datasets may difer in scale, motivating a ranking surrogate to map observations from all
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runs into the same scale. However, this approach sufers from a high computational complexity incurred by the
ranking algorithm. To address this problem, Yogatama and Mann [204] suggested to reconstruct the response
values by subtracting the per-dataset mean and scaling through the standard deviation, while Golovin et al. [56]
proposed an eicient hierarchical GP model using the source posterior mean as the prior mean for the target.

3.8.2 Multi-task Gaussian process. Since multi-task GP models are powerful for capturing the similarity between
the source and target tasks, Swersky et al. [177] conducted a straightforward knowledge transfer using a multi-task
GP. Meanwhile, the positive semi-deinite matrix in multi-task GPs (see Eq. 25) has been modiied to improve the
computational eiciency [122, 204]. On the other hand, Joy et al. [87] assumed that the source data are noisy
observations of the target task, so that the diference between the source and target can be modeled by noise
variances. Following this idea, Ramachandran et al. [149] further improved the eiciency of the knowledge
transfer by using a multi-bandit algorithm to identify the optimal source.

3.8.3 Weighted combination of GPs. Knowledge transfer in Bayesian optimization can also be achieved by a
weighted combination of GPs. Instead of training a single surrogate model on a large training data set (i.e.,
the historical data), Schilling et al. [159] suggested to use the product of GP experts to improve the learning
performance. Speciically, an individual GP is learned on each distinct dataset. This way, the prediction on a
target data provided by the product of the individual GPs is a sum of means with weights adjusted with regard to
the GP uncertainty. Diferent strategies have been proposed to adapt the weights in the combination [44]. In
multi-objective optimization, Min et al. [123] proposed to identify the weights by optimizing the squared error of
out-of-sample predictions. In a complementary direction, a few attempts have been dedicated to leveraging the
meta-data within the AF in a similar fashion to the weighted combination of GPs. A representative work is called
transfer AF [197], which is deined by the weighted average of the expected improvement on the target dataset
and source datasets. More recently, Volpp et al. [183] adopted reinforcement learning to achieve this.

3.8.4 Discussions. Intuitively, the optimization of the target task may sufer from negative transfer if the learned
knowledge degrades the performance. Hence, the surrogate model that captures the similarity between target and
auxiliary tasks and how to alleviate the negative transfer remain active ields of research. Generally, there is an
implicit assumption that the source and target domains share the same search spaces, which greatly limits their
applications. In the future, the heterogeneous search spaces should be investigated. Moreover, it is interesting to
protect the data privacy during knowledge transfer.

3.9 Parallel/Batch Bayesian optimization

The canonical Bayesian optimization is inherently a sequential process since one new data is sampled in each
iteration, which might be ineicient in many applications where multiple data points can be sampled in parallel
[132]. A strength of sequential Bayesian optimization is that a new data point is selected using the maximum
available information owing to the immediately updated GP, and therefore searching for multiple query points
simultaneously is more challenging. With the growing availability of parallel computing, an increasing number
of studies exploring batch Bayesian optimization have been carried out, which can be roughly classiied into two
groups. One is the extension of the existing AFs to batch selection, and the other is problem reformulation.

3.9.1 Extensions of the existing AFs. A pioneering multi-points AF is the parallelized version of the EI, called q-
points EI (q-EI) [53, 54]. The q-EI is straightforwardly deined as the expected improvement of the q points beyond
the current best observation. However, the exact calculation of q-EI depends on the integral of q-dimensional
Gaussian density, and therefore becomes intractable and intensive as q increases. Hence, Ginsbourger et al. [53]
sequentially identiied q points by using Kriging believer or constant liar strategies to replace the unknown
output at the last selected point, facilitating the batch selection based on q-EI. Treatments for the intractable

ACM Comput. Surv.



Recent Advances in Bayesian Optimization • 21

calculation of q-EI have been investigated in [54, 185]. Besides, an asynchronous version of q-EI is presented in
[82].

The parallel extension of the GP-UCB has been widely investigated owing to its theoretical guarantees, i.e., the
sublinear growth of cumulative regret. An extension of GP-UCB is proposed to leverage the updated variance,
encouraging more exploration [35]. Similarly, a GP-UCB approach with pure exploration is proposed in [28],
which identiies the irst query point via the GP-UCB, while the remaining ones are selected by maximizing
the updated variance. Since MOEAs can provide a set of non-dominated recommendations, they are well-suited
for determining the remaining points by simultaneously optimizing the predicted mean and variance [64].
More diverse batches can be probed by sampling from determinantal point processes (DPPs) [193]. With the
rapidly growing interest in batch Bayesian optimization, more AFs have been extended to the parallel setting.
For example, parallelized PES [163] and KG [198] are developed to jointly identify a batch of points to probe
in the next iteration, rendering, however, a poor scalability to the batch size. Interestingly, a state-of-the-art
information-based AF, called trusted-maximizers entropy search, is proposed by introducing trusted maximizers
to simplify the information measure [131], which is well scalable to the batch size. TS can also be extended to
the parallel setting by sampling q functions instead [74]. More recently, TS has attracted much attention, as the
inherent randomness of TS automatically achieves a balance between exploitation and exploration [92]. Note
that the performance of TS is not necessarily better than traditional AFs, such as EI and UCB.

3.9.2 Problem reformulation. Much efort has been devoted to developing new batch approaches by reformulating
the optimization problem of AFs in parallel Bayesian optimization. One interesting direction aims to develop new
batch AFs to select input batches that closely match the expected recommendation of sequential methods. For
example, a batch objective function minimizing the loss between the sequential selection and the batch is deined
in [7], which corresponds to a weighted k-means clustering problem. Given that the sequentially selected inputs
are suiciently diferent from each other, a maximization-penalization strategy is introduced by adding a local
penalty to the AF [59]. Liu et al. [113] applied a multi-start strategy and gradient-based optimizer to optimize
the AF, aiming to identify the local maxima of the AF. In addition, the multi-objective optimizer is a promising
approach to inding a batch of query points [212], particularly for addressing expensive MOPs [27, 186]. Similarly,
sequentially optimizing multiple AFs is amenable to generating batches of query points [88]. To better balance
exploration and exploitation, diferent selection metrics can be combined [58, 77].

3.9.3 Discussions. The major challenge for the design of new AFs in batch selection is the requirement of
maximizing the information gain while avoiding the redundancy. Moreover, the scalability to the batch size is
expected to be further investigated. As batch BO can be employed in many real-world applications, it is interesting
to consider more practical problem settings, such as high-dimensional search spaces and asynchronously parallel
settings.

4 CHALLENGES AND FUTURE DIRECTIONS

BO is a well-established powerful optimization method for handling expensive black-box problems, which has
found many successful real-world applications. Despite all these advances, numerous challenges remain open. In
fact, the ield of Bayesian optimization keeps very active and dynamic, partly because an increasing number of
new applications in science and technology poses new challenges and demands. In the following, we present
several most recent important developments in Bayesian optimization and discuss future research directions
according to the nature of optimization problems and settings, including but not limited to distributed, federated
BO, dynamic optimization, heterogeneous evaluations, algorithmic fairness and non-stationary optimization.
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4.1 Distributed Bayesian optimization

Despite a proliferation of studies on parallel or batch Bayesian optimization in recent years, most of them require
a central server to construct a single surrogate model with few exceptions. Distributed Bayesian optimization
has emerged to handle distributed optimization, where the search space, the sampling process, the expensive
evaluations and GPs can be distributed. For example, a straightforward distributed Bayesian optimization, called
HyperSpace, has been proposed by Young et al. [205] for hyperparameter optimization. HyperSpace partitions
the large search space with a degree of overlap and all possible combinations of these hyperspaces are generated
and equipped with a GP model, allowing us to run the optimization loop in parallel. Thompson sampling can be
fully distributed and handle the asynchronously parallel setting [75], although it fails to perform well due to
its inherent randomness. Barcos and Cantin [49] presented an interpretation of Bayesian optimization from the
Markov decision process perspective and adopted Boltzmann/Gibbs policy to select the next query, which can be
performed in a fully distributed manner.
Several questions remain open in design of distributed Bayesian optimization. First, it is of fundamental

importance to achieve a trade-of between the convergence rate and communication cost. The convergence of
distributed Bayesian optimization needs more rigorous theoretical proof and requires further improvement, and
the computational gains will be ofset in the presence of communication latencies. Second, it is still barely studied
how to handle asynchronous settings that result from time-varying communication costs, diferent computation
capabilities and heterogeneous evaluation times. Third, it is an important yet challenging future direction to
take more practical scenarios into consideration, such as complex communication networks and communication
constraints.

4.2 Federated Bayesian optimization

While the rapidly growing sensing, storage and computational capability of edge devices has made it possible to
train powerful deepmodels, increasing concern over data privacy hasmotivated a privacy-preserving decentralized
learning paradigm, called federated learning [121]. The basic idea in federated learning is that the raw data
remains on each client, while models trained on the local data are uploaded to a server to be aggregated, thereby
preserving the data privacy. Adapting Bayesian optimization to the federated learning setting is motivated by the
presence of black-box expensive machine learning and optimization problems.
Dai et al. [32] explored the application of Bayesian optimization in the horizontal federated learning setting,

where all agents share the same set of features and their objective functions are deined on a same domain.
Federated TS (FTS), which samples from the current GP posterior on the server with a probability of p and
consequently samples from the GP provided by the clients with a probability 1−p. However, FTS lacks a rigorous
privacy guarantee. To remedy this drawback, diferential privacy [40], a mathematically rigorous approach to
privacy preservation, is introduced into FTS, called DP-FTS [33]. Instead of using GPs as surrogates, Xu et al.

[201] proposed to use radial-basis-function networks (RBFNs) on local clients. A sorting averaging strategy is
proposed to construct a global surrogate on the server, where each local RBFN is sorted by a matching metric,
and the parameters of each local surrogate are averaged according to the sorted index. The RBFN-based federated
optimization was extended to handle multi/many-objective optimization problems [200]. Although much work
addressing challenges in federated learning, including communication eiciency, systems and data heterogeneity,
and privacy protection have been reported, privacy-preserving optimization brings with many new questions.
First, since GP is non-parameter models, it cannot be directly applied to the federated setting. One idea is to
approximate the GP model with random Fourier feature approximates [32], in which representative power and
computation eiciency should be taken into consideration. Second, Thompson sampling is adopted as AF due to
its ability to handle heterogeneous settings; however, it is criticized by its poor performance compared with other
AFs. Hence, further investigation in new acquisition methods is an interesting yet challenging research direction.
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Finally, privacy protection in federated Bayesian optimization remains elusive, and more rigorous deinitions of
threat models in the context of distributed optimization are highly demanded.

4.3 Dynamic optimization

In many real-world applications, such as network resource allocation, recommendation systems, and object
tracking, the objective function to be optimized may change over time. Such optimization scenarios are known as
dynamic optimization or time-dependent problems. Solving such problems is challenging for most optimization
techniques designed for stationary problems [203]. Although various Bayesian optimization algorithms for
solving static expensive black-box problems have been proposed, only a few methods have been developed to
handle dynamic optimization problems.

Most Bayesian optimization methods for dynamic optimization rely on the multi-armed bandit (MAB) setting
with time-varying reward functions. MAB models the sequential decision-making with partial information,
where the gambler requires to choose one of the K slot machine arms at each iteration in order to maximize the
cumulative reward [215]. Bogunovic et al. [19] introduced a simple Markov model for the reward functions using
GPs, allowing the GP model to vary at a steady rate. Instead of treating all the samples equally important, resetting
[215], temporal kernel [24], sliding window [218], and weighted GP model [34] have been proposed to achieve
forgetting-remembering trade-of. Nevertheless, the construction of efective surrogates for time-dependent
objective functions, the design of AFs to identify promising solutions and track the optimum remain challenging
problems. Moreover, it is interesting to incorporate advances in machine learning, such as transfer learning, for
leveraging informative from the previous runs.

4.4 Heterogeneous evaluations

Bayesian optimization implicitly assumes that the evaluation cost in diferent regions of the search space is
the same. This assumption, however, can be violated in practice. For example, the evaluation times of diferent
hyperarameter settings and the inancial cost for steel or drug design using diferent ingredients [2] may vary
dramatically. Moreover, in multi-objective optimization, diferent objectives may have signiicantly diferent
computational complexities, known as heterogeneous objective functions [4]. Handling heterogeneous evaluation
costs that arise in both search spaces and objective spaces has attracted increased attention, motivating the
development of cost-aware Bayesian optimization.

Most cost-aware Bayesian optimization algorithms focus on single-objective optimization problems. Snoek et

al. [168] introduces an AF called expected improvement per second to balance between the cost eiciency and
evaluation quality via dividing EI by cost. This approach, however, tends to exhibit good performance only
when the optimal solution is computationally cheap. In [104], an optimization problem constrained by a cost
budget is formulated as a constrained Markov decision process and then a rollout AF with a number of look-
ahead steps is proposed. To handle heterogeneous computational costs of diferent objectives in MOPs, simple
Interleaving schemes are developed to fully utilize the available per-objective evaluation budget [4]. More recently,
the search experience of cheap objectives is leveraged to help and accelerate the optimization of expensive ones,
thereby enhancing the overall eiciency in solving the problem. For example, Wang et al. [189] made use of
domain adaptation techniques to align the solutions on/near the Pareto front in a latent space, which allows data
augmentation for GPs of the expensive objectives. Alternatively, a co-surrogate model is introduced to capture
the relationship between the cheap and expensive objectives in [188]. Most recently, a new AF that takes both
the search bias and the balance between exploration and exploitation into consideration was proposed [187],
thereby reducing the search bias caused by diferent per-objective evaluation times in MOPs and MaOPs.
Bayesian optimization for heterogeneous settings is still a new research ield. This is particularly true when

there are many expensive objectives but their computational complexities signiicantly difer.
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4.5 Algorithmic fairness

With the increasingly wider use of machine learning techniques in almost every ield of science, technology
and human life, there is a growing concern with the fairness of these algorithms. A large body of literature has
demonstrated the necessity of avoiding discrimination and bias issues in inance, health care, hiring, and criminal
justice that may result from the application of learning and optimization algorithms. A number of unfairness
mitigation techniques have been dedicated to measuring and reducing bias/unfairness in diferent domains,
which can be roughly divided into three groups, pre-, in-, and post processing, according to when the technique
is applied [141]. The irst group aims to re-balance the data distribution before training the model. The second
group typically trains the model either under fairness constraints or combining accuracy metrics with fairness,
while the third group adjust the model after the training process.

Accounting for fairness in the Bayesian optimization framework is a largely unexplored territory with few
exceptions. For example, Perrone et al. [141] proposed an in-processing unfairness mitigation method in hyper-
parameter optimization based on a constrained Bayesian optimization framework, called FairBO. In FairBO,
an additional GP model is trained for the fairness constraint, allowing cEI to select new queries that satisies
the constraint. Unfortunately, such a constrained optimization method is designed for a single deinition of
fairness, which is not always applicable. A diferent fairness concept was developed in a collaborative Bayesian
optimization setting [167], in which parties jointly optimize a black-box objective function. It is undesired for
each collaborating party to receive unfair rewards while sharing their information with each other. Consequently,
a new notion, called fair regret, is introduced based on fairness concepts from economics. Following the notion,
the distributed batch GP-UCB is extended using a Gini social-evaluation function to balance the optimization
eiciency and fairness.

The fairness problem in the context of Bayesian optimization is vital yet under-studied, and the measurement
and mathematical deinitions have not been explicit. Hence, the fairness deinition should be well-deined at irst,
so that the fairness requirement can be more precisely integrated into the Bayesian optimization. The second
fundamental open question is to investigate how fair surrogate models in Bayesian optimization are and how fair
the selected new samples are. Finally, bias reduction strategies in Bayesian optimization can only be applied to
the simplest case where a single fairness deinition is adopted. The design of practical fairness-aware Bayesian
optimization methods is still an open question.

4.6 Non-stationary Optimization

The standard Gaussian process generally adopts a stationary kernel function under the assumption that the
covariance between two data points is invariant to translation. However, this assumption is susceptible to non-
stationary functions that have diferent variability across its range, which is commonly encountered in a broad
ield, such as aerospace engineering, signal processing, and geostatistics [66, 137].
Many eforts have been dedicated to addressing this issue. First, non-stationary kernel functions based on

kernel convolution have been proposed to achieve the input-independent lengthscale [137], resulting in the high
parametrization requirements. Alternatively, local stationary approaches have been proposed to accommodate the
non-stationary function by dividing the input space and itting stationary models in each region [151]. However,
this class of methods heavily rely on its separability. In addition, input space warpings or non-linear mappings
are used to remove the non-stationary efects in a latent space [170]. More recently, Hebbal et al. [66] leveraged
the lexibility of deep GPs resulting from the deep learning theory to approximate the non-stationary functions,
but deep GPs are not analytically tractable and sufer from the approximated posterior distribution.

Although the need for non-stationary modeling is largely acknowledged in BO, it is still an open question to
explore the non-stationary surrogate models. It is interesting to include more practical requirements, such as
scaling the non-stationary models to high-dimensional problems. Deep GPs have shown promising performance
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on complex and non-stationary optimization [66]; however, it is necessary to provide a theoretical analysis in
terms of the inference of the posterior distribution.

4.7 Negative Transfer

Multi-idelity optimization, multi-task optimization and transfer/meta learning in BO aim to transfer useful
information from related tasks to improve the BO search. However, transferring less related knowledge can hurt
the BO performance, which is also known as negative transfer. Hence, the success of transfer learning is heavily
conditioned on reducing the probability of negative transfer.

While the aforementioned algorithms have shed light on the efectiveness of the transfer optimization paradigm,
circumventing negative transfer in remains an open question. There lacks a rigorous deinition for negative
transfer in BO, such as how to distinguish the negative and positive transfer. Moreover, systematic treatments
and analysis deserve further investigations, including the criteria for measuring the similarity between domains
or tasks and adaptive transfer learning.

5 CONCLUSION

Bayesian optimization has become a popular and eicient approach to solving black-box optimization problems,
and new methods have been emerging over the last few decades. In this paper, we performed a systematic
literature review on Bayesian optimization, focused on new techniques for building the GP model and designing
new AFs to apply Bayesian optimization to various optimization scenarios. We divide these scenarios into nine
categories according to the challenges in optimization, including high-dimensional decision and objective spaces,
discontinuous search spaces, noise, constraints, and high computational complexity, as well as techniques for
improving the eiciency of Bayesian optimization such as multi-task optimization, multi-idelity optimization,
knowledge transfer, and parallelization. Lastly, we summarize most recent developments in Bayesian optimization
that address distributed data, data privacy, fairness in optimization, dynamism, and heterogeneity in the objective
functions. So far, only sporadic research has been reported in these areas and many open questions remain to be
explored.

We hope that this survey paper can help the readers get a clear understanding of research landscape of Bayesian
optimization, including its motivation, strengths and limitations, and as well as the future directions that are
worth further research eforts.
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