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The concept of System of Systems (SoS) refers to a collection of Constituent Systems (CSs) that interact to deliver an 

emergent behavior that cannot be achieved by any individual CS on its own. The focus of this research is on the ad-hoc 

scalability of SoS, meaning that the size of the system can change during operation by adding or removing a CS or 

changing the size of existing CSs. The Unmanned Vehicle Fleet (UVF) is selected as a practical example to showcase the 

challenge and solution of ad-hoc scalability. UVF has various applications in fields such as search and rescue, intelligent 

transportation and mobility, but it operates in a dynamic environment that is prone to uncertainties like changing missions, 

increasing range and capacity, UV failures, and battery requirements. The proposed solution to overcome these 

uncertainties is a self-adaptive system that can dynamically change the UVF architecture in real-time, allowing for upscaling 

or downscaling the size of the UVF. The Mission Control Center (MCC) can control this change either through fully-

automatic mode based on performance criteria like battery utilization and communication traffic, or through manual mode 

where the operator makes the decision. A multi-agent environment and rule management engine are implemented to 

simulate the UVF behavior and validate the proposed solution in both automatic and manual modes. 

CCS CONCEPTS • System of Systems • Unmanned Vehicle Fleet • Self-adaptive Architecture • Ad-Hoc 

Scalability  
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1 INTRODUCTION 

The definition of System of Systems (SoS) evolved over time, rather than being established immediately [16]. 

One early definition of SoS was presented in [3] as "an array of Constituent Systems (CSs) functioning 

together to achieve a common goal". SoS is a result of the integration of multiple CSs to serve a higher 

purpose, and evolves over time as tasks are added, removed, or modified during operation [15]. It is also 

emergent [6], meaning its behaviors are not fully understood until it is integrated, and the overall SoS value 

cannot be simply summed up from the values of its constituent systems. As a result, some behaviors may be 

desirable, while others may not. Swarm robotics is an ideal example of an SoS where multiple robots work 

together to achieve a common goal. Unmanned Vehicles (UV), such as Unmanned Aerial Vehicles (UAV), 

Unmanned Ground Vehicles (UGV), Unmanned Surface Vehicles (USV), or Unmanned Underwater Vehicles 

(UUA), offer different capabilities and can be controlled by a remote operator or a pre-programmed system 

[7]. The use of UVs offers many benefits, including cost efficiency, versatility, and ease of deployment [9]. 

However, they also come with limitations such as limited mission capacity, complexity, range, battery life, 

cybersecurity risks, and the potential for malfunctions [2]. Using a fleet of UVs can overcome these limitations 

and make up for the individual limitations of each unit [4]. 

This research defines the Unmanned Vehicle Fleet (UVF) as an SoS that integrates multiple UV swarms to 

achieve complex missions by forming collective structures and emerging behaviors that enhance their overall 

capabilities [22]. The ad-hoc scalability of the UVF is crucial for its evolution and emergence [13]. Ad-hoc 

scalability refers to the system's ability to adapt to changes that occur during operation by adding or removing 

resources to meet new demands [10]. The research presents an approach to design and simulate a Mission 

Control Center (MCC) that can control the UVF's ad-hoc scalability by dynamically adapting the SoS 

architecture. The next section outlines the research problem. Section 3 highlights the central, hierarchical, and 

holonic system architectures as the foundation of the proposed solution. The implementation of the proposed 

solution is described in section 4, using a multi-agent environment that models the MCC, the operator, and 

the UVs as software agents. Section 5 discusses the simulation case study and its results. Finally, section 6 

summarizes and discusses the research and highlights future work. 

2 PROBLEM 

 

Figure 1: Ad-hoc Scalability in the UVF 

The UVF can be seen as a realization of the SoS concept with multiple UV swarms. Swarm robotics focuses 

on designing simple physical agents to achieve desired collective behavior through local interaction among 

the agents and with the environment [8]. This definition aligns with the SoS definition, highlighting scalability 

as the key to its emergence and evolution [1]. As shown in Figure 1, the UVF involves two types of ad-hoc 
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scalability. The first type occurs within the UV swarm, where adding or removing UV entities impacts the 

swarm's capacity to execute tasks that match the UV capabilities. The second type occurs within the UVF, 

where including or excluding a UV swarm affects the SoS existing capabilities and overall plan. UVF 

scalability is limited by the static design of its system architecture pattern, that is often implemented by the 

MCC is the fundamental challenge that has been highlighted. The main research question that has been 

addressed by this research is “How to achieve the ad-hoc scalability concept in a UVF by adapting its 

architecture based on its performance criteria such as battery utilization and communication traffic”   

3 SOLUTION  

The system architecture pattern is the foundation for implementing an application design at the highest level 

of abstraction. It defines the overall system structure and behaviour, providing a blueprint for its design. The 

proposed research solution incorporates a dynamic MCC design that enables scalable UVF architecture 

patterns to meet changing mission requirements. With this design, the UVF can be scaled in real-time without 

disruption, allowing it to easily adapt to new requirements. The MCC includes a decision-making mechanism 

that operates in either a fully automatic mode or a supported-manual mode. In fully automatic mode, the MCC 

automatically selects the best UVF architecture pattern to meet current mission needs [14]. In supported 

manual mode, the operator chooses the architecture pattern, and the MCC validates the choice and provides 

a viable solution. Figure 2 illustrates the solution concept used in designing the MCC, showcasing three 

architecture patterns (Central, Hierarchal, Holonic) as examples. However, the concept can be applied to 

other system patterns as well. 

The proposed central architecture pattern can be seen on the left side of Figure 2. Two structure layers are 

proposed in this pattern. The first layer is the supervision layer, where the MCC locates. The second layer is 

the operational layer, where the UVs exist. All the communication links between the MCC and the UVs are 

based on master-slave protocol, where in this case the MCC takes the role of the master node while the UVs 

take the role of slave nodes. In master-slave protocol, one device acts as a master node that manages the 

timing and the data flow. The slave nodes cannot initiate the communication or communicate with one another 

Therefore, all the UVs waits the MCC command and report back their feedback. Would the UVs like to 

cooperate, they must communicate through the MCC as a hub. The central pattern has simple structure and 

behavior, however it suffers from the Single Point of Failure (SPoF) which reduce its reliability. Furthermore, 

the scalability and flexibility of the central architecture is very limited by the number of UVs that can be 

connected and controlled by one MCC simultaneously [23].   

The proposed hierarchical architecture is shown in the middle of Figure 2. This architecture improves upon 

the central pattern by increasing scalability and flexibility [24]. It has three structure layers: the execution layer, 

where UVs receive direct commands from the MCC in the supervision layer; the operational layer, where the 

leader UVs, in the execution layer, lead a group of follower UVs via master-slave communication links. Global 

cooperation occurs through the MCC and leader UVs, resulting in higher delay but local cooperation occurs 

through the leader UVs. This structure provides a more responsive and reliable performance compared to the 

central architecture, as the SPoF is distributed across multiple locations [5]. However, the system is not fault-

tolerant as the follower UVs are dependent on their leaders, which negatively affects its robustness. 

Additionally, scalability can only be achieved at the bottom of the hierarchy. 
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Figure 2: solution concept – scaling the UVF via adapting its pattern architecture by the MCC 

The holonic architecture pattern is depicted on the right side of Figure 2. This pattern features four 

structural layers, with UVs in the planning layer receiving commands directly from the MCC in the supervision 

layer via master-slave links [21]. The UVs in the planning layer communicate with each other using peer-to-

peer links, allowing for any node to initiate communication when an event occurs. One UV in the planning 

layer has a permanent link with a UV in the execution layer, which carries out the plan with the help of other 

UVs in the operational layer. In the event of failure, the UV in the planning layer can promote another UV in 

the operational layer to the execution layer to establish a new master-slave link. The holonic pattern offers 

high scalability and flexibility, capable of integrating a large number of UVs, executing complex plans and 

having a robust architecture with no single point of failure [20]. 

4 IMPLEMENTATION  

The similarities between Multi-Agent Systems (MAS) and UVF are clear. An MAS is a group of artificially 

intelligent agents that work together in a flexible network to solve problems beyond the capabilities of a single 

agent [14]. Meanwhile, a UVF is a group of UV swarms, or control systems, that interact to produce a 

collective behavior that can't be achieved by a single swarm [12]. This comparison has led to the 

implementation of the proposed solution using a MAS environment called Java Agent DEvelopment (JADE), 

as shown in Figure 3-a. 
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Figure 3: (a) UVF implement as a MAS in JADE (b) ACL message communication  

Figure 3-a shows JADE implementation of UVF case study under UVF platform. The UVF platform is 

composed of two containers, where three software agents are living. The main JADE container contains two 

essential agents, which are the Agent Management System (AMS) and a Directory Facilitator (DF) [19]. AMS 

provides a unique ID for every agent to be used as an agent communication address. While the DF 

announces the services which each agent can afford. The UVF-agents container is bundling three different 

categories of agents. The first category is the humans which is represent as the operator agent, the second 

category is controller which is represented as the MCC agent, the third category is the autonomous machines 

which are represented as the UVs.      

 

Figure 4: (a) UV behavioral state machine (b) Drools rule engine  

JADE agents use the Foundation for Intelligent Physical Agent - Agent Communication Language (FIPA-

ACL) to exchange messages [11]. One example of FIPA-ACL message exchange can be seen in Figure 3-b. 

The ACL message that is shown in Figure 3-b explains how the operator agent can override the control mode 

from automatic to manual, as the message is sent from the operator agent to the MCC agent. The message 
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content field contains the assigned new value of the required architecture pattern by the operator, which in 

this case is central. The same message exchange mechanism is followed by the other agents within the UVF 

platform. The only difference that the operator agent decision making, and behavior is based on direct 

interaction with a human operator. However, the decision making in case of the MCC, and the UVs agents is 

done autonomous, based on a set of rules that are applied by the MCC and the UV behavioral state machine. 

Figure 4-a shows the state machine that is used by a UV agent to model a UV behavior. The state 

machine diagram is a dynamic behavioral diagram from SysML standard language, which shows the 

sequences of states that a UV go through during its operation in response to events that may trigger an action 

[18]. The following UV states are defined:  

¶ Initial: a simple state, where UV initially becomes ready to operate  

¶ Available: a composite state, where the UV is either registered or unregistered. Tav is the time which the 

UV is available, and either registered or unregistered. 

¶ Unavailable: a simple state, where the UV cannot be registered, as it is out service due to a failure or 

battery charging. Tunav is the time which the UV is unavailable. 

¶ Unregistered: a simple state, where the UV is available but not registered yet, as it is configuring its 

parameters. Tunr is the time which the UV is available but unregistered. 

¶ Registered: a composite state, where the UV is either controlled or uncontrolled. Tr is the time which the 

UV is registered either controlled or uncontrolled 

¶ Uncontrolled: a simple state, where the UV is registered but not assigned to any mission yet. Tunc is the 

time which the UV is registered and uncontrolled  

¶ Controlled: a simple state, where the UV is registered and assigned to a mission. Tc is the time which 

the UV is registered and controlled  

Initially, the UV becomes available and unregistered after it receives an init event. If the UV succussed to 

configure itself, it will send a registered event to UVs manager. When the MCC allows its registration, it will be 

registered but not controlled, till the MCC assigns a mission to it, then the UV in controlled state. When the UV 

finishes its mission, it goes back to uncontrolled state. If the UV needs to be reconfigured, it must return to the 

unregistered state. If the UV has a failure or requires a battery charge, it must return to the unavailable state. 

Based on this state machine diagram, the MCC can monitor the UVs status and hence it calculates their 

Utilization. The UV utilization (Uuv) is the ratio between Tc to Tunc. Furthermore, the MCC calculates the UV 

communication traffic (Truv), which is the data rate communicated through the UV. Uuv and Truv are two 

important performance criteria that are used by the MCC to balance the UVF usage while adapting it is 

architecture pattern, as it will be illustrated in detail in the next section.  

Figure 4-b shows Drools rule engine that has been impeded into the MCC agent to contain the operation 

rule. Drools is a deliberative software agent that codify the knowledge base and the reasoning into facts, rules, 

and actions [17]. The working memory holds the facts which present the domain knowledge, while the 

production memory holds the rules which are presented in form of conditional statements. The reasoning 

engine is a problem solver which solves a given problem by matching the present facts with the existing rules. 

Drools reasoning engine can apply a hybrid chaining reasoning. A hybrid chaining reasoning is a mix between 

the forward and the backward chaining which can be more efficient in some cases than both.  
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5 CASE STUDY  

 

Figure 5: different architectural structure based on the test cases 
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Figure 5 shows the 9 test cases used in our approach and deployed in JADE for a 20-minute simulation 

scenario. The simulation involves a group of UAVs and UGVs randomly changing their state according to set 

constraints. The MCC provides either automatic or manual control based on the operator's choice and adapts 

the UVs to one of the architecture patterns based on utilization and traffic monitoring. 

5.1 Constraints   

¶ C1: the maximum number of available UAVs is five.  

¶ C2: the maximum number of available UGVs is three. 

¶ C3: all the available UAVs are within the MCC control range.  

¶ C4: all the available UGVs are out of the MCC control range.  

¶ C5: all the UAVs have similar capabilities, thus any of them can operate as a leader UAV in a cluster. 

¶ C6: all the UGVs have similar capabilities, thus any of them can operate as a leader UGV in a cluster. 

¶ C7: each of the connected UVs transmits fixed data rate of 800 Kbps.  

¶ C8: maximum number of communication links between the MCC and the UVs is three. 

¶ C9: maximum number of communication links between a leader UV and the follower UVs is two. 

5.2 Rules 

¶ R1: in central pattern, one layer (i.e., operational) of UVs that all in the MCC control range can exist.  

¶ R2: in hierarchical pattern, two layers (i.e., operational, and execution) of UVs can exist. 

¶ R3: in holonic pattern, three layers (i.e., operational, execution, and planning) of UVs can exist. 

¶ R4: a UV out of the MCC range is connected either in the execution layer or in the planning layer, via a 

UV in the operational layer. 

¶ R5: in automatic operational mode, the UVs are filling the operational layer at first, then the execution 

layer, then the planning layer.   

¶ R6: the UVs with minimum utilization have higher priority to be directly connected to the MCC (i.e., 

operational layer must be formed from the UVs with minimum utilization). 

¶ R7: connecting a follower UV to a leader UV is based on balancing the traffic on the current leader UVs. 

¶ R8: connecting a follower UV to a leader UV is based on balancing the utilization of the current leader 

UVs, if all the leader UVs have the same traffic.  

¶ R9: the third layer of the holonic pattern is composed of clusters from the same UV types.  

5.3 Test cases 

¶ TC1: at 2 min simulation time, the operation mode is set to automatic. As seen in Figure 5-a, UGV3 has 

registered but is outside the MCC's control range and cannot be controlled. Since no UVs are under 

control, no architecture pattern has been assigned. 

¶ TC2: at 4 min simulation time, the operation mode is set to automatic. In Figure 5-b, UAV4 has 

registered and is now under MCC control. As a result, UAV4 establishes a communication link with the 

MCC. R4 is applied, allowing UGV3 to also connect to the MCC through UAV4. With two communication 

layers present, the MCC structures the UVs into a hierarchical pattern as specified by R2. 

¶ TC3: at 6 min simulation time, the operation mode is set to automatic. In Figure 5-c, UAV2 is registered 

and in communication with the MCC, as shown by R5. The hierarchal pattern is maintained through R2. 
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¶ TC4: at 8 min simulation time, the operation mode is automatic. In Figure 5-d, UAV5 and UGV1 are 

registered, so the MCC establishes communication links with them via R5 and R4, respectively. The 

existing UVs are structured into a hierarchal pattern, as per R2, with two layers of communication. 

¶ TC5: at 12 min simulation time, the operation mode is changed to manual and the assigned pattern is 

central. The MCC implements R1 to structure the UVs in a centralized pattern as seen in Figure 5-e. 

¶ TC6: at 14 min simulation time, the operator switches operation mode to manual and sets the pattern to 

hierarchical. In Figure 5-f UAV1 is newly registered with the MCC, while UGV1 and UGV3 are already 

registered but not controlled. The MCC uses R2, R4, R5, R6, and R7 to form a hierarchical pattern 

structure. R5 and R6 dictate that operational layer connections to the MCC must be established using 

UVs with lowest utilization. UAV1, UAV2, UAV4, and UAV5 can directly connect to the MCC. According to 

Figure 6, UAV1, UAV2, UAV4, and UAV5 utilization rates are 0%, 58%, 67%, and 36% respectively. C8 

states that UAV1, UAV2, and UAV5 form the operational layer, while UAV4, UGV1, and UGV4 form the 

execution layer. The leader-follower connections are balanced with three leader UVs (UAV1, UAV2, 

UAV5) connected to three follower UVs (UAV4, UGV1, UGV4). The follower UV selection is random, as 

all options meet MCC rules. 

¶ TC7: at 16 min simulation time, the operation mode is set to automatic by the operator. UAV3 registers 

with the MCC in Figure 5-g. To optimize utilization of the operational layer, the MCC applies R6. 

According to Figure 6, the utilization rates for UAV1, UAV2, UAV3, UAV4, and UAV5 are 14%, 64%, 0%, 

71%, and 45% respectively. Thus, the first UV layer is formed by UAV1, UAV3, and UAV5. The MCC 

then applies R2, R4, R7, and R8 to structure the execution layer. R7 reveals an imbalance in the traffic 

on the leader UVs (UAV1, UAV3, UAV5) that can be seen in Table 1, with one UV required to handle 

1600 Kbit. To resolve this, R8 is applied to identify the leader UV with minimum utilization (UAV3 = 0%). 

UAV3 is selected to handle the highest traffic in the execution layer (1600 Kbit). The MCC forms a two-

layer structure, resulting in a hierarchical pattern, according to R2. 

¶ TC8: at 18 min simulation time, the operation mode remains automatic. A new registration of UGV2 is 

shown in Figure 5-h. Due to the high traffic of UAV3 (1600 Kbit) as indicated in Table 1, UGV2 cannot be 

led by UAV3 as per R7. The MCC uses R8 to choose between UAV1 or UAV5 to lead UGV2. Based on 

Figure 6, utilization of UAV1 and UAV5 are 25% and 52% respectively. Therefore, UAV1 is selected to 

lead UGV2. The MCC establishes the connection between all registered UVs in a hierarchical pattern, 

as indicated by R2. 

¶ TC9: at 20 min simulation time, the operator switches the operation mode to manual and the assigned 

pattern is holonic. In Figure 5-i, the MCC uses R5 and R6 to form the operational layer using UVs with 

minimum utilization. Based on Figure 6, the utilization levels of UA1, UA2, UA3, UA4, and UA5 are 33%, 

72%, 22%, 78%, and 57% respectively. Hence, based on C8, UAV1, UAV3, and UAV5 form the 

operational layer. Using R9, UGV1, UGV2, and UGV3 form a cluster with higher traffic compared to 

connecting UAV4 and UAV2. The cluster is connected to the UAV with the lowest utilization, UAV3 (UA3 

= 22%). With UG1, UG2, and UG3 utilization levels of 56%, 11%, and 70% respectively, UGV2 becomes 

a master-slave link with UAV3 and peer-to-peer links with UGV1 and UGV3 based on R8 and C9. As per 

R7, UAV1 can only lead one follower UV, and UAV5 can lead another, so UAV2 is assigned to be led by 

UAV1, and UAV4 to be led by UAV5. 
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Figure 6: UVs Utilization in min 

Table 1: UVs Traffic in Kbit 

 

6 DISCUSSION 

The research highlighted the challenge of the ad-hoc scalability within a UVF from the SoS prospective. As 

the main ad-hoc scalability limitation is resulted from the static design of the UVF system architecture, the 

research proposed a dynamic system architecture that adapts its pattern (central, hierarchal, or holonic) 

based on the UVF demand. A multi-agent simulation has been introduced based on an analogy between the 

MAS and the UVF characteristics, under the SoS umbrella. The MAS simulation defined three software agent 

categories, which are UV agent, operator agent, and MCC agent. 

The UV agent models its autonomous behavior by executing its state machine. This technique provided a 

realistic simulation leverage, as it enabled simulating the randomness in the UVs states. For example, during 

TC1, UGV5 was available. However, upon C4 and R4, UGV5 needed another UV that in the MCC range to be 

able to communicate with the MCC, which has been fulfilled in TC2. The operator agent enables the human 

decision making that dramatically influences the flow of events among the other agents. This has been 

illustrated in TC5, TC6, and TC9, when the operator commands the MCC to assign a specific architecture 

pattern. The operator decision making enables the flexibility and intelligence that cannot be afforded by 

algorithms, when dealing with uncertain situation such as cyber-attacks or partial system failure, that they are 

not designed to solve. The MCC agent has been implementation using Drools rule engine. Drools is 

particularly advantageous in applying forward and backward reasoning simultaneously (i.e., hybrid reasoning). 

Hybrid reasoning is especially important in automatic operation mode, as the MCC applies the forward 
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reasoning to construct an architecture based on the existing rules and contains. Then after constructing the 

architecture, it uses the backward reasoning to conclude which architecture pattern is assigned. For example, 

in TC8, the MCC concludes from R2 that the current pattern is hierarchal.    

To verify the solution, test driven development technique has been followed. Accordingly, the illustrated 

test cases have covered all the rules and constrains. Ultimately, it is shown in Figure 6 that the UVs utilization 

is converging, as the rules tend to balance the overall utilization over time. Furthermore, it has been shown in 

Table 1 that the traffic is dramatically increases when switching between TC8 and TC9 from hierarchal to 

holonic pattern, that is of course due to the increase of the architecture layers and the peer-to-peer 

communication among the UVs. It is also noticed that switching to central pattern results in zero traffic, as 

shown in TC5. This means that the cost of a scalable, cooperative, and reliable UVF SoS, will be reflected on 

the overall traffic, utilization, and ultimately the UVs battery lifetime. Additionally, this is explaining why the 

existence of the human operator is very crucial to compromise all the UVF aspects and coupe with uncertain 

situations. During the future work, the utilization and traffic will be factorized and expressed as a function of 

the battery life. Thus, the rules can use both the utilization and the traffic simultaneously to optimize the UVF 

architecture pattern.   
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