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Figure 1: System architecture for AR-mediated training and cooperation with robots.

ABSTRACT
The current spread of social and assistive robotics applications is
increasingly highlighting the need for robots that can be easily
taught and interacted with, even by users with no technical back-
ground. Still, it is often difficult to grasp what such robots know
or to assess if a correct representation of the task is being formed.
Augmented Reality (AR) has the potential to bridge this gap. We
demonstrate three use cases where AR design elements enhance
the explainability and efficiency of human-robot interaction: 1) a
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human teaching a robot some simple kitchen tasks by demonstra-
tion, 2) the robot showing its plan for solving novel tasks in AR to a
human for validation, and 3) a robot communicating its intentions
via AR while assisting people with limited mobility during daily
activities.

CCS CONCEPTS
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1 INTRODUCTION
Among the foremost conditions to have socially assistive robots
enter our homes and act around us, is the possibility even for non-
expert users to be able to intuitively interact with the robot and to
teach it new tasks. Such systems are meant for long-term interac-
tion, hence they will need to be flexible enough to handle a large
number of tasks and to learn new ones. This means that their func-
tioning will be rather complex, relying on multiple AI and machine
learning algorithms which cannot be fathomed by the end user.
At the same time, robots will need to inform the user about their
workings in an effective way, so that the user can adjust its mental
model and understand what to expect from the robot without the
need for specific training, lengthy instructions, or repeated observa-
tions of the robot. Such a feature would go a long way in improving
acceptance and trust in robotic assistants by the public. This need,
already emerged in recent years in disembodied AI systems and
tackled in the eXplainable AI (XAI) field [1, 4, 15, 16], has been previ-
ously denoted as interpretability or legibility in Mobile Robotics [3],
and has been recently characterized by specific robotic dimensions
[5]. Indeed, while pure AI systems usually provide an a-posteriori
explanation on decisions/predictions made by some machine learn-
ing algorithm, robots are embodied agents, autonomously acting
in the real world and possibly interacting and cooperating with
humans. This situatedness and agency calls for different kinds of
explanations, not just regarding past decisions, but more critically
about current assessments, future plans, and intentions. Such infor-
mation needs to be timely communicated to the human user and
interactively negotiated with them in a quick and unambiguous
fashion. In Human-Robot Interaction (HRI) similar interactions
have often been managed by imitating interactions and social cues
exchanged between humans, e.g., gaze contact and shared attention,
speech, gestures [14], with the idea that behavioral human-likeness
can improve intuitiveness. Still, due to their familiarity, these cues
might falsely suggest that the robot has similar perceptual and
understanding capabilities as the human counterpart. In this sense,
other interaction modalities might integrate these cues and offer an
insight into the robot’s mind that helps bridging the user’s mental
model gaps.

We propose a concept utilizing AR to improve the user expe-
rience of interacting with robot assistants by displaying intuitive
explanatory hints about the robot perception, learning, general-
ization, and planning at different levels. While Augmented/Mixed
Reality solutions have been recently increasingly spreading in ro-
botics [2, 7, 20], these have typically targeted debugging by trained
experts [9], visualizing internal states and movement intentions
[8, 12], teleoperation [21], and simplifying learning by demonstra-
tion of movement trajectories [6]. Here, we introduce our robotic
system which leverages AR capabilities across different typical use
cases in robotics: learning new tasks by demonstration, devising a
plan for a new problem, and assisting a human during a physical
task in an ergonomic way. By exploiting real and virtual objects
and by integrating human-like social cues with explanatory vir-
tual design elements [13], this framework showcases how a hybrid
workspace can be shared between humans and robots. Such inter-
faces enhance the interaction by making the robot’s state of mind

visually apparent and transparent to the user, grounding it on the
current human perception of the scene.

2 SYSTEM ARCHITECTURE
Our system is composed of modules realizing the back-end function-
alities (learning, planning, prediction and motion generation), and
the front-end interface capabilities (visualization and interaction)
of the AR glasses (see Fig. 1).

Back-end robotic system: The physical robot is a torso with
two Kinova arms1 with 7 DOF each and a pan-tilt unit, part of the
mobile platform "Johnny" [18, 19]. The robot’s cognitive skills are
realized in multiple ROS2 nodes, communicating with each other
and with the front-end interface. The behavior engine orchestrates
the social behavior of the robot. It controls the robot gaze, while
concurrently issuing XAI cues to be shown in the AR environment
(cfr. [17]). It also regulates the speech interaction, e.g. acknowledg-
ing the user commands or asking curiosity-driven questions (see
Sec. 3). The episodic memory collects world state observations dur-
ing demonstrations by the human teachers. The learning module
realizes symbolic skill learning which integrates demonstrations
from the episodic memory into a knowledge graph, and generates
new hypotheses to be queried to the user (Sec. 3). The planning
module uses the learned semantic skills to generate high-level plans
to solve new tasks. Such plans are yet to be checked with the hu-
man tutor (see Sec. 4). The human action predictionmodule operates
when assisting a user. The robot can predict what the user is in-
tending to achieve, and plan a supportive action, e.g., moving the
next required object closer to the user. The ergonomics module gen-
erates interventions in a ergonomically optimal way for the user
(see Sec. 5). Finally, the action generation module (Fig. 1) receives
action commands from other modules (e.g., where to look, what to
grasp, etc) and executes the corresponding motor behavior.

Front-end interface: Virtual objects, a virtual robot, and XAI
cues (AR graphical elements) are displayed in the mixed-reality
environment via the HoloLens3. The HoloLens can scan the sur-
roundings, build up 3D meshes of the environment objects and
locate itself in the room, which enables it to stably overlay graphics
in the environment considering occlusions with real objects.

The shared environment, accessible to the user through the
HoloLens (see Fig. 1, right), includesmultiple real and virtual objects.
The object poses are continuously sent to the back-end, by the
HoloLens for virtual objects and by a static camera for real objects
(endowed with fiducial markers). Users can interact with the virtual
objects in a similar way as with real ones; they can, for instance,
pick up the bread, put it into a slot of the toaster, and push the
button.

The HoloLens is also detecting the user’s behavior and commu-
nicates it to the back-end system. This includes the user’s head
position, orientation and speech input. More importantly, as the
HoloLens can track the user’s hand and fingers, then the manual
actions (e.g., "pick" or "drop") are also detected. The manipulation
of objects by a human hand is implemented via Microsoft MRTK

1https://www.kinovarobotics.com/product/gen2-robots
2https://www.ros.org
3https://www.microsoft.com/en-us/hololens
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Figure 2: Learning from demonstration with XAI: while the user demonstrates a new skill the robot signals in AR which actions
and objects it recognizes. Afterwards, it asks a related question while highlighting involved objects.

SDK4, which enables the corresponding virtual object to stick to the
human’s hand while the "picking/holding" gesture is applied, and
release from the hand after a "drop" gesture is detected. Moreover,
colliders are attached to the user’s fingers, enabling the teacher,
for instance, to press the toaster lever, turn on the power button
of the microwave and close the microwave door. Finally, the user
behavior and related manipulated object information are sent to
the back-end system via ROS (see Fig. 1, "INPUT"). The system can
also display and animate a holographic virtual robot, which looks
almost identical as the physical robot. The HoloLens receives the
robot behavior data (see Fig. 1 "OUTPUT"), including the pose of
the virtual robot and the speech commands, and visualizes / speaks
them. Furthermore, the back-end triggers the display of the XAI
cues which are shown in the AR environment. The next sections
introduce three use cases for enhancing human-robot interaction
via AR based on this system architecture.

3 USE CASE 1: EXPLAINABLE HUMAN-ROBOT
INTERACTION FOR IMITATION LEARNING

Learning by demonstration or imitation learning in robotics aims
at enabling humans to teach new skills by physically showing the
task as they would do to another person. Major limitations in such
an approach have been the capability of the robot to interpret and
generalize a specific demonstration, and the difficulty that human
users have to understand what constitutes a good demonstration
for the robot. We therefore developed a two-stage skill learning
concept. In the first stage, the user demonstrates a skill to the
robot, which acquires it using semantic skill learning concepts. The
learned representation of the skill is formed by symbols that encode
preconditions, actions, and effects. In the second stage, the robot
takes initiative and asks curious questions about the demonstrated
task to the user. Both stages are designed to enhance the user’s
mental model of the system using AR and social cues.

Specifically, the user (wearing AR glasses) demonstrates a skill
to the robot, e.g., by interacting with the (virtual) objects and giving
language explanations (skill labels). The robot follows the teacher’s
gaze or looks back at him to show its attention. The teacher is
further continuously informed about the robot’s perception: Object
and action labels (XAI cues) are popping up whenever the teacher
gazes at some object or a manual action is recognized (cfr. Fig. 2
and [17]). The state of the environment, including the objects and

4https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/
?view=mrtkunity-2021-05

agents, is recorded before and after the demonstrated skill by the
episodic memory. These observations are parsed into predefined
symbolic representations of the environment, consisting of logical
predicates. Together with the skill label, these observations are used
to learn the symbolic skill, capturing in which situations it can be
applied and what is changed in the environment by executing it.

If skills with similar effect but different objects are learned, the
robot can generalize these skills using a predefined object hierarchy.
This type-generalization of skills enables to consider novel objects
in a new task. This symbolic nature of the skill representation
enables the robot to explain the learned knowledge or a future plan
in an intuitive way.

While such an imitation learning scenario is intuitive and en-
gaging for the user, it still takes time and effort to demonstrate the
skills. To speed up the interactive learning process, the robot has
been equipped with the ability to ask curious questions about skills
and objects, i.e., creating hypotheses that can be presented to the
user for confirmation or rejection. This allows teaching additional
knowledge to the system in an interactive and, in comparison to
full skill demonstrations, faster way. For example, after seeing a
demonstration to learn to use the microwave, where the teacher
heated milk, the robot can ask whether a similar object (e.g., water)
can be heated in the microwave. The XAI virtual elements in this
case would highlight the candidate object and the microwave and,
after the user’s answer, acknowledge with red/green particles the
negative/positive answer (see Fig. 2, right panels).

4 USE CASE 2: VISUALIZATION OF THE
ROBOT PLANNING

Learned skills contain both high-level knowledge about the physical
effects of different devices and low-level knowledge on how to
operate these devices and manipulate objects. We use a standard
symbolic STRIPS planner to combine the skills to solve novel and
more complex tasks considering present objects, both real and
virtual ones. For example, when asked to ’Prepare an ice tea’ the
planner might consider the kettle or the microwave to heat some
water before putting a tea bag inside and the fridge or some ice
cubes to cool it later. Such a high-level solution is extended with
the required low-level manipulations, like placing objects, opening
doors and pressing buttons.

By learning the skills and applying them to new tasks and
environments, the system generalizes from previously observed
episodes. As a consequence, the generated plans may not be feasible

https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2021-05
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2021-05
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Figure 3: Visualization of planning phases, from left to right: the user instructs the robot by speech; the robot shows its avatar
and digital twins of real objects; the avatar executes the plan; the human gives feedback on the plan. Red boxes show the user’s
commands as detected by speech recognition.

Figure 4: Instance (a) occurs in a scenario without assistance, where the human bends to pour into the glass, resulting in a
inconvenient posture. In contrast, instances (b) and (c) are two consecutive frames from a scenario with assistance. In (b), the
robots predicts that the human will pour into the glass and reveals the outcome of its intervention utilising XAI cues while
relocating the glass. In (c), the human pours into the glass in a comfortable posture.

or desired and need validation by a human. Here, we propose an
interactive system which can show the plan of the robot to the
human via AR glasses before it is executed (see Fig. 3). The user can
give a command to the robot via speech. Then the robot will gener-
ate a plan to solve the query according to its knowledge at different
levels. Before execution, the robot will ask the user to validate the
plan in AR. The virtual "avatar" of the robot appears overlaid on the
physical body of the robot and real object "shadows" (holographic
twins) are displayed in the AR glasses. Then the virtual robot will
execute the plan with the virtual objects. In this way, the human
can understand the robot reasoning and provide feedback to its
plan, approving or correcting it.

5 USE CASE 3: COMMUNICATING ROBOT’S
INTENTIONS WHILE ASSISTING USERS

Efficient cooperation between a human and a robot includes a num-
ber of challenges. These, among others, are: (i) human behaviour
anticipation,(ii) predicting the influence of the robot’s actions onto
the human’s actions,and (iii) generating legible robot actions [3]
that can be easily understood by the human partner. Here, we study
these challenges in the context of manipulation where a robot as-
sists a human to perform a sequence of actions. As a typical example,
consider a human (sitting on a wheelchair) serving a beverage, as
shown in Figure 4. This scenario requires the human to bend/stretch
to reach the glass, hence, a robot assistant could be of aid.

To support the human, the robot ideally predicts the sequence of
likely human actions and postures [10], assesses the future human
postures [11], computes the desired intervention that improves the
physical state of the human, and communicates the effects of the
intended interventions to the human ahead of time. To achieve
these aims, we propose a model-based optimisation approach that
performs a physics-based prediction of the human’s actions and
enables the robot to decide which intervention will improve the
human posture, hence their ergonomic state, and illustrate them to
the human via the XAI cues.

In this use case we consider a table-top scenario, where the loca-
tion of several objects and the intended high-level task is provided
to the system. Such a task can be serving a beverage or a bowl of
cereal. Our system is able to: (i) predict the sequence of humans
actions, e.g. picking up a bottle and then pouring into a glass. (ii)
Evaluating the human posture, e.g. human upper-body configura-
tion while pouring, and decide how to adjust continuous quantities,
e.g. change the pose of the glass to improve the human’s upper-
body configuration while pouring. (iii) Inform the human using
AR (e.g. using holograms to show where objects will be relocated),
while performing the assistive action. Utilizing AR to reveal the
outcome of a future invention allows the user to understand the
robot actions, enabling him to comfortably and fluently perform
the task.
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6 CONCLUSIONS
Our system aims at providing critical information about the robot,
alleviating the cognitive and physical load of the user who can act
and interact in a natural way, without constantly monitoring and
scrutinizing the robot but correcting it only if necessary. While
we target here the specific case of robots assisting in a domestic
environment, we implement AR-based design concepts that could
cater to understanding and justification needs increasingly present
in the interaction with physical intelligent systems and hopefully
can inspire the broader CHI community with related solutions for
smart homes or other human-centered AI systems. Still, the focus
of our work is on facilitating robot interaction for non-experts and
on increasing the independence of elderly and people with limited
mobility, thus creating an impact on accessibility and inclusiveness
in human-machine interaction.
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