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       Abstract— This paper proposes a new optimization model for 

pricing and demand scheduling in a grid-connected local energy 

community (LEC), including residential homes (consumers and 

prosumers), and combined heat and power (CHP) generation 

units. It is assumed that some homes have photovoltaic (PV) 

generation, electric vehicles (EVs), or both. A central entity is 

responsible for managing the EVs’ charging and discharging 

process, and for scheduling energy exchanges among homes. 

Moreover, the central entity is responsible for setting the LEC-

price for the energy exchanged between CHP producers and 

homes, and among homes themselves. We model and solve the 

problem with a mixed binary non-linear programming (MBNLP) 

approach with the objective to maximize the total benefit of 

consumers/prosumers. The LEC-price is set based on demand and 

supply. The proposed approach is applied to a case study with 100 

homes and 5 CHP generation units, and the results are reported 

for three different electricity grid tariffs A, B, and C. The results 

suggest 12%, 10% and 23% cost reduction in comparison with not 

considering the LEC respectively for tariffs A, B, and C. 

 

Keywords— centralized scheduling, energy management system, 

energy pricing, local energy community, mixed binary nonlinear 

problem. 

I. INTRODUCTION 

Local energy communities (LECs) are attracting the 
attention of stakeholders at the distribution level, pursuing 
decarbonization and decentralization of energy systems. They 
allow local energy trading between hundreds or thousands of 
agents willing to trade energy with their neighbors in order to 
receive financial benefits [1]. Such an organization of end-users 
and other stakeholders is also referred to as “local energy 
market” because the trading occurs nearby (locally), with some 
sort of economic exchange, i.e., a commodity traded (the 
“energy”), and a settled price between the buyer and the seller 
(the market). In this context, each house could be equipped with 
distributed resources (e.g., photovoltaic (PV) generation and 
electric vehicles (EVs)), while some independent producers sell 
energy to nearby consumers within the community.  

These new market structures enable the participation of end-
users as active players, eager to take full advantage of their 
generation capabilities (in the form of renewables or distributed 
generation) and flexibility [3]. In fact, the participation of end-
users in the wholesale market is typically limited due to their 
small volumes of energy (inefficiency) and unpredictable 
renewable generation (unreliability), a situation limiting their 
ability to compete against traditional generators in those markets 
[2]. Thus, LEC have the potential to unlock benefits for several 
stakeholders (e.g., utilities, system operators, and end-users) 
under different perspectives [4], [5]. To enable the above 

scenario, sophisticated communication and energy management 
algorithms are required to determine the energy trading between 
participants in order to minimize energy costs for all the 
involved parties [6] [7].  

Several energy management algorithms have been proposed 
in the literature to overcome diverse challenges, most of which 
are related to privacy and scalability issues [9]. For instance, 
Orozco et al. [8] present a day-ahead scheduling decentralized 
approach for local energy communities with generation, loads, 
and battery storage systems and compare it with a centralized 
approach. EVs and grid constraints are not considered in their 
model and the pricing mechanism is based on a peer-to-peer 
assignment. A later work from the same authors [10] included 
an approximation mechanism for grid losses into their original 
problem formulation. Lezama et al. [11] propose a local 
electricity market framework with the integration of the 
wholesale market through an aggregator. The used distributed 
learning approach appears promising and scalable; however, the 
work presents some limitations, such as not including 
uncertainties, EVs, and fairness analysis. In [12], a centralized 
framework to optimize local trading was proposed showing the 
benefits that community members can achieve from these 
market structures. The price is bilateral and not optimized and is 
used as a parameter of the optimization model. The model in 
[13] compares the centralized model of [12] with a decentralized 
approach using rules to achieve convergence. The results 
indicate a similar optimal cost for the energy community but 
higher scalability of the decentralized model. From the literature 
studying energy communities, it is evident that there is a need 
for novel approaches for energy management in local 
environments considering the vast amount of distributed 
resources available and the different objectives of a variety of 
market participants. For instance, none of the above-related 
works have considered vehicle-to-grid (V2G) in the context of 
local market transactions.  

Therefore, in the present work, a framework for the 
optimization of a grid-connected LEC is proposed. The LEC is 
formed by end-users with PV generation and EVs with the 
possibility of vehicle to grid (i.e., discharging the vehicle to the 
grid). Combined heat and power (CHP) local producers are also 
considered in the LEC, opening the possibility of local energy 
exchanges among community members. We formulate a mixed 
binary non-linear programming (MBNLP) model to maximize 
the benefits of the community members. The main contributions 
of the article are: i) A model to find the optimal scheduling of 
energy resources while maximizing the benefits for the 
community members; ii) Implementation of an MBNLP model 
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and pricing mechanism; iii) Analysis of results over case studies 
with different characteristics. 

Our work is organized as follows: after the introduction in 
Section I, Section II introduces the problem description and 
assumptions made. Section III provides an explicit mathematical 
model of the centralized scheduling of energy resources. After 
this, the case study used to evaluate the proposed method is 
introduced in Section IV, and the results are discussed in Section 
V. Finally, the conclusions of the work are drawn in Section VI.  

II. PROBLEM DESCRIPTION 

This work considers a grid-connected LEC, including 
producers, consumers, and prosumers. The producers use CHP 
generators that can sell energy in the LEC. Consumers are, for 
instance, residential apartments or commercial buildings with no 
generation capabilities, whereas a prosumer is a consumer 
equipped with a PV panel to generate green energy, and with 
one or more EVs with V2G capability. All the consumers and 
prosumers are connected to the external utility grid. To 
minimize the total community cost, a nonprofit community 
energy manager (CEM) is considered to coordinate the available 
resources via a centralized approach. The considered LEC in this 
work is depicted schematically in Fig. 1. 

 
Fig. 1. Structure of the considered LEC and traded energy 

In this work, the mentioned LEC is mathematically 
formulated as an optimization problem to find the optimal 
scheduling for flow energy among appliances such as PV, EVs, 
and CHP to maximize the benefits for the community members. 
The optimization plans one day ahead in 1 hour intervals. In 
addition, we make the following assumptions: 

• Each home has its own contracted power, in which the grid 

tariff, feed-in and load limit are specified at each time slot. 

• The energy generated by PVs is known in advance. 

• The arrival and departure times as well as energy demands 

of EVs are known in advance. 

• EVs can charge or discharge during parking at homes.  

• The homes’ energy demands are  known in advance. 

• The cost of CHP production is 2𝑏𝐶𝐻𝑃√Production, where 

𝑏𝐶𝐻𝑃 is a known parameter and Production is the amount of 

produced energy. 

• The marginal cost of PV generators is supposed to be zero. 

• The energy generated by a PV system is consumed by its 

owner, and the extra power can be sold to the grid or other 

energyr applicants. 

• CHPs cannot sell energy to the grid.  

The mathematical model considering the problem description 

and assumptions is introduced in the next section. 

III. MATHEMATICAL MODEL 

 A centralized framework aiming to find the optimal 
scheduling of energy resources and the prices of energy transfers 
between consumers and prosumers in the LEC.  In what follows, 
an MBNLP optimization problem is proposed for scheduling, 
managing, and pricing. 

A. Decision variables and parameters 

 The sets, parameters, and decision variables use in the 
problem formulation are presented in Table 1, Table 2, and 
Table 3 respectively. 

TABLE 1: LIST OF SETS IN MATHEMATICAL FORMULATION. 

Symbol Sets Running 
Index 

Description 

𝕋 {1, . . , 𝑇} 𝑡 Set of time slots from 1 

𝕋𝟎 {0,1, . . , 𝑇} 𝜏 Set of time slots from 0 

𝕀 {1, . . , 𝐼} 𝑖 Set of Prosumers 

𝕜 {1, . . , 𝐸𝑉𝑁𝑢 (𝑖)} 𝑘 Set of cars 

𝕁 {1, . . , 𝐽} 𝑗 Set of CHPs 

TABLE 2: LIST OF PARAMETERS IN MATHEMATICAL FORMULATION. 

Parameter Index Description 

T  Number of time period 

I  Number of Prosumers 

J  Number of CHPs 

∆  Duration of each time-slot 

TotDem (t) t ∈ 𝕋 Total Demand in time-slot 𝑡 

TotSup (t) t ∈ 𝕋 Total supply in time-slot 𝑡 

PVGen (t, i) t ∈ 𝕋, i ∈ 𝕀 Generated Power by PV 𝑖 at time 𝑡 

HoDem (t, i) t ∈ 𝕋, i ∈ 𝕀 Power demand of home 𝑖 at time 𝑡 

HoSup (t, i) t ∈ 𝕋, i ∈ 𝕀 Supply of home 𝑖 at time 𝑡 

HoCon (t, i) t ∈ 𝕋, i ∈ 𝕀 Consumption of home 𝑖 at time 𝑡 

GrSelPri (t) t ∈ 𝕋 Purchased cost from grid at time 𝑡 

GrFeedIn (t) t ∈ 𝕋 Selling Cost to the grid at time 𝑡 

EVNu (i) i ∈ 𝕀 The number of EVs for 𝑖-th home 

AriEV (i, k) i ∈ 𝕀, k ∈ 𝕂 Arrival time of 𝑘 EV from 𝑖 home  
ExiEV (i, k) i ∈ 𝕀, k ∈ 𝕂 Exit time of 𝑘 EV from 𝑖 home  
IniChaEV (i, k) i ∈ 𝕀 , k ∈ 𝕂 Initial SoC of 𝑘 EV from home 𝑖 
SocMax (i, k) i ∈ 𝕀 , k ∈ 𝕂 Maximum allowable SoC of 𝑘  EV 

from 𝑖 home 

SocMin (i, k) i ∈ 𝕀 , k ∈ 𝕂 Minimum allowable SoC of 𝑘  EV 
from 𝑖 home 

PchEV (i, k) i ∈ 𝕀 , k ∈ 𝕂 Active power for charging of 𝑘 EV of 
𝑖 home  

PdisEV (i, k) i ∈ 𝕀 , k ∈ 𝕂 Active power for discharging of 𝑘 EV 
of 𝑖 home  

EchEV (i, k) i ∈ 𝕀 , k ∈ 𝕂 The charge efficiency of 𝑘  EV of 𝑖 
home  

EdischEV (i, k) i ∈ 𝕀 , k ∈ 𝕂 The discharge efficiency of 𝑘 EV of 𝑖 
home  

HoMaxLoad (t, i) t ∈ 𝕋, i ∈ 𝕀 The maximum load of 𝑖 home at 𝑡 

CHPMaxLoad (j) j ∈ 𝕁 The maximum load of 𝑗 CHP  
EVLoc (t, i, k) t ∈ 𝕋, i ∈ 𝕀 Location of 𝑘 EV of 𝑖 home at 𝑡 (1: in 

parking)  
ConEV (i, k) i ∈ 𝕀 , k ∈ 𝕂 Consumption of 𝑘th EV of Home 𝑖 

 

TABLE 3: LIST OF DECISION VARIABLES IN MATHEMATICAL FORMULATION. 

Gr2Ho( , )t i

Ho2Gr( , )t i

EV2Ho( , ,1)t i

CM

Ho2EV( , ,1)t i

Ho2LEC( , )t i

LEC2Ho( , )t i

CHP2LEC( , )t j

Grid 

€ 

LECPri( )t

 



 

 

Variables Index Description 

LECPri (t) t ∈ 𝕋 LEC-price at time 𝑡 

Ho2LEC (t, i) t ∈ 𝕋, i ∈ 𝕀 Power from 𝑖-th home to LEC at time 𝑡 

LEC2Ho (t, i) t ∈ 𝕋, i ∈ 𝕀 Power from LEC to 𝑖-th home at time 𝑡 

Ho2Gr (t, i) t ∈ 𝕋, i ∈ 𝕀 Power from 𝑖-th home to grid at time 𝑡 

GR2Ho (t, i) t ∈ 𝕋, i ∈ 𝕀 Power from grid to 𝑖-th home at time 𝑡 

CHP2LEC(t, j) t ∈ 𝕋, j ∈ 𝕁 Power from 𝑗-th CHP to LEC at time 𝑡 

SoCE (τ, i, k) τ ∈ 𝕋0, i ∈ 𝕀 State of charge of 𝑘 -th EV of Home 𝑖  at 
time 𝜏. 

EV2Ho(t, i, k) t ∈ 𝕋, i ∈ 𝕀 , k ∈ 𝕂 Power from 𝑘-th EV to home 𝑖 at time 𝑡 

Ho2EV(t, i, k) t ∈ 𝕋, i ∈ 𝕀 , k ∈ 𝕂 Power from home 𝑖 to 𝑘-th EV at time 𝑡 

α (t, i, k) t ∈ 𝕋, i ∈ 𝕀 , k ∈ 𝕂 Binary variable for charging of EV 𝑘  of 
home 𝑖 at 𝑡  

β (t, i, k) t ∈ 𝕋, i ∈ 𝕀 , k ∈ 𝕂 Binary variable for discharge EV 𝑘  of 
home 𝑖 at 𝑡 

θ(t, j) t ∈ 𝕋, j ∈ 𝕁 A binary variable for status of 𝑗  CHP at 
𝑡 (1: production) 

B. Pricing based on total demand and supply  

In the proposed model, the LEC-price is determined based 
on the total supply and demand in each time slot. At first, we 
should achieve a rule for pricing in the LEC. Thus, the following 
three points are considered: 

• The price of buying energy from LEC (LECPri (t)) should 

be less than the buying price from the external grid 

(𝐺𝑟𝑆𝑒𝑙𝑃𝑟𝑖 (𝑡));  
• The price of selling energy to LEC (LECPri (t)) should be 

greater than the incentive received by selling energy to the 

external grid 𝐺𝑟𝐹𝑒𝑒𝑑𝐼𝑛(𝑡); 

• The (LECPri (t)) should be considered such that the CHPs 

have a nonnegative benefit. In this regard, from the initial 

cost, we have the following constraint for the active CHPs: 

𝐿𝐸𝐶𝑃𝑟𝑖(𝑡)𝐶𝐻𝑃2𝐿𝐸𝐶(𝑡, 𝑗) − 2𝑏𝐶𝐻𝑃√𝐶𝐻𝑃2𝐿𝐸𝐶(𝑡, 𝑗) ≥ 0. () 

 

Now, by simple algebraic manipulation, we find that the 

minimum LEC-price for active 𝑗-th CHP should be greater than 
4𝑏𝐶𝐻𝑃

2

𝐶𝐻𝑃2𝐿𝐸𝐶(𝑡,𝑗)
. Note that if 𝑗-th CHP is not active, the minimum 

LEC-price is GrFeedIn(𝑡). Accordingly, from all active CHPs, the 

LECPri (t) must be greater than the following 𝑀𝑖𝑛𝐿𝐸𝐶𝑃𝑟𝑖(𝑡): 

𝑀𝑖𝑛𝐿𝐸𝐶𝑃𝑟𝑖(𝑡) ≔ 𝑚𝑎𝑥
𝑗∈𝕁,𝐶𝐻𝑃2𝐿𝐸𝐶(𝑡,𝑗)≠0,

√ 
4𝑏𝐶𝐻𝑃

2

𝐶𝐻𝑃2𝐿𝐸𝐶(𝑡,𝑗)
. () 

In this way, the trading in the LEC becomes attractive and 

beneficial for homes and CHPs.   

After determining the lower and upper bounds for the LEC-

price, the LEC-price should be determined. Different rules may 

be considered for pricing. However, in this paper, we set up the 

LEC-price based on demand and supply relying on the fact that 

when the energy demand is high, naturally, the price of energy 

should be higher than at times with a low demand. Therefore, 

we set up the LEC-price proportional to demand and supply as 

follows: 

𝐿𝐸𝐶𝑃𝑟𝑖(𝑡) =
𝑇𝑜𝑡𝐷𝑒𝑚(𝑡)

𝑇𝑜𝑡𝐷𝑒𝑚(𝑡)+𝑇𝑜𝑡𝑆𝑢𝑝(𝑡)
 𝐺𝑟𝑆𝑒𝑙𝑃𝑟𝑖(𝑡) +

𝑇𝑜𝑡𝑆𝑢𝑝(𝑡)

𝑇𝑜𝑡𝐷𝑒𝑚(𝑡)+𝑇𝑜𝑡𝑆𝑢𝑝(𝑡)
𝑀𝑖𝑛𝐿𝐸𝐶𝑃𝑟𝑖(𝑡). 

() 

In Fig. 2, the diagram of  𝐿𝐸𝐶𝑃𝑟𝑖(𝑡) is sketched. Note that, if 

𝑇𝑜𝑡𝐷𝑒𝑚(𝑡) = 0, then 𝐿𝐸𝐶𝑃𝑟𝑖(𝑡) = 𝑀𝑖𝑛𝐿𝐸𝐶𝑃𝑟𝑖(𝑡), and if  𝑇𝑜𝑡𝑆𝑢𝑝(𝑡) =

0, then 𝐿𝐸𝐶𝑃𝑟𝑖(𝑡) = 𝐺𝑟𝑆𝑒𝑙𝑃𝑟𝑖(𝑡). 

 
Fig. 2. The LEC-price diagram 

We note that 𝑇𝑜𝑡𝐷𝑒𝑚(𝑡) and 𝑇𝑜𝑡𝑆𝑢𝑝(𝑡) are the total homes’ 
demand and supply (including charging/discharging of their 
EVs), and are determined as follows: 

𝐻𝑜𝑇𝐶𝑜𝑛(𝑡, 𝑖) = 𝐻𝑜𝐶𝑜𝑛(𝑡, 𝑖) + ∑ 𝐻𝑜2𝐸𝑉(𝑡, 𝑖, 𝑘)𝑘∈𝕜 , () 

𝐻𝑜𝑇𝑃𝑟𝑜(𝑡, 𝑖) = 𝑃𝑉𝐺𝑒𝑛(𝑡, 𝑖) + ∑ 𝐸𝑉2𝐻𝑜(𝑡, 𝑖, 𝑘)

𝑘∈𝕜

,   () 

𝐻𝑜𝐷𝑒𝑚(𝑡, 𝑖) = 𝑀𝑎𝑥{0, 𝐻𝑜𝑇𝐶𝑜𝑛(𝑡, 𝑖) − 𝐻𝑜𝑇𝑃𝑟𝑜(𝑡, 𝑖)}, () 

𝐻𝑜𝑆𝑢𝑝(𝑡, 𝑖) = 𝑀𝑎𝑥{0, 𝐻𝑜𝑇𝑃𝑟𝑜(𝑡, 𝑖) − 𝐻𝑜𝑇𝐶𝑜𝑛(𝑡, 𝑖)}, () 

𝐿𝐸𝑀2𝐻𝑜(𝑡, 𝑖) + 𝐺𝑟2𝐻𝑜(𝑡, 𝑖) = 𝐻𝑜𝐷𝑒𝑚(𝑡, 𝑖), () 

𝐻𝑜2𝐿𝐸𝑀(𝑡, 𝑖) + 𝐻𝑜2𝐺𝑟(𝑡, 𝑖) = 𝐻𝑜𝑆𝑢𝑝(𝑡, 𝑖), () 

𝑇𝑜𝑡𝐷𝑒𝑚(𝑡) = ∑ 𝐻𝑜𝐷𝑒𝑚(𝑡, 𝑖)𝑖∈𝕀 , () 

𝑇𝑜𝑡𝑆𝑢𝑝(𝑡) = ∑ 𝐻𝑜𝑆𝑢𝑝(𝑡, 𝑖)𝑖∈𝕀 . () 

C. Objective Function 

Some authors have modelled the objective function of 

similar problems as the minimization of total costs [11], i.e., 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ∑ 𝐶𝑜𝑠𝑡(𝑖)𝑖∈𝕀 , () 

where Cost(𝑖) is a decision variable representing the cost of the 

𝑖-th home defined as: 
𝐶𝑜𝑠𝑡(𝑖) = ∑  𝐺𝑟2𝐻𝑜(𝑡, 𝑖) × 𝐺𝑟𝑆𝑒𝑙𝑃𝑟𝑖(𝑡) −𝑡∈𝕋 

 𝐻𝑜2𝐺𝑟(𝑡, 𝑖) × 𝐺𝑟𝐹𝑒𝑒𝑑𝐼𝑛(𝑡) + 𝐿𝐸𝐶2𝐻𝑜(𝑡, 𝑖) ×
𝐿𝐸𝐶𝑃𝑟𝑖(𝑡) − 𝐻𝑜2𝐿𝐸𝐶(𝑡, 𝑖) × 𝐿𝐸𝐶𝑃𝑟𝑖(𝑡). 

() 

However, notice that when ∑ (𝐿𝐸𝐶2𝐻𝑜(𝑡, 𝑖) −𝑖∈𝕀 

𝐻𝑜2𝐿𝐸𝐶(𝑡, 𝑖)) = 0, the objective function (12) is independent of 

the value of LECPri. To overcome this drawback, the following 

objective function is proposed in this work: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   ∑ (𝐶𝑜𝑠𝑡(𝑖) − 𝑐𝑜𝑠𝑡0(𝑖))
2

𝑖∈𝕀 , () 

where 𝑐𝑜𝑠𝑡0(𝑖)  is the optimal cost of the 𝑖 -th home not 

participating in the LEC. Note that our aim is to minimize 

𝐶𝑜𝑠𝑡(𝑖) or, equivalently, maximize (𝐶𝑜𝑠𝑡(𝑖) − 𝑐𝑜𝑠𝑡0(𝑖))
2
. In 

other words, the objective function (14) is the sum of squared 

(2-norm) of benefits of homes. Like least-square problem 

(Gauss problem) which the sum of squared error (SSE) is 

minimized. Moreover, by considering the sum of squared 

benefits, we can resolve the independency of objective function 

to LEMPri.  

The benefit of each end-user is the reduction of the costs when 

attending to LEC compared to not attending the LEC. 

D. Constraints  

 In this section, the problem assumptions and physical 
restrictions of resources are expressed as constraints for the 
proposed MBNLP model. Thus, the constraints corresponding 
to EVs are outlined: 

TotDem

TotDem TotSup+
10.5

(TotDem= TotSup)

MinLECPri

GrSelPri

LECPri



 

 

𝑆𝑜𝐶𝐸𝑉 (𝜏 + 1, 𝑖, 𝑘)  =  𝑆𝑜𝐶𝐸𝑉(𝜏, 𝑖, 𝑘)  +

 𝐻𝑜2𝐸𝑉(𝜏, 𝑖, 𝑘)  × 𝐸𝑐ℎ𝐸𝑉 (𝑖, 𝑘)  −  
𝐸𝑉2𝐻𝑜(𝜏,𝑖,𝑘)

𝐸𝑑𝑐ℎ𝐸𝑉(𝑖,𝑘)
 𝜏 ∈ 𝕋0 ∈

𝕋, 𝑖 ∈ 𝕀 , 𝑘 ∈ 𝕂 

() 

𝐻𝑜2𝐸𝑉 (𝑡, 𝑖, 𝑘) ≤  𝛼 (𝑡, 𝑖, 𝑘) × 𝑃𝑐ℎ𝐸𝑉 (𝑖, 𝑘),   𝑡 ∈ 𝕋, 𝑖 ∈
𝕀 , 𝑘 ∈ 𝕂 

() 

𝐸𝑉2𝐻𝑜(𝑡, 𝑖, 𝑘)  ≤ 𝛽(𝑡, 𝑖, 𝑘) × 𝑃𝑑𝑐ℎ𝐸𝑉(𝑖, 𝑘), 𝑡 ∈ 𝕋, 𝑖 ∈
𝕀, 𝑘 ∈ 𝕂 

() 

𝑆𝑜𝐶𝐸𝑉(0, 𝑖, 𝑘) = 𝐼𝑛𝑖𝐶ℎ𝑎𝐸𝑉(𝑖, 𝑘), 𝑖 ∈ 𝕀, 𝑘 ∈ 𝕂 () 

𝑆𝑜𝐶𝐸𝑉(𝑇, 𝑖, 𝑘) ≤ 𝐼𝑛𝑖𝐶ℎ𝑎𝐸𝑉(𝑖, 𝑘), 𝑖 ∈ 𝕀, 𝑘 ∈ 𝕂 () 

𝑆𝑜𝐶𝑀𝑖𝑛𝐸𝑉(𝑖, 𝑘) ≤ 𝑆𝑜𝐶𝐸𝑉(𝜏, 𝑖, 𝑘) ≤ 𝑆𝑜𝐶𝑀𝑎𝑥𝐸𝑉(𝑖, 𝑘) () 

𝛼 (𝑡, 𝑖, 𝑘)+ 𝛽 (𝑡, 𝑖, 𝑘) ≤ EVLoc(𝑡, 𝑖, 𝑘), 𝑡 ∈ 𝕋, 𝑖 ∈ 𝕀 , 𝑘 ∈ 𝕂 () 

The state of the charge (SoC) for each EV is updated in equation 

(15). The amount of charge and discharge for the 𝑘-th EV of the 

𝑖-th home is limited by constraints (16) and (17). Constraints 

(18) and (19) set the initial and final SoC, respectively, for the 

𝑘-th EV of the 𝑖-th home. Constraint (20) sets the lower and 

upper bounds of SoCs. Finally, constraint (21) guarantees that 

the EV charging and discharging process do not occur 

simultaneously and only in time steps when the EV is parked at 

home. The constraints corresponding to the homes are as 

follows: 
𝐶𝑜𝑠𝑡(𝑖) ≤ cost0(𝑖), () 

0 ≤ 𝐺𝑟2𝐻𝑜(𝑡, 𝑖) ≤ 𝐻𝑜𝑀𝑎𝑥𝐿𝑜𝑎𝑑(𝑖), () 

0 ≤ 𝐻𝑜2𝐺𝑟(𝑡, 𝑖) ≤ 𝐻𝑜𝑀𝑎𝑥𝐿𝑜𝑎𝑑(𝑖), () 

∑ 𝐿𝐸𝑀2𝐻𝑜(𝑡, 𝑖) =

𝑖∈𝕀

∑ 𝐻𝑜2𝐿𝐸𝑀(𝑡, 𝑖)

𝑖∈𝕀

+ ∑ 𝐶𝐻𝑃2𝐿𝐸𝑀(𝑡, 𝑗),

𝑗∈𝕁

 () 

𝐶𝐻𝑃2𝐿𝐸𝑀(𝑡, 𝑗) ≤ 𝜃(𝑡, 𝑗) × 𝐶𝐻𝑃𝑀𝑎𝑥𝐿𝑜𝑎𝑑(𝑡, 𝑗), 𝑡 ∈ 𝕋, 𝑗 ∈ 𝕁, () 

𝐶𝐻𝑃2𝐿𝐸𝑀(𝑡, 𝑗) ≥ 𝜃 (𝑡, 𝑗) ×  𝐶𝐻𝑃𝑀𝑖𝑛𝐿𝑜𝑎𝑑(𝑡, 𝑗) ≔

4×𝐵𝐶𝐻𝑃(𝑗)
2

𝐿𝐸𝐶𝑃𝑟𝑖(𝑡)
2  ,     𝑡 ∈ 𝕋, 𝑗 ∈ 𝕁,  

() 

Constraint (22) guarantees for each home that the cost does 
not increase by attending the LEC. The possibility of prosumer 
𝑖 to buy or sell energy is limited by the constraints (23) and (24). 
The constraint (25) represents the equilibrium between the 
energy sold and purchased to/from the LEC in time step t. 
Constraints (26) and (27) represent the maximum and minimum 
allowed energy production for the 𝑗-th CHP, where 𝜃(𝑡, 𝑗) is a 
binary variable that stands for the production status of the 𝑗-th 
CHP at time 𝑡. In other words, 𝜃(𝑡, 𝑗) = 1 means that the 𝑗-th 
CHP produces energy in  time 𝑡 , and in this case, we set: 

𝐶𝐻𝑃𝑀𝑖𝑛𝐿𝑜𝑎𝑑(𝑡, 𝑗) =
4×𝐵𝐶𝐻𝑃(𝑗)2

𝐿𝐸𝐶𝑃𝑟𝑖(𝑡)2  . 

In summary, to determine the LEC-price and schedule the 
demand, we maximize the objective function (14), subject to the 
constraints (2)-(11), (13), and (15)-(27). 

IV. CASE STUDY 

We evaluate our proposed approach in a case study 
considering a LEC composed of 100 households from which 30 
are considered low-level income, 60 medium level income, and 
10 high-level incomes. The medium and high-level income have 
PV units installed. Regarding the EV, we assume that one of 
every two medium-level income household has one EV, and 
each high-level income household has two EVs. Thus, in total, 
50 EVs are considered within the LEC. According to the 
Portuguese legislation, each household must have a contracted 

 
1 Data from SU Eletricidade Retailer www.sueletricidade.pt 

term with retailers that defines the electricity price and the 
contracted peak power level defining the allowed import/export 
power limit values. The planning horizon considered is 24 hours 
with 1 hour resolution. 

Fig. 3 shows three different tariffs for buying electricity: a 
flat tariff (Tariff A), a bi-hourly tariff (Tariff B), and a tri-hourly 
tariff (Tariff C)1. For all three tariffs a constant grid feed-in price 
is considered. Fig. 4 presents the households  load and 
generation profiles used in the case study without EVs charging 
and discharging actions. The presented profiles consider a mean 
within elements of the same income group.  

 
Fig. 3. Tarrif used in the simmulations 

As can be seen in Fig. 4, the high income households have  
higher load and generation profiles than the other households.  

 
Fig. 4. Load and generation mean profiles  

Fig. 5 shows the number of EVs and models used in the case 
study. Nine different models are used in the case study. For the 
EV models three different price segments were defined. The 
Dacia and VW are considered to be in the low segment, the 
Renault, Nissan and Honda in the medium segment, and finally 
Tesla, Porsche, Mercedes and Jaguar in the  high segment2. The 
EV characteristics such as charging rate, battery capacity for 
each model have been obtained in the data available in the Bjorn 
Nyland website2.  

We assume that households belonging to the medium 
income segment have EVs within the low and medium EV price 
segment (i.e., Dacia – 9 units, WV – 7 units, Renaut – 6 units, 
Nissan – 5 units and Honda – 3 units). On the other hand, high 
income households can have medium and high EV price 
segment (i.e., Nissan – 6 units, Honda – 4 units, Tesla – 3 units, 
Porsche – 2 units, Mercedes – 2 units and Jaguar – 3 units). In 
the case study, 5 CHP units are considered.  

2 Based on the data provided by Bjorn Nyland, Kris Rifa, Batterylife, NAF, Elektro bay, Rsymons, 

Recharging, et al. Online at https://bit.ly/3qUPyw7    



 

 

 
Fig. 5.EV models used 

Fig. 6 shows the production cost function considered for all 
CHPs having a maximum production capacity of 10kW, the 
constant 𝑏𝐶𝐻𝑃 is set to 0.2€/kWh. 

 
Fig. 6. Chp production cost function  

V. SIMULATION RESULTS 

In this section, the results of the proposed model on the 
described case study are presented and discussed. We have 
implemented the method in MATLAB in a MacBook Pro, 2.7 
GHz Quad-Core Intel Core i7, 16 GB 2133 MHz LPDDR3. The 
final mathematical problem is solved by KNITRO [14], 
interfaced with the AMPL modeling language and setup with a 
maximum of 200 iterations. 

TABLE 4: OVERALL RESULTS (COST, INCOME, AND PROFITS) CONSIDERING 

THREE DIFFERENT TARIFFS. 

Tariff 

 Consumers/prosumers (€) Producers (€) Total (€) CPU 
time 
(sec.) 

LEC Cost Income 
Profit 
(loss) 

Cost Income 
Profit 
(loss) 

Cost income 
Profit 
(loss) 

A 
No 522.57 11.91 -510.66 -- -- -- 522.57 11.91 -510.66 11 

Yes 544.46 80.48 -463.98 123.82 139.55 15.74 668.28 220.03 -448.25 251 

B 
No 468.39 11.91 -456.48 -- -- -- 468.39 11.91 -456.48 12 

Yes 533.14 106.75 -426.40 55.23 64.78 9.55 588.38 171.52 -416.86 274 

C 
No 459.57 11.91 -447.66 -- -- -- 459.57 11.91 -447.66 11 

Yes 517.84 152.34 -364.66 43.36 45.53 2.17 560.36 197.87 -362.49 300 

In Table 4, the obtained cost, income and profit of 
consumers/prosumers and producers are reported. The last 
column shows the runtime for solving the model. It can be seen 
that the total cost, and the cost of agents are better with Tariff B 
(bi-hourly) and Tariff C (tri-hourly) compared to Tariff A (flat). 
The same holds for the total profit.  

Fig. 7 depicts the LEC-prices resulting from the proposed 
model over the 24 time periods for tariffs A, B, and C. 
Additionally, the considered grid tariff for buying energy from 
the grid (upper-bound) and the feed-in tariff for selling energy 
to grid (lower-bound) are illustrated in the figure. The green, red, 
and brown triangle symbols show the low-, high- and medium-
price periods, respectively, for the different tariffs. As it can be 
seen, with tariff A, the LEC-price has low variations because the 
energy price is constant at all time slots. These variations are due 
to variations in demand and supply. Moreover, in the high-level 
periods of tariffs B and C, the price is higher than in medium-

level periods, and the LEC-price in the medium-level periods is 
higher than in low-level periods. This fact can confirm the 
validity of the method because when demand increases, the 
generators produce more energy to supply the demand required 
by consumers, and naturally the LEC-price to increases and so 
their profits. In contrast, the generators decrease their production 
in the low demand time, and the LEC-price decreases. 

 
Fig. 7. Feed-in tariff, energy tariff, and the obtained LEC-prices considering 

three different tariffs: Tariff A (Top), Tariff B (Middle) and Tariff C 
(Bottom).   

 
Fig. 8. Energy resource management results considering different tariffs: tariff 

a (top), tariff b (middle) and tariff c (bottom) 

Fig. 8 shows the net demand in positive bars and generation 
scheduling in negative bars for low, medium, and high-income 
levels, and EVs and also grid load for Tariffs A, B, and C. In 
Fig. 9 , the states of EVs are depicted. In the left axis of this 
figure, the number of arrivals and departure EVs is shown from 
periods 1 to 24. Moreover, the number of EVs parking at home 
is shown. In the right y-axis of Fig. 9, the total charge of parking 
EVs is plotted. As it can be seen, the total SoC is proportional to 



 

 

the number of parking EVs . Moreover, in Tariffs B and C, EVs 
tend to charge at initial low-demand times, and consequently, at 
high-demand times less charging is done. 

 
Fig. 9. Number of arrival, departure and total soc of evs: tariff a (top), 

tariff b (middle) and tariff c (bottom) 

VI. CONCLUSION AND FUTURE WORK 

In this paper, a MBNLP is presented to mathematically 
formulate the pricing and demand scheduling for a LEC. The 
main objective is to maximize the total benefit of homes in the 
LEC. In addition, the goal is to optimally schedule the 
charging/discharging of electric vehicles , and to manage the 
exchange of energy among the homes. Finally, the model 
determines the trading price (LEC-price) between homes and 
combined heat and power producers. The LEC-price is obtained 
based on the value of total demand and total supply. Note that 
this model has a significant drawback. The model is an un-
convex MBNLP, which is an NP-Hard problem. This means that 
we face difficulties in solving it with a large number of agents. 
As a future research work, we can use the idea of decomposition 
methods to overcome this challenge. Another possibility for 
further research is to adopt reducing model order techniques. 

ACKNOWLEDGMENT 

This project is partially funded by the Honda Research 
Institute Europe GmbH. This article is also funded by the project 
RETINA (NORTE-01-0145-FEDER-000062), supported by 
Norte Portugal Regional Operational Programme (NORTE 
2020), under the PORTUGAL 2020 Partnership Agreement, 
through the European Regional Development Fund (ERDF). We 

also acknowledge the work facilities and equipment provided by 
GECAD research center (UIDB/00760/2020) to the project team 
and CEECIND/02814/2017 (Joao Soares grant). 

REFERENCES 

[1] T. Sousa, T. Soares, P. Pinson, F. Moret, T. Baroche, and E. Sorin, “Peer-
to-peer and community-based markets: A comprehensive review,” 
Renewable and Sustainable Energy Reviews, vol. 104, pp. 367–378, Apr. 
2019. 

[2] E. Mengelkamp, S. Bose, E. Kremers, J. Eberbach, B. Hoffmann, and C. 
Weinhardt, “Increasing the efficiency of local energy markets through 
residential demand response,” Energy Informatics, vol. 1, no. 1, p. 11, 
2018. 

[3] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and Z. Vale, 
“Local Energy Markets: Paving the Path Toward Fully Transactive 
Energy Systems,” IEEE Transactions on Power Systems, vol. 34, no. 5, 
pp. 4081–4088, Sep. 2018. 

[4] A. Bartolini, F. Carducci, C. B. Muñoz, and G. Comodi, “Energy storage 
and multi energy systems in local energy communities with high 
renewable energy penetration,” Renewable Energy, vol. 159, pp. 595–
609, Oct. 2020. 

[5] B. P. Koirala, E. Koliou, J. Friege, R. A. Hakvoort, and P. M. Herder, 
“Energetic communities for community energy: A review of key issues 
and trends shaping integrated community energy systems,” Renewable 
and Sustainable Energy Reviews, vol. 56, pp. 722–744, 2016. 

[6] V. C. Güngör et al., “Smart grid technologies: Communication technologies 
and standards,” IEEE Transactions on Industrial Informatics, vol. 7, no. 
4, pp. 529–539, 2011. 

[7] S. Ramos, Z. Foroozandeh, J. Soares, and A. Gomes, “Sharing PV 
Generation in Apartment Buildings Considering Centralized Energy 
Storage System,” in 2022 9th International Conference on Electrical and 
Electronics Engineering, Mar. 2022, pp. 275–279. 

[8] C. Orozco, S. Lilla, A. Borghetti, F. Napolitano, and F. Tossani, “An 
ADMM Approach for Day-Ahead Scheduling of a Local Energy 
Community,” in 2019 IEEE Milan PowerTech, Jun. 2019, pp. 1–6. 

[9] K. Zhou, C. Fu, and S. Yang, “Big data driven smart energy management: 
From big data to big insights,” Renewable and Sustainable Energy 
Reviews, vol. 56, pp. 215–225, Apr. 2016. 

[10] S. Lilla, C. Orozco, A. Borghetti, F. Napolitano, and F. Tossani, “Day-
Ahead Scheduling of a Local Energy Community: An Alternating 
Direction Method of Multipliers Approach,” IEEE Transactions on 
Power Systems, vol. 35, no. 2, pp. 1132–1142, Mar. 2020. 

[11] F. Lezama et al., “Bidding in local electricity markets with cascading 
wholesale market integration,” International Journal of Electrical Power 
& Energy Systems, vol. 131, p. 107045, 2021. 

[12] R. Faia, J. Soares, Z. Vale, and J. M. Corchado, “An optimization model 
for energy community costs minimization considering a local electricity 
market between prosumers and electric vehicles,” Electronics 
(Switzerland), 2021. 

[13] R. Faia, J. Soares, M. A. Fotouhi Ghazvini, J. F. Franco, and Z. Vale, 
“Local Electricity Markets for Electric Vehicles: An Application Study 
Using a Decentralized Iterative Approach,” Frontiers in Energy 
Research, vol. 9, Nov. 2021. 

[14] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Knitro: An Integrated Package 
for Nonlinear Optimization,” 2006, pp. 35–59. 

 

 


