
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

A Systematic Approach to Analyze the
Computational Cost of Robustness in Model-
Assisted Robust Optimization

Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard
Sendhoff, Thomas Bäck

2022

Preprint:

This is a post-peer-review, pre-copyedit version of an article published in
International Conference on Parallel Problem Solving from Nature (PPSN). The
final authenticated version is available online at:
https://doi.org/10.1007/978-3-031-14714-2_5

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

The article has been accepted for publication in Parallel Problem Solving from Nature

(PPSN 2022).

DOI: 10.1007/978-3-031-14714-2_5

A Systematic Approach to Analyze the
Computational Cost of Robustness in
Model-Assisted Robust Optimization∗

Sibghat Ullah1, Hao Wang1, Stefan Menzel2,
Bernhard Sendhoff2, and Thomas Bäck1

1 Leiden Institute of Advanced Computer Science (LIACS),
Leiden University, The Netherlands

{s.ullah,h.wang,t.h.w.baeck}@liacs.leidenuniv.nl
2 Honda Research Institute Europe GmbH (HRI-EU), Offenbach/Main, Germany

{stefan.menzel,bernhard.sendhoff}@honda-ri.de

Abstract. Real-world optimization scenarios under uncertainty and no-
ise are typically handled with robust optimization techniques, which re-
formulate the original optimization problem into a robust counterpart,
e.g., by taking an average of the function values over different pertur-
bations to a specific input. Solving the robust counterpart instead of
the original problem can significantly increase the associated computa-
tional cost, which is often overlooked in the literature to the best of our
knowledge. Such an extra cost brought by robust optimization might de-
pend on the problem landscape, the dimensionality, the severity of the
uncertainty, and the formulation of the robust counterpart.
This paper targets an empirical approach that evaluates and compares
the computational cost brought by different robustness formulations in
Kriging-based optimization on a wide combination (300 test cases) of
problems, uncertainty levels, and dimensions. We mainly focus on the
CPU time taken to find the robust solutions, and choose five commonly-
applied robustness formulations: “mini-max robustness”, “mini-max re-
gret robustness”, “expectation-based robustness”, “dispersion-based ro-
bustness”, and “composite robustness” respectively. We assess the em-
pirical performance of these robustness formulations in terms of a fixed
budget and a fixed target analysis, from which we find that “mini-max
robustness” is the most practical formulation w.r.t. the associated com-
putational cost.

Keywords: optimization under uncertainty · robust optimization · surrogate-
assisted optimization · Kriging

1 Introduction

Solving a real-world optimization problem entails dealing with uncertainties and
noise within the system [2, 9, 16]. Due to various reasons, various types of un-
certainties and noise can emerge in optimization problems, e.g., uncertainty and

∗This research has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement number 766186.

2 S. Ullah et al.

noise in the output of the system if the system is non-deterministic in nature.
Hence, for practical scenarios, optimization methods are needed which can deal
with these uncertainties, and solutions have to be found which take into account
the impact of the unexpected drifts and changes in the optimization setup. The
practice of optimization that accounts for uncertainties and noise is often referred
to as Robust Optimization (RO) [2, 13,14].

Despite its significance, achieving robustness in modern engineering applica-
tions is quite challenging due to several reasons [4,8]. One of the major reasons is
the computational cost involved to find the robust solution. The computational
cost mainly depends on the problem landscape, high dimensionality [15], the
type and structure of the uncertainty [3], and the robustness formulation (RF)
or criterion among others.

While the impact of high dimensionality and problem landscape in RO is un-
derstood to some extent [3,4,9,15], the impact of the chosen RF, e.g., “mini-max
robustness”, on the computational cost, has been overlooked in the literature.
For expensive-to-evaluate black-box problems, the chosen robustness criterion
can have a significant impact on the computational cost. This is due to the fact
that obtaining a robust solution requires additional computational resources as
opposed to a nominal one, since the optimizer has to take into account the impact
of uncertainty and noise as well. This need for additional computational resources
is based on the robustness criterion§§ chosen, e.g., RO based on the “mini-max”
principle requires an internal optimization loop to compute the worst impact
of the uncertainty, whereas RO based on the “expectation” of a noisy function
requires computing an integral [4, 16].

Since the Computational Cost of Robustness (CCoR) – the need for addi-
tional computational resources to find the robust instead of a nominal optimal
solution – depends on the robustness criterion chosen, it is desirable to evaluate
and compare commonly-employed robustness criteria with regards to computa-
tional cost, where the computational cost is based on the CPU time taken to find
the robust solution. By evaluating and comparing different robustness criteria
based on computational cost and quality of the solution, a novel perspective is
provided to practitioners for choosing the suitable robustness criterion for prac-
tical scenarios. To the best of our knowledge, there are no systematic studies
dealing with this issue so far.

Our contribution in this paper is as following. First, we generalize the Kriging-
based RO proposed in [11] (for the “mini-max robustness”) to other RFs. Second,
we evaluate and compare the empirical performance of Kriging-based RO based
on five of the most common RFs, namely “mini-max robustness”, “mini-max re-
gret robustness”, “expectation-based robustness”, “dispersion-based robustness”,
and “composite robustness” respectively. Note that the performance assessment

§§An underlying assumption in this study is the non-existence of hard constraints
on the choice of RF. In some practical scenarios of RO, this assumption is not valid.
Note, however, that, there are plenty of situations where the assumption is valid, and
the lack of information on the computational aspects of the RFs makes it harder for
practitioners to choose a suitable robustness criterion.

A Systematic Approach to Analyze the Computational Cost 3

is based on 300 test cases, owing to the combinations of ten well-known bench-
mark problems from the continuous optimization domain, two noise levels, three
different settings of dimensionality, and five RFs reported. Additionally, the per-
formance in this context is characterized by a fixed budget and a fixed target
analysis, as well as the analysis on the average and maximum CPU time. Based
on the findings of our investigation, we provide a novel perspective on the com-
putational aspects of these RFs, which is useful when employing these RFs in
practical scenarios.

The remainder of this paper is organized as follows. Section 2 describes the
basic working mechanism of Kriging-based optimization, and introduces the RFs
mentioned above. Section 3 extends the nominal Kriging-based optimization to
the robust scenario to account for parametric uncertainties in the search vari-
ables. Section 4 describes the experimental setup of our study. This is followed
by our experimental results in section 5. The discussion on these results is pre-
sented in section 6. Finally, we discuss the conclusions of the paper along side
the potential future research in section 7.

2 Background

In this paper, we aim to minimize an unconstrained numerical black-box op-
timization problem, i.e., f :S ⊆ RD → R, using Kriging-based optimization
(KBO) [7, 11]. KBO works on the principle of adaptive sampling, whereby the
Kriging model is sequentially updated according to a sampling infill criterion,
such as the “expected improvement” (EI) criterion. The sampling infill criterion
tries to balance the search behavior – exploration and exploitation – to find a
globally optimal solution on the model surface.

KBO starts by generating an initial data set D = (X,y) on the objective
function f . The locations: X = {x1,x2, . . . ,xN}, can be determined by the
Design of Experiment (DoE) methodologies, such as the Latin Hyper-cube Sam-
pling (LHS) scheme [12]. After this, function responses: y = [f(x1), f(x2), . . . ,
f(xN)]⊤, are computed on these locations. The next step involves constructing
the Kriging model Kf based on the available data set D. Following this, the
next query point xnew (to sample the function) is determined with the help of a
sampling infill criterion, such as the EI criterion. The function response f(xnew)
is computed at this location, and the data set is extended. Finally, the Kriging
model Kf is updated based on the extended data set. This process is repeated
until either a satisfactory solution is obtained, or a predetermined computational
budget or other termination criterion is reached.

When optimizing the function f in real-world applications, we note that it
is surrounded by the parametric uncertainties in the decision variables [13, 14].
These uncertainties, commonly denoted as ∆x, are assumed to be structurally
symmetric, additive in nature, and can be modeled in a deterministic or a prob-
abilistic fashion [9]. For the objective function f , the notion of robustness refers
to the quality of the solution with respect to these uncertainties. In the following,
we define robustness with respect to the five RFs discussed in our paper.

4 S. Ullah et al.

2.1 Robustness Formulations

We start with the so-called “mini-max robustness” (MMR), which deals with
deterministic uncertainty [2, 9, 16]. Given a real-parameter objective function:
f(x), and the additive uncertainty in the decision variables: ∆x, the “mini-max”
treatment considers minimizing the worst-case scenario of each search point x,
where the worst-case is defined as to take into account all possible perturbations
to x, which are restricted in a compact set U ⊆ RD (containing a neighborhood
of x). Effectively, this is to minimize the following objective function

feff(x) = max
∆x∈U

f(x+∆x). (1)

Note that the radius of the compact set U is based on the anticipated scale of
the uncertainty, i.e., based on the maximum anticipated deviation of the decision
variables from their nominal values. The worst-case scenario refers to the fact
that we consider the maximal f -value under additive uncertainty at each search
point, and try to minimize that [16].

As opposed to MMR, the “mini-max Regret Robustness“ (MMRR) [8] focuses
on minimizing the maximum regret under uncertainty. The regret can be defined
as the difference between the best obtainable value of the function f∗ for an
uncertainty event ∆x, and the actual function value under that uncertainty event
f(x+∆x). The best obtainable response f∗ of the function under an uncertainty
event ∆x can be defined as

f∗(∆x) = min
x∈S

f(x+∆x), (2)

and the effective (robust) objective function can be defined as

feff(x) = max
∆x∈U

(f(x+∆x)− f∗(∆x)). (3)

Minimizing Eq. (3) refers to the fact that firstly, the best achievable response
value for each uncertainty event ∆x ∈ U is subtracted from the actual outcome
f(x +∆x). Then, the worst-case is determined similar to the MMR. As a con-
clusion, the optimal solution is identified as the one for which the worst-case
has a minimal deviation from f∗ as defined in Eq. (2). The benefit of employing
MMRR is that even in the worst-case scenario, we do not compromise signifi-
cantly in terms of optimality. The biggest challenge, however, is the prohibitively
high computational demand. Note that solving Eq. (3) inside an iterative op-
timization framework, e.g., Kriging-based optimization, implies a quadrupled
nested loop, which is computationally infeasible even for a modest setting of
dimensionality.

Different from the first two RFs, the expected output of a noisy function
can also serve as a robustness criterion [4, 8, 9]. The focus of this robustness
criterion is the overall good performance rather than the minimal deviation of
the optimal solution under uncertainty. Note, however, that, this RF requires
the uncertainty to be defined in a probabilistic manner. The uncertainty can be
modeled according to a continuous uniform probability distribution if no prior

A Systematic Approach to Analyze the Computational Cost 5

information is available. The effective counterpart of the original function based
on the “expectation-based robustness” (EBR) is defined as

feff(x) = E∆x∼U(a,b)[f(x+∆x)], (4)

where the bounds a and b can be set according to the anticipated scale of the
uncertainty.

As opposed to EBR, the “dispersion-based robustness” (DBR) emphasizes
on minimizing the performance variance under variation of the uncertain search
variables [8,9]). In this case, the original objective function f(x) can be remod-
eled into a robust objective function feff(x) by minimizing the variance as

feff(x) =
√
Var∆x∼U(a,b)[f(x+∆x)]. (5)

Note that this RF also requires the uncertainty to be defined in a probabilistic
manner, similar to the previous case.

Different from the robustness criteria mentioned above, practitioners may
also optimize the expected output of a noisy function while minimizing the dis-
persion simultaneously. We refer to this formulation as the “composite robust-
ness” (CR), similar to [16]. CR requires the uncertainty to be specified in the
form of a probability distribution. The expectation and dispersion of the noisy
function are combined at each search point x in S to produce a robust scalar
output. The optimization goal thus becomes to find a point x∗ in S, which
minimizes this scalar

feff(x) := E∆x∼U(a,b)[f(x+∆x)] +
√
Var∆x∼U(a,b)[f(x+∆x)]. (6)

3 Kriging-based Robust Optimization

When aiming to find a solution based on the RFs discussed above, we note that
the standard KBO approach as described in section 2 cannot be employed. There
are mainly two reasons for that. Firstly, the potential “improvement” which is
defined in the nominal scenario renders inapplicable. This is due to the fact that
this improvement is defined with respect to the “best-so-far” observed value of
the function: fmin, which has no clear meaning and usage when aiming for a
robust solution. Rather, in the case of RO, the improvement must be defined
with respect to the current best known “robust” value of the function: f̂∗(x),
which by implication can only be estimated on the Kriging surface (as opposed
to observed or fully known in the nominal case). Secondly, the Kriging surrogate
Kf in the nominal scenario does not model the robust/effective response of
the function††, which is desirable when aiming for a robust solution. Therefore,
the standard KBO approach must be extended to the robust scenario, which is
henceforth referred to as Kriging-based Robust Optimization (KB-RO) in this
paper.

††The robust or effective function response has already been defined in section 2 for
five of the most common RFs.

6 S. Ullah et al.

Following the approach in [11], the adaptation of the KBO algorithm to
KB-RO is done in the following manner. Firstly, one must substitute the “best-
so-far” observed value of the function: fmin, with its robust Kriging counterpart:
f̂∗(x), which is defined as: f̂∗(x) = minx∈S f̂eff(x). Note that f̂eff(x) is the
approximation of the true robust response of the function: feff(x). In the context
of deterministic uncertainty – MMR and MMRR, this estimation merely refers
to the substitution of true function responses with their Kriging predictions in
Eqs. (1)- (3). On the other hand, in the context of probabilistic uncertainty –
EBR, DBR, and CR, it also encompasses the monte-carlo approximations for
the corresponding statistical quantities of interests, e.g., in Eq. (4), f̂eff(x) is
approximated with monte-carlo samples based on the Kriging prediction at each
search point x+∆x.

We model the robust Kriging response of the function using a normally
distributed random variable: Yeff(x), with mean f̂eff(x) and variance s2eff(x),
i.e., Yeff(x) ∼ N (f̂eff(x), s

2
eff(x)). Note that the assumption that Yeff(x) is nor-

mally distributed is not entirely rigorous, but rather a practical compromise [11].
Ideally, we should have attempted to estimate the actual posterior distribution
of the robust Kriging response of the function: f̂eff(x), which would require ad-
ditional assumptions on the joint distribution of all search points. However, the
computational costs of finding this generally non-Gaussian distribution several
times on the original Kriging surface Kf are prohibitively high. Additionally,
numerically computing the integral for the expectation of the improvement for
this generally non-Gaussian distribution would also be computationally expen-
sive. To add to that, we note that the Kriging surface Kf only ever provides
an approximation, and hence the true distribution of the robust response of the
function for each RF can never be described with certainty in KB-RO.

Modeling the true robust response of the function with a normally distributed
random variable: Yeff(x), we note that in the context of deterministic uncertainty,
the value s2eff(x) merely refers to the Kriging mean squared error at point x +
∆∗

x, where ∆∗
x indicates the worst setting of the uncertainty – which maximizes

Eq. (1)or (3) as the case may be. In the context of EBR, s2eff(x) has a closed form
expression as: s2eff = 1

J2

∑J
i,j C, where C is a co-variance matrix with elements

C(x
′

i,x
′

j). The entries C(x
′

i,x
′

j) in the matrix C are computed with the help of
posterior Kernel (with optimized hyper-parameters), and the point x

′

j is defined
as: x

′

j = x + ∆j
x, where ∆j

x indicates the j-th sample for ∆x. In the context
of DBR and CR, s2eff(x) does not have a closed form expression, and should be
computed numerically.

After substituting the “best-so-far” observed value of the function: fmin,
with its robust Kriging counterpart: f̂∗(x), and modeling the true robust re-
sponse of the function with a normally distributed random variable: Yeff(x) ∼
N (f̂eff(x), s

2
eff(x)), we can define the improvement and its expectation in the

robust scenario as

Ieff(x) = max{0, f̂∗(x)− Yeff(x)}, (7)

A Systematic Approach to Analyze the Computational Cost 7

Algorithm 1: Kriging-based Robust Optimization
1: procedure (f,S,Aeff ,∆x) ▷ f : objective function, S: search space, Aeff : robust

acquisition function, ∆x: uncertainty in the search variables
2: Generate the initial data set D = {X,y} on the objective function.
3: Construct the Kriging model Kf on D = {X,y}.
4: while the stop criteria are not fulfilled do
5: Find robust optimum on the Kriging surface Kf

f̂∗(x) = minx∈S f̂eff(x).
6: Choose a new sample xnew by maximizing the robust (effective)

acquisition function
xnew ← argmaxx∈S Aeff(x).

7: Compute function response f(xnew).
8: Extend the data set D by appending the pair (xnew, f(xnew)) to D = {X,y}.
9: Reconstruct the Kriging model Kf on D = {X,y}.

10: end while
11: end procedure

and

E[Ieff(x)] := (f̂∗(x)− f̂eff(x))Φ

(
f̂∗(x)− f̂eff(x)

seff(x)

)
+ seff(x)ϕ

(
f̂∗(x)− f̂eff(x)

seff(x)

)
,

(8)

where Φ(·) and ϕ(·) in Eq. (8) represent the cumulative distribution function and
probability density function of the standard normal random variable respectively.
An important thing to note here is that the point x+∆x can become infeasible
with respect to the original search space S if x is already close to the boundary
of S. In this case, we simply clip the infeasible point with the boundary it breaks
similar to the approach in [11]. The working mechanism of KB-RO is summarized
in Algorithm 1, where the only significant difference to the nominal KBO is the
evaluation of steps 5 and 6, which emphasize on robustness.

4 Experimental Setup
Our aim in this paper is to understand the impact of RF in KB-RO with re-
gards to computational efficiency. Intuitively, RF can have a significant impact
on the performance of KB-RO since steps 5 and 6 in Algorithm 1 require much
more computational resources as opposed to the nominal KBO [7]. This need
for additional computational resources is based on the chosen RF. Through our
experimental setup∗∗, we aim to better understand this impact for each of the
five RFs discussed in the paper. To make our setup comprehensive, we take into
account the variability in external factors such as problem landscape, dimen-
sionality, and the scale/severity of the uncertainty.

∗∗The source code to reproduce the experimental setup and results is available at:
https://github.com/SibghatUllah13/UllahPPSN2022.

8 S. Ullah et al.

For our study, we select ten unconstrained, noiseless, single-objective op-
timization problems from the continuous benchmark function test-bed known
as “Black-Box-Optimization-Benchmarking” (BBOB) [6]. Note that BBOB pro-
vides a total of twenty four such functions divided in five different categories,
namely “Separable Functions”, “Functions with low or moderate conditioning”,
“Functions with high conditioning and unimodal”, “Multi-modal functions with
adequate global structure”, and “Multi-modal functions with weak global struc-
ture” respectively. We select two functions from each of these categories to cover
a broad spectrum of test cases. The set of selected test functions is given as:
F = {f2, f3, f7, f9, f10, f13, f15, f16, f20, f24}. An important thing to note is that
each of the test functions in F is subject to minimization, and is evaluated on
three different settings of dimensionality as: D = {2, 5, 10}. Apart from the test
functions and dimensionality, we also vary the uncertainty level based on two
distinct settings as: L = {0.05, 0.1}, which indicate the maximum % deviation
in the nominal values of the search variables.

For the deterministic setting of the uncertainty, i.e., MMR and MMRR, the
compact set U is defined as: U = [−(L×R), (L×R)], where L ∈ L denotes the
choice of the uncertainty level, and R serves as the absolute range of the search
variables. For the test functions in F , the absolute range of the search vari-
ables is 10, since all test functions are defined from -5 to 5. For the probabilistic
setting of the uncertainty, i.e., EBR, DBR and CR, the uncertainty is modeled
according to a continuous uniform probability distribution: ∆x ∼ U(a, b), where
the boundaries a and b are defined similar to the boundaries of the the set U in
the deterministic case. In our study, the size of the initial training data is set to
be 2×D, where D ∈ D denotes the corresponding setting of the dimensionality.
Likewise, the maximum number of iterations for KB-RO is set to be 50×D. Note
that our Kriging surrogate is based on the popular Matérn 3/2 kernel [5], and
we standardize the function responses: y = [f(x1), f(x2), . . . , f(xN)]⊤, before
constructing the Kriging surrogate Kf . In addition, we utilize the robust EI in
Eq. (8) as the sampling infill criterion for our experiments.

For the parallel execution of KB-RO for each of the 300 test cases consid-
ered, we utilize the Distributed ASCI Supercomputer 5 (DAS-5) [1], where each
standard node has a dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3) CPU con-
figuration and 64 GB memory. We implement our experiments in python 3.7.0
with the help of “scikit-learn” module [10]. The performance assessment of the
solutions in our experiments is based on 15 independent runs R of the KB-RO
for each of the 300 test cases considered. Note that for each trial, i.e., the unique
combination of the independent run and the test case, we ensure the same con-
figuration of hardware and software to account for fairness. Furthermore, in each
trial, we measure the CPU time for all iterations of KB-RO. After the success-
ful parallel execution of all trials, we assess the quality of the optimal solutions
based on Normalized Mean Absolute Error (NMAE) as: NMAE =

(
|f∗−f̂∗|

|f∗|

)
,

where f∗ denotes the true robust optimal function value obtained from solving
the original function under uncertainty, also referred to as the ground truth for
the particular choice of the test case, and f̂∗ serves as the robust optimal func-

A Systematic Approach to Analyze the Computational Cost 9

tion value obtained from KB-RO (step 5 in Algorithm 1). As noted in [16], the
benefit of utilizing NMAE is that the quality of the optimal solution is always
determined relative to the corresponding ground truth, and the performance of
KB-RO across different RFs can be easily compared.

Having obtained the quality of the optimal solution and CPU time for all iter-
ations of the KB-RO for each trial, we perform a fixed budget and a fixed target
analysis. For the fixed budget analysis, we consider two possibilities. Firstly, we
perform the analysis with respect to the running CPU time by fixing 50 different
settings of the CPU time. For each such setting, we report the best quality solu-
tion (measured in terms of NMAE) obtained from KB-RO. The performance in
this context is averaged over all 50 settings of the CPU time. Secondly, we per-
form the fixed budget analysis also with respect to the number of iterations. In
this context, we identify 30 different settings of the number of iterations (check-
points) to analyze the performance similar to the previous case.

Contrary to this, in fixed target analysis, we identify 10 distinct target values
for the NMAE – a set of thresholds describing the minimum desirable quality
of the solution. As soon as a particular target is achieved, we report the accu-
mulated CPU time taken by KB-RO to reach that target. If such a target is
never achieved, we report the penalized CPU time which is set to be D × Tmax,
where D ∈ D is the corresponding setting of the dimensionality, and Tmax is
the accumulated CPU time at the last iteration of that trial. In addition to the
fixed budget and fixed target analysis, we also report the average CPU time per
iteration (ACTPI), and Tmax for each trial.

5 Results

We share the results originating from our experiments in Figs. 1 and 2. In par-
ticular, Fig. 1 focuses on four distinct analyses, which include fixed CPU time
analysis, fixed iterations analysis, fixed target analysis, and the analysis on the
ACTPI. On the other hand, Fig. 2 reports the accumulated CPU time at the
last iteration of KB-RO: Tmax, which is averaged over 15 independent runs R,
and grouped by the RFs. Note that the results in Fig. 1 are presented in the
form of empirical cumulative distribution function (ECDF) for each RF and for
each type of analysis. The first row of plots in Fig. 1 illustrates the results on
fixed CPU time and fixed iteration analyses respectively (from left to right). In a
similar fashion, the second row of plots illustrates the performance with respect
to the fixed target analysis and the analysis on the ACTPI. Note that each curve
in these analyses is based on 900 data points (trials) due to 15 independent runs
R of KB-RO, 10 test functions in F , 3 settings of dimensionality in D , and 2
noise levels in L . The results in Fig. 2 are presented in the form of box plots,
where each box inside a subplot presents Tmax values for the test cases corre-
sponding to the particular setting of the dimensionality and RF. The reported
Tmax in this context is averaged over 15 independent runs R of KB-RO.

In terms of performance comparison with respect to the fixed CPU time
analysis, we note the promising nature of all RFs except DBR, which performs
poorly compared to its competitors in most trials. Furthermore, we also note the

10 S. Ullah et al.

10 6 10 4 10 2 100 102

NMAE

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 tr

ia
ls

(
 ,

,
,

)
Fixed CPU Time Analysis

10 5 10 4 10 3 10 2 10 1 100 101 102 103

NMAE

0.0

0.2

0.4

0.6

0.8

1.0

Fixed Iteration Analysis

10 1 100 101 102 103 104 105

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

Fixed Target Analysis

101 102 103 104 105

Avg. CPU Time Per Iteration (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Running CPU Time Per Iteration

MMR MMRR EBR DBR CR

Fig. 1. Upper left: Fixed CPU time analysis, Upper right: Fixed iteration analysis,
Lower left: Fixed target analysis, Lower right: Average running CPU time per iteration.
For each analysis, the empirical cumulative distribution function (ECDF) for all five
RFs is presented. Each ECDF curve is based on 900 data points (trials) owing to 15
independent runs R, 10 test functions in F , 3 settings of dimensionality in D , and 2
noise levels in L .

highest variation in quality (NMAE) for DBR. Although no RF is deemed a clear
winner for this analysis, we note that MMR, MMRR and CR have high empirical
success rates. Likewise, we note the highest variation in quality for DBR also
in the context of fixed iteration analysis. In this case, MMRR and CR perform
superior to the other RFs as we observe a high empirical success rate for both.
For the performance measure with respect to the fixed target analysis, we observe
that MMR outperforms the competitors, albeit the variation in the running CPU
time for MMR is also deemed higher. Here, we note a clear distinction in the
empirical success rate between MMRR and other RFs. For instance, if we cut-off
the running CPU time at 100 seconds, we observe that MMRR has an empirical
success rate of 45 %, whereas MMR, DBR, and CR achieve a success rate of
more than 99 %. We also note that MMRR has the highest variance of ACTPI,
and the lowest empirical success rate of all RFs. In this case, none of the MMR

A Systematic Approach to Analyze the Computational Cost 11

M
M

R

M
M

RR EB
R

DB
R CR

27

28

29

210

211
T m

ax
 (S

ec
on

ds
)

D = 2

M
M

R

M
M

RR EB
R

DB
R CR

211

212

213

214

215

216
D = 5

M
M

R

M
M

RR EB
R

DB
R CR

214

215

216

217

218

219
D = 10

Fig. 2. Left: 2D test cases, Middle: 5D test cases, Right: 10D test cases. Each box
plot shares the maximum CPU time spent to run KB-RO: Tmax, averaged over 15
independent runs in R and grouped by the RFs.

and EBR can be deemed a clear winner, although both perform superior to other
RFs in most trials.

When comparing the performance of RFs in the context of maximum CPU
time spent: Tmax, we note that MMR and EBR in general perform superior to
other RFs, whereas MMRR performs the worst for each setting of dimensionality.
Furthermore, we deem that Tmax increases rapidly with respect to dimension-
ality in the context of deterministic uncertainty, i.e., MMR and MMRR, when
compared with the probabilistic uncertainty, i.e., EBR, DBR, and CR. Lastly,
we note that in general, the variance in Tmax for the probabilistic setting is also
significantly lower when compared to the deterministic case.

6 Discussion
Based on the observations from the fixed budget analyses – fixed CPU time and
fixed iteration analyses, we deem MMR, MMRR, EBR and CR to be suitable
RFs with regards to the computational cost involved to find the robust solution.
This validates their applicability in practical scenarios where the computational
resources are limited, and the designer cannot spend more than a fixed amount of
computational budget (whether measured in terms of CPU time or the number
of iterations). Note that MMR appears to be the most promising RF also in
the scenarios where the designer aims for a fixed quality solution – where the
designer cannot compromise on the quality below a certain threshold. In those
situations, MMR can yield the desired quality robust solution with considerably
less CPU time. Apart from these analyses, we note that the ACTPI and Tmax

for MMR are also excellent alongside EBR.
In terms of performance, we find that MMRR poses an interesting situation

as it performs competitively in the context of fixed budget analyses. However,
its performance is significantly worse to other RFs in the context of fixed target

12 S. Ullah et al.

analysis, the ACTPI, and the maximum CPU time Tmax for running KB-RO.
We believe this is aligned with the intuition of MMRR (as discussed in sec-
tion 2), since within an iterative optimization framework, we have to employ a
quadrupled nested loop to find the robust solution based on MMRR, which in
turn exponentially increases the computational cost per iteration. The MMRR,
therefore, has the highest CCoR, and takes much more CPU time to reach the
same target value as opposed to other RFs.

In terms of performance variance, we note that stochastic RFs, in particular
EBR and DBR, have a higher variance in quality – when measured in terms
of NMAE, and a comparatively lower variance in computational cost – when
measured in terms of the ACTPI and Tmax. This can mainly be attributed to
their intrinsic stochastic nature as they rely on numerical approximations. Since
the sample size of the numerical approximations is fixed with respect to the
corresponding setting of the dimensionality, we observe relatively lower variance
in the CPU time. However, since we only ever approximate the robust response
of the function, the quality of the solution may be deteriorated.

7 Conclusion and Outlook

This paper analyzes the computational cost of robustness in Kriging-based ro-
bust optimization for five of the most commonly employed robustness criteria.
In a first approach of such kind, we attempt to evaluate and compare the robust-
ness formulations with regards to the associated computational cost, where the
computational cost is based on the CPU time taken to find the optimal solution
under uncertainty. Our experimental setup constitutes 300 test cases, which are
evaluated for 15 independent runs of Kriging-based robust optimization.

A fixed budget analysis on our experimental results suggests the applicability
of “mini-max robustness”, “mini-max regret robustness”, “expectation-based ro-
bustness”, and “composite robustness” in practical scenarios where the designer
cannot afford the computational budget beyond a certain threshold. On the other
hand, a fixed target analysis deems the ‘mini-max robustness” as the most effi-
cient robustness criterion in the scenario where the designer cannot compromise
the quality of the optimal solution below a certain threshold. The analysis on the
ACTPI and Tmax also determines “mini-max robustness” as one of the most effi-
cient robustness criteria. Overall, “mini-max robustness” is understood to be the
most suitable robustness criterion with regards to the associated computational
cost.

A limitation of our study is that we fix the internal computational budget
for each robustness formulation in Kriging-based robust optimization. Visual-
izing the impact of variability in the internal computational budget, e.g., the
internal optimization loop in the context of “mini-max robustness”, is the focus
of our future research. Additionally, we note that each robustness formulation is
intrinsically associated with another cost, namely the cost of compromising on
optimality to ensure robustness or stability. Focusing on this cost of robustness
will advance the state-of-the-art in this area, and help practitioners choose the
most suitable formulation with regards to optimality.

A Systematic Approach to Analyze the Computational Cost 13

References

1. Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F.,
Snoek, C., Wijshoff, H.: A medium-scale distributed system for computer science
research: Infrastructure for the long term. Computer 49(5), 54–63 (2016)

2. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization, Princeton Series
in Applied Mathematics, vol. 28. Princeton University Press (2009)

3. Beyer, H.G.: Evolutionary algorithms in noisy environments: Theoretical issues and
guidelines for practice. Computer methods in applied mechanics and engineering
186(2-4), 239–267 (2000)

4. Beyer, H.G., Sendhoff, B.: Robust optimization–a comprehensive survey. Computer
methods in applied mechanics and engineering 196(33-34), 3190–3218 (2007)

5. Genton, M.G.: Classes of kernels for machine learning: A statistics perspective. J.
Mach. Learn. Res. 2, 299–312 (2001)

6. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: A
platform for comparing continuous optimizers in a black-box setting. CoRR
abs/1603.08785 (2016)

7. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

8. Jurecka, F.: Robust design optimization based on metamodeling techniques. Ph.D.
thesis, Technische Universität München (2007)

9. Kruisselbrink, J.W.: Evolution strategies for robust optimization. Leiden Institute
of Advanced Computer Science (LIACS), Faculty of Science (2012)

10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

11. ur Rehman, S., Langelaar, M., van Keulen, F.: Efficient kriging-based robust opti-
mization of unconstrained problems. J. Comput. Sci. 5(6), 872–881 (2014)

12. Stein, M.: Large sample properties of simulations using latin hypercube sampling.
Technometrics 29(2), 143–151 (1987)

13. Taguchi, G., Konishi, S.: Taguchi Methods: Orthogonal Arrays and Linear Graphs.
Tools for Quality Engineering. American Supplier Institute Dearborn, MI (1987)

14. Taguchi, G., Phadke, M.S.: Quality engineering through design optimization. In:
Quality Control, Robust Design, and the Taguchi Method, pp. 77–96. Springer
(1989)

15. Ullah, S., Nguyen, D.A., Wang, H., Menzel, S., Sendhoff, B., Bäck, T.: Exploring
dimensionality reduction techniques for efficient surrogate-assisted optimization.
In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). pp. 2965–
2974. IEEE (2020)

16. Ullah, S., Wang, H., Menzel, S., Sendhoff, B., Back, T.: An empirical comparison
of meta-modeling techniques for robust design optimization. In: 2019 IEEE Sym-
posium Series on Computational Intelligence (SSCI). pp. 819–828. IEEE (2019)

