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a Multi-Modal Gait Database of 
Natural Everyday-Walk in an  
Urban Environment
Viktor Losing1,2 ✉ & Martina Hasenjäger  1,2 ✉

Human gait data have traditionally been recorded in controlled laboratory environments focusing on 
single aspects in isolation. In contrast, the database presented here provides recordings of everyday 
walk scenarios in a natural urban environment, including synchronized IMU−, FSR−, and gaze data. 
Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 ± 7.64 cm, 
72.9 ± 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing 
cells per foot, and a mobile eye tracker. They completed three different walk courses, where each 
trial consisted of several minutes of walking, including a variety of common elements such as ramps, 
stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis 
and prediction. We anticipate the data set to provide a foundation for research that considers natural 
everyday walk scenarios with transitional motions and the interaction between gait and gaze during 
walking.

Background & Summary
The scientific assessment and modeling of human locomotion has been a central topic in various domains such 
as medicine, ergonomics, robotics, and sports1–8. Traditionally, human gait data have been recorded in con-
trolled laboratory settings9–11, e.g., on catwalks or treadmills. However, based on these data, it is impossible to 
model human gait in more natural and challenging environments where people exhibit a richer gait behavior. 
Such models are necessary, e.g., for a satisfactory user experience with assist devices that can be used in a clinical 
environment and in daily life.

Often gait data are available as part of human activity data sets12–15 and hence they rarely contain ground 
truth information for the segmentation of single steps. These data sets provide lower body IMU data and some-
times include FSR data to provide ground truth for step segmentation. There are only a few dedicated human 
walk data sets that show walking in natural outdoor environments16–18. The focus is on walking speed variation 
and measurement of different walk patterns in isolation.

We aimed to create a richly annotated gait data set of natural, everyday walk scenarios requiring continu-
ous walking of 5 to 15 minutes that naturally contain diverse gait patterns such as level walking, walking up/
down ramps and stairs, as well as the corresponding transitions in between. In particular, the recordings include 
the natural interaction with other pedestrians and cyclists that affect the subjects’ gait behavior. We provide 
whole-body data from 17 IMU sensors to enable a wide variety of motion modeling. Additionally, we include 
plantar foot pressure data that yield accurate foot contact information and may be used independently from the 
IMU data.

The data set consists of 9 hours of gait data recorded from 20 healthy subjects. They walked across three 
different courses in a public area around a suburban train station. A single repetition of each course required 
several minutes of walking and captured many common elements such as straight and curvy passages, slopes, 
stairs, and pavements. We annotated the walking mode, e.g., regular walk, climb/descend stairs, ascend/descend 
slopes, interactions with other pedestrians/cyclists, curves and turnarounds, as well as terrain segments. The 
timings of heel strike and toe-off events are provided as well.

Another unique feature of our data set is the usage of a mobile eye tracker to record the gaze behavior of our 
participants during walking. Humans extensively use visual information of the environment for strategic con-
trol planning19. For instance, they adapt their gait speed and gaze angle to the complexity of the environment20. 
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Spatio-temporal visual information is essential for proper foot positioning on complex surfaces21. Thus gaze 
may serve as an indicator of human intention during walking22 as well as an estimator of fall risk23–26. To our 
knowledge, this data set is the first publicly available database that provides gait motion data together with the 
corresponding visual behavior. In particular, the data allows the estimation of the gaze trajectory by combining 
the gaze position with the head orientation. As gaze is known to be an early predictor of human intention27,28, 
we think that the analysis of gaze patterns as a predictive signal for the anticipation of walk mode transitions 
provides an exciting research opportunity.

ID Age [years] Sex Weight [kg] Height [cm] Hip Height [cm] Insole size

1 50–59 female 59 171 91 M

2 30–39 male 74 186 95 L

3 18–29 male 80 185 112 XL

4 18–29 male 78 184 111 XL

5 30–39 male 61 172 98 M

7 18–29 male 82 180 98 L

8 30–39 female 65 168 94 M

10 40–49 male 81 186 102 XL

12 40–49 female 61 166 93 M

13 18–29 male 76 183 92 L

14 30–39 male 90 190 102 XL

15 30–39 female 72 184 101 L

16 30–39 male 61 171 90.5 M

17 40–49 male 72 191 100 XL

18 18–29 male 85 180 93 L

19 60–69 female 72 170 92 M

22 40–49 male 75 175 91 L

23 30–39 male 75 179 93 L

24 30–39 male 65 170 92 L

25 30–39 male 75 180 95 L

Summary 36.8 (±10.75) 5 f, 15 m 72.95 (±8.68) 178.55 (±7.64) 96.77 (±6.29) —

Table 1. Anthropometry information of the participants. Body height and hip height include the sole height of 
the shoes. The hip height was measured from the floor to the greater trochanter and may be considered as leg 
length in gait analysis.

Fig. 1 Statistics of participants’ (a) age, (b) height, and (c) weight.

Fig. 2 Maps of walking courses A, B, and C.

https://doi.org/10.1038/s41597-022-01580-3


3Scientific Data |           (2022) 9:473  | https://doi.org/10.1038/s41597-022-01580-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

In summary, we anticipate that this data set will provide a foundation for future research exploring machine 
learning for real-time motion recognition and prediction, potentially incorporating visual behavior and analyz-
ing its benefits.

Methods
participants. Twenty-five healthy adults with normal or corrected-to-normal vision volunteered to take part 
in the study. The data from five participants were incomplete due to sensor failures and are not included in the 
data set. The anthropometry of the remaining 20 participants, 5 females and 15 males, is given in Table 1. The 
participants’ average height of 178.55 ± 7.6 cm corresponds to the average height in central Europe, while their 
average weight of 72.95 ± 8.7 kg was slightly below the central European average, i.e. all participants were slim, 
cf. Figure 1.

All participants provided written informed consent, including written permission to publish the data of this 
study. The study was approved by the Bioethics Committee in Honda’s R&D (97HM-036H, Dec. 14, 2020).

Fig. 3 Photos of the experiment location.

Fig. 4 The sensory equipment of the participants (left). They wore a mobile eye tracker, the Pupil Invisible 
Glasses31 (top right), an Xsens full-body motion suit with 17 IMU sensors (middle right), and the IEE ActiSense 
Smart Footwear Sensor insoles (IEE S.A., Luxembourg) to record foot pressure data (bottom right). Note that 
the ICUs of the pressure insoles, the small black boxes attached to the shoes, also contain an IMU each. This 
means that there are two IMUs from different measurement systems attached to each foot: the IMU from the 
motion capture suit is located below the shoe tongue in the middle of the top of the instep and the pressure 
insole IMU is located on the shoe on the side of the top of the instep. The participant shown in this figure 
provided permission for their likeness to be used.

https://doi.org/10.1038/s41597-022-01580-3
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Experimental tasks. The participants were asked to complete different walking courses in the area of a sub-
urban train station that included walking on level ground, ascending and descending stairs, walking up and down 
ramps, and stepping up and down a curb. Figure 2 shows maps of the three walking courses.

Courses A and B include level walking, walking up and down ramps, and up and down stairs. Figure 3(a–d) 
illustrate the walking tasks A and B: Fig. 3(a) shows a level area. Figure 3(b) shows typical stairs. They consist 
of one or two groups of 8 to 13 steps that are separated by landings. Typical ramps, as shown in Fig. 3(c), have 
a slope of 6% and a length of 50 m to 70 m. There is one short and steep ramp in course A as shown in Fig. 3(d). 
Here the slope is 15%, and the length is approx. 3 m. The walking distance for each course is roughly 500 m.

Course C includes straight level walking, walking a 90-degree curve, stepping up and down a curb in a lay-by, 
and turning by 180 degrees. The lay-by is shown in Fig. 3(e). The curb height here is 10 cm. The walking distance 
in course C is roughly 200 m.

Sensors. The participants were equipped with the following sensors, cf. Figure 4:

•	 Inertial measurement units (IMUs). For tracking of motion and posture, we used a full-body inertial kin-
ematic measurement system, the Xsens motion capture suit29 consisting of the MVN-Link BIOMECH full-
body system and the MVN Link lycra suit. The system consists of 17 IMU sensors with 3D rate gyroscopes 
for measuring angular velocity, 3D linear accelerometers measuring accelerations including gravitational 
acceleration, 3D magnetometers for measuring the Earth’s magnetic field, and a barometer to measure the 
atmospheric pressure. The IMUs are placed on the head, sternum, sacrum, and on the shoulders, upper arms, 
forearms, hands, upper legs, lower legs, and feet.

Fig. 5 Experiment duration in seconds for each participant and each task.

Fig. 6 Visualization tool that jointly displays all three sensor modalities. The body posture is based on the 
XSens segment positions. In the case of the insoles, eight pressure segments are shown for each foot as well as a 
binary state that indicates whether the foot is on the ground. The scene video including the current fixation as 
well as the recent gaze trajectory is visualized from the eye tracker recordings.

https://doi.org/10.1038/s41597-022-01580-3
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•	 Force sensitive resistors (FSRs). Foot pressure data we recorded using the IEE ActiSense Smart Footwear 
Sensor insole30 (IEE S.A., Luxembourg). The measurement system consists of thin, foil-based, removable 
pressure insoles with eight high dynamic pressure sensing cells that are inserted into the shoes below the 
shoes’ insoles. The FSR sensor cells are located below the hallux, the toes, the heads of the first, third, and 
fifth metatarsal, resp., the arch, and the left and right side of the heel. The pressure insoles are controlled by 
ECUs that are clipped to the participants’ shoes and come with IMUs consisting of a 3D accelerometer, a 3D 
gyroscope, and a magnetometer. Note, that here the accelerometer and gyroscope axis coincide while the 
magnetometer orientation is rotated by 180 degrees around the accelerometer/gyroscope x-axis.

•	 Eye tracker. Eye-tracking data were recorded with a mobile eye tracker, the Pupil Invisible Glasses31. The eye 
tracker is worn like a regular pair of glasses. Two small cameras on the bottom rim of the glasses capture the 
wearer’s eye movements by using infrared light (IR) LEDs for tracking of the pupil and map the wearer’s gaze 
point into a scene video captured by a scene camera attached to the spectacle frame.

Data collection. Hardware set-up. The participants were asked to bring tightly fitting clothes and com-
fortable, flat, lace-up shoes with removable insoles. They wore the Xsens suit over their clothes. The FSR insoles 

Fig. 7 Illustrative example of the heel strike and toe-off detection based on two thresholds.

Fig. 8 Segments according to walk mode (upper row) and walk orientation (lower row) in walking courses A, 
B, and C.

https://doi.org/10.1038/s41597-022-01580-3
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were inserted in their shoes below the shoe insoles. The Xsens suit requires a separate calibration recording 
before the actual data recording. This calibration consisted of the participant standing in a neutral pose for 5 sec-
onds than walking forward for 5 to 10 meters, making a u-turn, walking back to the starting position, turning 
and again standing in neutral pose for 5 seconds. The other sensors did not need a calibration procedure. Their 
proper functioning was checked using their associated smartphone applications. To facilitate the synchronization 

Column Unit Description

time milliseconds [ms] experiment time

participant_id — unique participant identifier

task — experimental task

gaze_timestamp seconds [s] timestamp of the source image frame

world_index — index of closest world video frame

confidence —
Assessment by the pupil detector on how sure we can be on this measurement. A value 
of ‘0’ indicates no confidence. ‘1’ indicates perfect confidence. For useful data, the 
condifence should be >0.6.

eye_norm_pos_{x | y} normalized coordinates {x | y} position in the eye image frame

Table 2. Explanation of data columns in the eye tracker data files.

Column Unit Description

time milliseconds [ms] experiment time

participant_id — unique participant identifier

task — experimental task

{Left | Right}_Hallux millibar [mbar] pressure measured by the {left | right} foot hallux FSR sensor

{Left | Right}_Toes millibar [mbar] pressure measured by the {left | right} foot toes FSR sensor

{Left | Right}_Met{1 | 3 | 5} millibar [mbar] pressure measured by the {left | right} foot {first | third | fifth} 
metatarsus FSR sensor

{Left | Right}_Arch millibar [mbar] pressure measured by the {left | right} foot arch FSR sensor

{Left | Right}_Heel_{L | R} millibar [mbar] pressure measured by the {left | right} foot {left | right} heel FSR 
sensor

{Left | Right}_Hallux_norm normalized pressure measured by the {left | right} foot hallux FSR 
sensor

{Left | Right}_Toes_norm normalized pressure measured by the {left | right} foot toes FSR 
sensor

{Left | Right}_Met{1 | 3 | 5}_norm normalized pressure measured by the {left | right} foot {first | third 
| fifth} metatarsus FSR sensor

{Left | Right}_Arch_norm normalized pressure measured by the {left | right} foot arch FSR 
sensor

{Left | Right}_Heel_{L | R}_norm normalized pressure measured by the {left | right} foot {left | right} 
heel FSR sensor

{Left | Right}_Acc_{x | y | z} g-force (9.806 ms−2), [g] linear acceleration measured by the IMU on the {left | right} foot in 
{x | y | z}-direction

{Left | Right}_Gyr_{x | y | z} degrees per second [dps] angular rate measured by the IMU gyroscope on the {left | right} 
foot, {x | y | z}-axis

{Left | Right}_Mag_{x | y | z} microtesla [μT] magnetic field measured by the IMU magnetometer on the {left | 
right} foot, {x | y | z}-component

{Left | Right}_Temp degree Celsius [°C] temperature measured by the IMU temperature sensor on the {left 
| right} foot

{Left | Right}_Toes_raw raw pressure value from the {left | right} foot toes FSR sensor

{Left | Right}_Hallux_raw raw pressure value from the {left | right} foot hallux FSR sensor

{Left | Right}_Met{1 | 3 | 5}_raw raw pressure value from the {left | right} foot {first | third | fifth} 
metatarsus FSR sensor

{Left | Right}_Arch_raw raw pressure value from the {left | right} foot arch FSR sensor

{Left | Right}_Heel_R_raw raw pressure value measured by the {left | right} foot right heel 
FSR sensor

{Left | Right}_Heel_L_raw raw pressure value measured by the {left | right} foot leftt heel FSR 
sensor

{Left | Right}_Acc_{x | y | z}_raw raw linear acceleration value measured by the IMU on the {left | 
right} foot in {x | y | z}-direction

{Left | Right}_Gyr_{x | y | z}_raw raw angular rate measured by the IMU gyroscope on the {left | 
right} foot, {x | y | z}-axis

{Left | Right}_Mag_{x | y | z}_raw raw magnetic field measured by the IMU magnetometer on the 
{left | right} foot, {x | y | z}-component

{Left | Right}_Max_Pressure_norm maximum normalized pressure of the {left | right} foot

Table 3. Explanation of data columns in the pressure insole data files.
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of the different sensors, we asked the participants to look at their feet for the first few and last few steps of each 
recording.

Experimental tasks. The participants were asked to complete three repetitions of walking courses A and B, 
resp., and five repetitions of walking course C. They were instructed to walk at their preferred, normal speed and 
to take a break whenever necessary. All participants completed each walking task without taking a break. One 
experimenter followed them at a distance to give directions and support the participant if necessary.

The experiments took place in dry weather conditions either in the late morning or the early afternoon 
to avoid busy commuting times at the train station. However, all participants encountered commuters and 
passers-by during the experiments so that the data contains side-stepping maneuvers. Note also that some par-
ticipants chose to take two steps at a time when climbing stairs.

The average time for completing one repetition of courses A, B, and C was 235 s ± 22 s, 198 ± 19 s, and 77 ± 7 
s., resp. Figure 5 illustrates the time it took each participant to complete one repetition of each task. Note that 
the participant with ID 7 completed six instead of five repetitions of course C. The total recording time of the 
complete data set amounts to 9:22 hrs with 3:55 hrs for course A, 3:17 hrs for course B, and 2:10 hrs for course C.

Data processing. The data were recorded on-device and transferred to a desktop computer for 
post-processing. For each sensor, we used the post-processing software provided by the respective manufacturer.

•	 IMU Data. The Xsens IMU data were recorded with a sampling frequency of 240 Hz. The raw sensor data 
was post-processed with the Xsens MVN software29 (MVN Studio 4.97.1 rev 62391) that computes full-body 
kinematic data based on a biomechanical model of the participant and sensor fusion algorithms. We provide 
the full data as post-processed by MVN Studio. Magnetometer data are subject to magnetic distortion from 
the environment and should be used with care. The resulting data were saved in MVNX file format for further 
processing.

•	 FSR Data. FSR data were recorded with a sampling frequency of 200 Hz. The IEE ActiSense Smart Footwear 
Sensor insoles30 come with a tool to convert the raw digital values to voltages and to convert the raw acceler-
ometer, gyroscope, and magnetometer data to accelerations, angular rates and magnetic flux density. Addi-
tionally, the tool synchronizes the data from both feet. The resulting data is saved in CSV file format.

•	 Eye Tracking Data The gaze data were recorded with a sampling rate of 66 Hz. We used the open-source 
software Pupil Player32 (v3.4) to export the gaze position data to CSV file format and to create a scene video 

Column Unit Description Values

time milliseconds [ms] experiment time

participant_id none participant identifier 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 
18, 19, 22, 23, 24, 25

task — experimental task A, B, C

walk_mode none label indicating the walk mode
‘walk’, ‘stairs_up’, stairs_down’, ‘slope_up’, 
‘slope_down’, ‘pavement_up’, ‘pavement_
down’

walk_orientation none label indicating the spatial orientation
‘straight’, ‘curve_right’, ‘curve_left’, 
‘turn_around_clockwise’, ‘turn_around_
counterclockwise’

walk_interaction none
label indicating whether or not there is an 
interaction between the participant and 
passengers

yes or no

terrain none label indicating the route section of each 
task

Courses A and B: 1–16.
Course B: 1–8.

repetition none repetition counter of the task
Courses A and B: 1–3.
Course C: 1–5 (except for subject ID07 
who completed 6 repetitions).

insoles_{Left | Right}
Foot_is_step none

heel strike indicator of {left | right} 
foot determined from pressure insole 
measurements

True or False

insoles_{Left | Right}
Foot_is_lifted none

toe-off indicator of {left | right} foot 
determined from pressure insole 
measurements

True or False

insoles_{Left | Right}Foot_
on_ground none

indicator of {left | right} foot ground 
contact as determined from pressure 
insoles

True or False

insoles_{Left | Right}Foot_
time_to_step milliseconds [ms] time to next heel strike of {left | right} foot

insoles_{Left | Right}Foot_
time_to_lift milliseconds [ms] time to next heel strike of {left | right} foot

xsens_footContacts_{Left | 
Right}Foot_Heel none indicator of {left | right} heel contact with 

ground determined from xsens data True or False

xsens_footContacts_{Left | 
Right}Foot_Toe none indicator of {left | right} toe contact with 

ground determined from Xsens data True or False

Table 4. Explanation of data columns in label data files.

https://doi.org/10.1038/s41597-022-01580-3
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with a gaze position overlay. In a second step, we blurred passers-by and license plates in the resulting scene 
video for data protection reasons.

The data of all three sensors have been down-sampled to 60 Hz. In the case of the IMU data, we kept every 
fourth data point, whereas we did a linear interpolation of the FSR and eye-tracking data values. All three 
modalities have been synchronized manually by one experimenter and validated by the other, using the vis-
ualization and labeling tool shown in Fig. 6 that is provided with the software related to this data set. The 
participants were asked to look at their feet during the first and last few steps of each recording to facilitate the 
post-synchronization. This is required in particular to synchronize the eye tracker recordings with the other two 
modalities. Some example videos showing all sensor modalities after the synchronization procedure are availa-
ble in the code repository related to the data set.

Using the same tool, the data was labeled by walk mode and walk orientation: The walk modes are ‘walk’, 
‘stairs_down’, ‘stairs_up’, ‘slope_down’, ‘slope_up’, and ‘pavement_up’, ‘pavement_down’ to indicate stepping 
up or down a curb. The walk orientations are ‘straight’, ‘curve_right’, ‘curve_left’, ‘turn_around_clockwise’, and 
‘turn_around_counterclockwise’.

Additionally, we label whether or not the participant interacts with passers-by, i.e. whether or not the par-
ticipant’s motion trajectory is affected by the motion of other persons in their surroundings. It has been shown 
that gaze is the main source of information used by pedestrians to control their motion trajectory33. Therefore, 
we annotated encounters with other persons as interaction based on the gaze behavior from the eye tracker that 
was overlayed over the eye tracker’s world video. We defined an interaction to start as soon as other persons were 
visually fixated by the participants and to end when the persons left the field of vision.

To easily identify identical course segments over participants and repetitions, the walk courses were seg-
mented by walk mode and consecutively numbered, cf. Figure 8. Since each task was recorded in one go, we 
included a counter to indicate the repetition of the walking task.

Step detection. To simplify gait analysis, we determine the heel strike and toe-off events by the pressure out-
puts of the insole sensors. Similar to the approach of Hassan et al.34, we use a heuristic based on two thresholds. 
We normalize the measured values of each sensor cell for each recording between the first and 99th percentile 

Column Unit Description

time ms experiment time, synchronized over all sensors

participant_id — unique participant identifier

task — experimental task

orientation_<segment>_{q1 | qi | qj 
| qk} — quaternion orientation of the segment with respect to the global 

frame.

position_<segment>_{x | y | z} meter [m] position of the origin of the segment in the global frame.

velocity _<segment>_{x | y | z} meter per second [ms−1] velocity of the origin of the segment in the global frame.

acceleration_<segment>_{x | y | z} meter per second squared 
[ms−2] acceleration of the origin of the segment in the global frame.

angularVelocity_<segment>_{x | y | z} radian per second [rads−1] angular velocity of the segment in the global frame.

angularAcceleration_<segment>_{x 
| y | z}

radian per second squared 
[rads−2] angular acceleration of the origin of the segment in the global frame.

footContacts_{LeftFoot | RightFoot}_
{Heel | Toe} — Boolean value defining if contact points were detected for each frame.

sensorFreeAcceleration_<sensor>_{x 
| y | z}

meter per second squared 
[ms−2] sensor free acceleration of the sensor.

sensorMagneticField_<sensor>_{x 
| y | z} anatomic units [a.u.] sensor magnetic field of the sensor.

sensorOrientation_<sensor>_{q1 | 
qi | qj | qk} — sensor orientation quaternion of the sensor in the global frame.

jointAngle_j<joint>_{x | y | z} degree [°] Euler representation of the joint angle calculated using the Euler 
sequence ZXY using the ISB based coordinate system.

jointAngleXZY_j<joint>_{x | y | z} degree [°]

Euler representation of the joint angle calculated using the Euler 
sequence XZY using the ISB based coordinate system. Note: The joint 
angle using Euler sequence XZY is calculated and exported for all 
joints, but commonly only used for the shoulder joints, and it may 
depend on the movement of the shoulder if it is appropriate to use.

jointAngleErgo_j<joint>_{x | y | z} degree [°]
Euler representation of the ergonomic joint angles used in ergonomic 
analysis calculated using the Euler sequence ZXY using the ISB based 
coordinate system.

jointAngleErgoXZY_j<joint>_{x | 
y | z} degree [°]

Euler representation of the ergonomic joint angles used in ergonomic 
analysis calculated using the Euler sequence XZY using the ISB based 
coordinate system.

centerOfMass_{x | y | z} meter [m] position of the body Center of Mass in the global frame.

Table 5. Explanation of data columns in processed Xsens data files. Here <segment> is one of the 23 Xsens 
body segment labels and <joint> is one of the 22 joint labels as listed in Table 6. The variables. The variable 
names follow the Xsens MVN convention as documented in the MVN User Manual42.
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to remove outliers and achieve an invariance against different body weights, shoe characteristics etc. A foot 
is assumed to be on the ground if its maximum sensor output surpasses the threshold αstep and lifted if it falls 
below the threshold αlift. We consider all sensor cells because the most relevant ones can vary, particularly for 
stairs and slopes or when subjects perform evasive motions due to other pedestrians or cyclists. A heel strike or 
toe-off event is given for the first moment the foot switches from being lifted to being on the ground and vice 
versa. An illustrative result of the detected events is depicted in Fig. 7.

Both thresholds αstep and αlift are optimized using a random search on a small set of annotated recordings, 
minimizing the mean absolute error between the ground truth events and the detected ones. The set of anno-
tated recordings contains five different subjects. For each of those the heel-strike and toe-off events for 60 steps 
were annotated, thereby solely using the insole visualization shown in Fig. 6. The average temporal difference 
between detected and annotated events of a test subject is approx. 3.5 ms for heel strikes and approx. 5.5 ms for 
toe-offs, which is accurate considering the signal frequency of 60 Hz.

We also provide the estimated foot contact data calculated by the Xsens software, however, in our experience 
they are often inaccurate, particularly for slopes and stairs, and we suggest to treat them with caution.

Data Records
We provide the data on the figshare data-sharing platform35. The repository contains a folder with detailed 
documentation on the walk courses, including photos to illustrate the area, length, and slope of the ramps and 
the number, height, and width of the steps in the stairs. The processed data is provided in a file structure that is 
organized hierarchically by experimental task and participant. Each participant folder contains synchronized 
CSV data files with (i) eye tracker data (8 columns), (ii) pressure insoles data (91 columns), (iii) full-body Xsens 
data (757 columns), (iv) labels (22 columns) and (v) the eye tracker scene video in MP4 format. Detailed lists 
and explanations of all data columns in each file are given in Tables 2–5 and are also provided in the documen-
tation folder on the data-sharing platform. Note that all files contain columns with the experiment time, the 
participant ID, and the experimental task. The experiment time is synchronized over all sensors and may be used 
to join data from several files.

Related Data Sets
An overview of related data sets is given by Table 7. Our database differs from the available ones in multiple 
aspects. The main difference is the extensive sensory setup that combines full-body IMU data with foot pressure 
and gaze data. In particular, this is the first data set providing natural gait data that includes the visual behavior 
of the subjects. Another significant difference lies in the trial design. In most data sets, trials aim to capture 
specific effects such as the influence of the terrain complexity on the gait in an isolated manner. In contrast, our 
scenarios were designed to capture traits of natural everyday walks, including transitions between various gait 
patterns. Each trial consists of several minutes of walking in a public space covering common elements such as 
straight and curvy passages, slopes, stairs, and pavements. All these elements are annotated.

Sensor Location Segment label Joint Label

1 pelvis Pelvis L5S1

2 T8 L5 L4L3

3 head L3 L1T12

4 right shoulder T12 T9T8

5 right upper arm T8 T1C7

6 right forearm Neck C1Head

7 right hand Head RightC7Shoulder

8 left shoulder RightShoulder RightShoulder

9 left upper arm RightUpperArm RightElbow

10 left forearm RightForeArm RightWrist

11 left hand RightHand LeftC7Shoulder

12 right upper leg LeftShoulder LeftShoulder

13 right lower leg LeftUpperArm LeftElbow

14 right foot LeftForeArm LeftWrist

15 left upper leg LeftHand RightHip

16 left lower leg RightUpperLeg RightKnee

17 left foot RightLowerLeg RightAnkle

18 RightFoot RightBallFoot

19 RightToe LeftHip

20 LeftUpperLeg LeftKnee

21 LeftLowerLeg LeftAnkle

22 LeftFoot LeftBallFoot

23 LeftToe

Table 6. List of Xsens motion sensor locations, segment labels, and joint labels.
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technical Validation
The sensors were validated before each recording session in the following way: The Xsens suit was calibrated 
in the lab before going to the experiment location. The validity of the calibration was checked by visualizing 
the resulting modeled skeleton in the lab using the Xsens software. The calibration was repeated at the experi-
ment location directly before the recording to account for potential shifts of the IMU sensors. The insoles were 
validated for each participant by inspecting the pressure signals using the manufacturer’s live-streaming app 
during a short practice walk of approximately 30 seconds. The eye tracker does not require manual calibration. 
However, we ensured a reasonable accuracy of the estimated gaze point by letting participants fixate four objects 
in the vicinity and inspected the estimated gaze point on the world camera video.

Usage Notes
Each sensor modality is stored in a separate CSV file for each walking task and participant and can be imported 
into any software framework for further analysis. The labels are also available in separate CSV files. We provide 
a Python script that generates a single pandas data frame from the CSV files, which can be directly used within 
standard machine-learning libraries such as Scikit-learn36, Pandas37, PyTorch38 or Tensorflow39.

The data provides natural walking behavior annotated by different walking modes and heel strike and toe-off 
timings. One concrete application could be to train real-time machine learning models on the task of classifying 
and/or predicting the walk modes and/or hell strike, toe-off timings in order to enhance the control of walk 
assist systems such as exoskeletons40, or prostheses41.

code availability
To streamline the processing of the data, we provide various tools and scripts that are accessible at https://github.
com/HRI-EU/multi_modal_gait_database. In particular, a Python script is available to join the CSV files into 
one single pandas data frame, which also supports filtering for specific tasks, participants, and data columns. 
Furthermore, we provide a visualization tool that jointly displays all three sensor modalities as illustrated by 
Fig. 6. The tool allows the adjustment of current labels and the creation of custom labels or tags, enabling the 
generation of additional machine learning tasks.
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