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Abstract. Water distribution networks are a key component of modern
infrastructure for housing and industry. They transport and distribute
water via widely branched networks from sources to consumers. In order
to guarantee a working network at all times, the water supply company
continuously monitors the network and takes actions when necessary –
e.g. reacting to leakages, sensor faults and drops in water quality. Since
real world networks are too large and complex to be monitored by a
human, algorithmic monitoring systems have been developed. A popular
type of such systems are residual based anomaly detection systems that
can detect events such as leakages and sensor faults. For a continuous
high quality monitoring, it is necessary for these systems to adapt to
changed demands and presence of various anomalies.

In this work, we propose an adaption of the incremental SAM-kNN
classifier for regression to build a residual based anomaly detection sys-
tem for water distribution networks that is able to adapt to any kind of
change.

Keywords: SAM-kNN regressor · Incremental · Anomaly detection

1 Introduction

Water is the foundation of (our) life – we need water for drinking, cooking,
hygiene and farming. Water distribution networks (WDNs), which distribute
water from the supplier to the customers, are therefore considered as critical
infrastructure. A major problem for water utility companies (and society in
general) are anomalies that cause loss or contamination of water – e.g. leakages
such as pipe bursts, sensor faults, pollution, cyber-physical attacks, etc. [1,3,15].
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Because of water shortages, among others caused by climate change, (drinking)
water becomes an increasingly valuable resource that should not be wasted.
However, it was estimated that leakages in WDNs lead to a loss of more than
45 million m3 of drinking water in developing countries – even highly developed
countries such as the island of Cyprus looses approx. up to 25% of their drinking
water due to leaky pipes [11].

Because of the increasing availability of sensors (e.g. pressure sensors)
in WDNs, water utility companies nowadays use computer systems for
(autonomously) monitoring their networks [14]. These systems are realized using
methods from engineering, statistics and machine learning (ML) [2]. While many
different and successful methods for anomaly detection and localization have
been proposed [17], these methods are usually not able to adapt to an occurring
change or anomaly. These systems might be able to detect anomalies but once
the anomaly is detected, they are “blind” for everything else that happens while
the detected anomaly is present – the systems must be recalibrated or refitted
which becomes challenging because a large amount of data (and therefore col-
lection time) is needed. Adaptation to changes – in case of WDNs anomalies or
simply changes in the water consumption behavior of the customers (i.e. changed
demand) – can be natural handled by online learning methods.

Online learning [4] can be considered as a sub-field of machine learning which
deals with models that are trained incrementally – i.e. they can learn from a data
stream instead of a fixed training set only. For example, they can be used for
electricity price prediction [20] or electric load forecasting [19].

In this work, we contribute to online learning for regression problems and
water distribution networks as a particular field of application. More specifically,
our contributions are:

– We propose SAM-kNN regression, a memory based online learner for regres-
sion problems.

– We evaluate our proposed SAM-kNN regression method in the context of
anomaly detection in water distribution networks.

The remainder of this paper is structured as follows: After briefly reviewing
related work in Sect. 2, we introduce the problem setting we are considering in
this work (see Sect. 3). Next, in Sect. 4 we propose SAM-kNN regression for online
learning, which we empirically evaluate in the context of anomaly detection
in water distribution networks (see Sect. 5). Finally, this work closes with a
summary and conclusion in Sect. 6.

2 Related Work

Incremental or online learning is a machine learning paradigm in which a model
is updated after each data sample that is fed into it. This paradigm is especially
suited for large data sets, that are too big to be processed in batch fashion, or
in situations where data becomes available only sample after sample – e.g. in
the form of a potentially infinite stream of data. Incremental learning has made
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great strides in recent years [5], with most applications set in a classification
environment [7,9,10,12,18,21].

One particular system is the SAM-kNN classifier [13]. This incremental algo-
rithm was created to perform on long data streams, using its internal memory
structure to alleviate the problem of catastrophic forgetting when frequent con-
cept changes are expected.

On the other hand, only a few approaches that utilize incremental learning for
regression problems exist. In [19] the authors use an incremental variant of the
support vector regressor (SVR) to build models for electricity price prediction.
[20] uses a similar SVR, paired with phase space reconstruction for time series to
facilitate electrical load forecasting. In [6] a wide range of incremental regression
algorithms are compared for their use in exoskeleton control.

However, all of these publications utilize standard incremental algorithms
and do not explicitly build a new model to work with. We, on the other hand,
propose a reformulation of the SAM-kNN classifier for regression as a standalone
algorithm.

3 Problem Setting

Incremental or online regression is the task of predicting a response variable
y ∈ R from a stream S = {x1, x2, x3, ...} of variables X ∈ R

n. Hereby, a new
instance of the incremental model is learned for each incoming sample of the
data stream.

We work on water distribution networks that have several internal nodes
n. These nodes are equipped with sensors, that measure water pressure and
flow rate. Each sensor provides read outs at specific time intervals t. For
every node, this creates a potentially infinite data stream of sensors values
S = {(s1, y1), (s2, y2), (s3, y3), ...}, where si ∈ R

n−1 represents the sensor values
of all but one node in the network and the predictor variable yi ∈ R represents
the sensor value at the remaining node.

This means, that we use the read outs of n − 1 nodes to predict the value of
the nth node using an incremental regression algorithm. Said algorithm processes
the stream S instance after instance by generating a sequence of models H =
{h1, h2, h3, ...}, where hi−1(si) = ŷi. After each prediction the true value yi is
revealed and a new model hi is learned.

We use the Interleaved train test error (ITTE) as a cost function to train the
model:

E(S) =

√
√
√
√

1
t

t∑

i=1

(hi−1(si) − yi)2 (1)

This ITTE measures the Root Mean Squared Error (RMSE) over every model
hi up to a given time point t.

Whenever the local error hi−1(si)−yi exceeds a certain threshold, this means,
that more water than predicted flows through the observed node. This is taken as
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an indication for a water leak and an alarm will be triggered. Being an incremen-
tal algorithm, our model will then automatically adjust to the new circumstances
so that accurate prediction of the water flow will be maintained throughout the
leak. Our model, which will be explained in detail in the next section, has the
capability to remember long term concepts and therefore, as soon as the water
leak is fixed, it will revert back to the normal circumstances.

4 Model

Our proposed model is an adaption of the Self Adjusting Memory (SAM) [13],
an incremental classifier, to regression. This approach is based on two distinct
internal memories, the Short-Term (STM) and the Long-Term memory (LTM).
Hereby, the STM is a dynamic sliding window over the last m samples, that is
supposed to only hold the most recent concept of the data stream:

MST = {(xi, yi) ∈ R
n × R | i = t − m + 1, ..., t} (2)

The LTM, on the other hand, is a collection of p samples, which hold older
concepts, that do not contradict the STM and might still be of use in the future:

MLT = {(xi, yi) ∈ R
n × R | i = 1, ..., p} (3)

Additionally, there is the combined memory (CM), which is a simple union of
the STM and the LTM:

MC = MST ∪ MLT (4)

Each memory induces a kNN regressor that can be used independently from the
others. To determine which kNN is used for every new incoming data sample,
the ITTE (see Sect. 3) is tracked for all sub-models and the one with the lowest
current ITTE is chosen.

4.1 Model Parameters

The proposed model has three parameters that are continuously adapted during
deployment:

1. The size m of the STM sliding window
2. The data samples in the LTM
3. The ITTEs of the three sub-models

Additionally, there are three hyperparameters that can be chosen robustly and
are set before deployment:

1. The number of neighbours k
2. The minimum size Lmin of the STM
3. The maximum size Lmax of the LTM
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4.2 Model Adaption

Whenever a new data sample arrives, it is added to the STM, which means
that this memory grows continuously. However, since it is supposed to hold only
the most recent concept, a reduction of the STM window size is performed on a
regular basis. This is facilitated by testing smaller window sizes at every iteration
and choosing the one that is optimizing the ITTE. Tested windows are:

Ml = {(xt−l+1, yt−l+1), ..., (xt, yt)} (5)

where l ∈ {m,m/2,m/4...} and l ≥ Lmin.

MSTt+1 = argmin
S∈{Mm,Mm/2,...}

E(S) (6)

Whenever the STM is shrunk in size, the data samples Ot that fall out of the
sliding window are not discarded.

Ot = MSTt
\ MSTt+1 (7)

Instead, they undergo a cleaning process, and those, that are still consistent
with the new STM are added to the LTM. Afterwards, the whole of the LTM is
cleaned as well, to ensure consistency with the STM at all times. When the LTM
reaches its maximum size, samples get discarded in a way that ensures minimal
information loss.

4.3 Cleaning Process

The process to clean a set of samples with respect to the STM is defined in the
following way:
A set A is cleaned by another set B regarding an example (xi, yi) ∈ B

clean : (A,B, (xi, yi)) �→ Â (8)

where A,B, Â ⊂ R
n × R and (xi, yi) ∈ B.

Â is defined in five steps:

1. Determine the k nearest neighbours of xi in B\(xi, yi) and find the maximum
distance

Δ∗
x = max

{

d(xi, x) | x ∈ Nk(xi, B \ (xi, yi))
}

(9)

2. Compute the maximum weighted difference of yi and y ∈ Nk(xi, B \ (xi, yi))

Δ∗
y = max

{(

yi − y

e
xi−x

Δ∗
x

)

| y ∈ Nk(xi, B \ (xi, yi))

}

(10)
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3. Determine all samples in A that are within Δ∗
x of xi

C =
{

(x, y) ∈ A | d(xi, x) < Δ∗
x

}

(11)

4. Compute the weighted differences of yi and y ∈ C

Δy =

{(

yi − y

e
xi−x

Δ∗
x

)

| y ∈ C

}

(12)

5. Discard samples from C that have a larger weighted difference than Δ∗
y

Â = A \ {(x, y) ∈ C | Δy(x) > Δ∗
y} (13)

Furthermore, the cleaning operation for the full set B

clean : (A,B) �→ Â|B| (14)

is defined by iteratively applying the former cleaning for all (xi, yi) ∈ B

Â0 = A

Ât+1 = clean(Ât, B, (xt+1, yt+1))

In summary, when the STM is shrunk in size, the process to clean the discarded
set Ot is described by the operation:

clean(Ot,MSTt+1) (15)

After that, the LTM is cleaned as well:

clean(MLTt
,MSTt+1) (16)

4.4 Compression of the LTM

When new samples are added to the LTM while it reaches maximum capacity,
old samples need to be discarded. To avoid a significant information loss, samples
are discarded in an iterative process one after another until |MLT | < Lmax again.
Hereby, the data sample with the lowest distance to any other two samples is
chosen for every iteration of the discarding process.

4.5 Final Model

The complete pseudocode of our proposed model is given in Algorithm 1.
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Algorithm 1. SAM-kNN Regression
Input: Data stream S, one si at a time
Output: ŷi for every si

1: MST , MLT = {s0, ..., sLmin} � Initialize STM and LTM
2: EST , ELT , EC = 0 � Initialize tracked errors
3: for si ∈ S \ {s0, ..., sLmin} do � Loop over the remaining data stream
4: BM = argmin(EST , ELT , EC) � Find best memory with lowest error
5: ŷi = kNNBM (si) � Predict with kNN of best memory
6: Update EST , ELT , EC

7: MST = MST ∪ {si} � Add current sample to STM
8: Evaluate smaller STM sizes
9: if STM is reduced then

10: Ot = MSTt \ MSTt+1 � Take discarded samples from STM
11: clean(Ot, MSTt+1) � Clean discarded samples with respect to new STM
12: MLT = MLT ∪ clean(Ot, MSTt+1) � Add cleaned samples to LTM
13: clean(MLT , MSTt+1) � Clean new LTM with respect to new STM
14: end if
15: end for

5 Experiments

We empirically evaluate our proposed method in an online scenario for detecting
leakages and sensor faults in water distribution networks – all experiments are
implemented in Python1.

5.1 Data

We use a version of the L-Town water distribution network as used in [16], as a
prominent realistic benchmark for anomaly detection – we only use Area A which
consists of 661 nodes, 766 links, and 29 (optimally placed) pressure sensors. We
build and simulate 10 scenarios where the first 5 scenarios each contain a single
leakage – we vary position, time and size of the leakage – and the remaining 5
scenarios each contain a single different sensor fault (position is varied):

– Scenario 6: Sensor measurement is overflowing over time – i.e. it is going to
infinity over time.

– Scenario 7: Gaussian noise is added to the sensor measurement.
– Scenario 8: A constant value is added to the sensor measurement.
– Scenario 9: Sensor measurement is set equal to zero.
– Scenario 10: Sensor measurement is shifted by a small amount.

Each scenario is simulated (using WNTR [8]) for 3 months and pressure sensors
are sampled every 5 min.

1 Implementation is available on GitHub: https://github.com/andreArtelt/SAM-
kNN-Regressor OnlineLearning WDNs.

https://github.com/andreArtelt/SAM-kNN-Regressor_OnlineLearning_WDNs
https://github.com/andreArtelt/SAM-kNN-Regressor_OnlineLearning_WDNs
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Fig. 1. L-Town network [16] – we only use “Area A” where we have 29 pressure sensors.

The data stream of sensor measurements is post processed by using a sliding
window of size 4 – we average all samples dimensional wise in this time window,
so that we end up with 29 dimensional samples.

5.2 Setup

We compare our proposed SAM-kNN regressor (see Sect. 4) to several other
online learning regressors. In order to justify the introduced overhead of the SAM
architecture, we compare its performance to vanilla regressors (kNN regression
and linear regression) wrapped as online learners by using the river toolbox2.

For each pressure sensor, we build a corresponding virtual sensor based on
all other pressure sensors – i.e. we try to predict (using a regressor) the pressure
based on the past pressure values of all other pressure sensors (see Sect. 3).
These virtual sensors are then used for a residual based anomaly detection –
i.e. an alarm (detected anomaly) is raised when the predicted pressure value
deviates too much from the observed pressure measurement. For each scenario,
the processed data stream is fed as batches of 200 samples to the regressors
(realizing the virtual sensors).

For each regressor, we evaluate the performance of the resulting anomaly
detector – since we are interested in the detection of a single anomaly (leakage
and sensor fault), we report true positives (TP), false positives (FP) and false
negatives (FN). Note that the true positives and false negatives are always either
0 or 1 because we only check whether an alarm was raised when the single
anomaly was present or not – however, for the false positives, we count every
single false alarm.
2 https://github.com/online-ml/river.

https://github.com/online-ml/river
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5.3 Results

The results for leakage detection, for each regressor and each scenario, are shown
in Table 1. Likewise, the results for sensor fault detection are shown in Table 2.
We observe the same/similar effects for both types of anomalies (leakages and
sensor faults): We observe that linear regression completely fails to detect the
anomaly – this indicates that a linear model is not sufficient to model the
hydraulic dynamics in the water distribution network and hence fails to detect
any anomalies. There is only one exception: For scenario 6 the linear model is
able to detect the sensor fault – recall that in this particular scenario the sen-
sor fault is characterized by a slowly overflowing sensor measurements (i.e. the
pressure value goes to infinity), which is expected to be easily detected because
it is a very “loud” fault. The kNN model shows good performance in detecting
the anomaly but has a huge number of false positives – i.e. it is too sensitive and
raises lots of false alarms. Our proposed SAM-kNN shows the best performance
– it is able to consistently detect the anomalies while having a small number
of false positives only. The huge reduction of the false positives in comparison

Table 1. Leakages: evaluation of residual based anomaly detection in water distribution
networks – note that each scenario consists of approx. 23000 samples.

Method Metric Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

SAM-kNN TP 1 1 1 1 1

FP 48 20 3 20 17

FN 0 0 0 0 0

kNN TP 1 1 1 1 1

FP 17057 19216 11146 19082 18751

FN 0 0 0 0 0

Linear regression TP 0 0 0 0 0

FP 0 0 0 0 0

FN 1 1 1 1 1

Table 2. Sensor faults: Evaluation of residual based anomaly detection in water dis-
tribution networks – note that each scenario consists of approx. 23000 samples.

Method Metric Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10

SAM-kNN TP 1 1 1 1 1

FP 155 20 157 96 156

FN 0 0 0 0 0

kNN TP 1 1 1 1 1

FP 18596 18596 18596 18596 18596

FN 0 0 0 0 0

Linear regression TP 1 0 0 0 0

FP 0 0 0 0 0

FN 0 1 1 1 1
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to vanilla kNN indicates that the overhead introduced by the SAM architecture
actually pays off.

6 Summary and Conclusion

Inspired by the SAM-kNN classifier, we proposed SAM-kNN regressor as an
online learner for regression. In contrast to other online learners, our proposed
method comes with a memory component which allows it to remember past
concepts quite easily. We empirically evaluated our proposed online learner in
an anomaly detection scenario for a realistic water distribution network – our
proposed online learner consistently outperforms other standard online learners.

Although our proposed method shows good performance for leakage and
sensor fault detection (two very common anomalies), it is unclear, how well it
performs for other (more complex) types of anomalies such as cyber-physical
attacks, etc. Furthermore, another challenge is high-dimensional data – in this
work our data had 29 dimensions which is already somewhat high but can still be
managed by our kNN based method. However, in case of really high dimensional
data, kNN will encounter performance problems – e.g. some kind of integrated
dimensionality reduction might be required. We leave these aspects as future
work.
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starting point for this work.

References

1. Alexander, A., Julius, T., Andrew, T., Ezera, A., Christine, A.: Contamination
potentials of household water handling and storage practices in Kirundo subcounty,
Kisoro district, Uganda (2019)

2. Chan, T.K., Chin, C.S., Zhong, X.: Review of current technologies and proposed
intelligent methodologies for water distributed network leakage detection. IEEE
Access 6, 78846–78867 (2018)

3. Farley, M., Trow, S.: Losses in Water Distribution Networks. IWA Publishing
(2003)

4. Gama, J.: A survey on learning from data streams: current and future trends. Prog.
Artif. Intell. 1(1), 45–55 (2012)

5. Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.: Machine learning for
streaming data: state of the art, challenges, and opportunities. In: ACM SIGKDD
Explorations Newsletter, pp. 6–22 (2019)
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