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Abstract. Machine learning with a reject option is the empowerment
of an algorithm to abstain from prediction when the outcome is likely to
be inaccurate. Although the topic has been investigated in the literature
already some time ago, it has not lost any of its relevance as machine
learning models are increasingly delivered to the market. At present,
most work on reject strategies addresses classification tasks. Moreover,
the majority of approaches deals with classical batch learning scenar-
ios. In this publication, in contrast, we study the important problem of
reject options for incremental online regression tasks. We propose differ-
ent strategies to model this problem and evaluate different approaches,
both in a theoretical and a real world setting from the domain of human
motion prediction; from the methods which we evaluate, a clear winner
emerges as regards accuracy and efficiency.
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1 Introduction

In machine learning a reject option is the ability of an algorithm to abstain
from prediction when the outcome is likely to be inaccurate [8]. Classification
with reject option has already been studied many decades ago [3], and it has
been proven that certainty-based rejection offers an optimal strategy, provided
the underlying probability distributions are known. In practice, this strategy is
usually approximated based on suitable surrogates, since the true probability
distribution is not known [2,6,9]. However, most reject option applications from
the literature have been proposed for classification tasks.

In this contribution, we are interested in reject options for regression tasks
such as arise in online time series prediction. Only a few reject option systems for
regression tasks have been published recently. In the work [12] the authors pro-
pose a new uncertainty function for regression called Blend-Var. The approach
tackles the rejection problem from a risk-coverage point of view and measures
the variance of multiple predictions on an input image that was rotated, reflected
or shifted. [7] introduces SelectiveNet, an approach where a deep neural network
with two separated heads (one for prediction and one for rejection) is trained
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end-to-end in a single model. The work [1] presents a neural framework, that is
based on a generalized meta-loss function. It revolves around the simultaneous
training of two neural networks, one for prediction and the other for rejection.
Finally, [4] proposes a reject scheme which targets general prescription methods
based on an extended cost functions, incorporating costs for rejection, and con-
trols the reject strategy by an explicit adaptive output value, indicating whether
the current input should be rejected. Here, regression or classification prescrip-
tions are trained simultaneously to the reject indicator output.

However, all of these approaches deal with reject options in an offline set-
ting; i.e., training data are given prior to training, and the regression model
together with the reject strategy can be trained based on these batch training
data. We, on the other hand, are interested in reject options for incremental
regression tasks. Incremental learning tasks learn from a stream of data which
arrive continuously over time rather than a priorly available batch of training
data [16]. This is an important scenario e.g. in the context of lifelong learning,
where models need to be continuously adapted to a possibly changing environ-
ment, or product personalization, where a smart device needs to be adapted to
the specific demands of a user to enable full functionality.

In the specific setup which we consider in this contribution, the motivation
stems from an application of learning schemes for an optimization of control of
exoskeletons. Modern exoskeleton robots utilize machine learning to facilitate
the prediction of upcoming movements in order to provide adequate support for
the user. Hereby, incremental algorithms can be of great help because they can
automatically adapt to new movement patterns [17,23]. However, the adaption
usually takes some time. In such settings, no support in a smooth movement
is better than applying the wrong support; hence it can be beneficial to realize
incremental learning with reject option in places that outcasts those samples of
a novel movement pattern that are highly afflicted by errors in the prediction
forecast. Therefore, in this contribution, we investigate how reject options can
be facilitated that work next to an incremental algorithm and ideally reject only
the initiate samples of new concepts in the data stream so that the underlying
regressor has time to adapt itself. We propose different approaches for this task
and evaluate the different methods in a scenario which incorporates movement
patterns measured in a realistic environment and with different individuals. We
will demonstrate that one modeling in particular shows very promising results.

This paper is structured as follows: The next section explains the problem
setting. Afterwards, we introduce the different rejection approaches that we com-
pare. Then, the design of our experiments is revealed and subsequently the results
are presented. Finally, the last section concludes the paper.

2 Problem Setting

We use incremental regression to predict a data stream one instance after another.
Hereby, we define a data stream S = {s1, s2, 83, ..., $¢} as a potentially infinite
set of data points s; € R™. The task is predicting the vector sy41 from previous
instances of the stream. An incremental model is an algorithm that receives a data
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stream instance after instance and instantaneously generates a sequence of mod-
els hy, ha, hs, ..., hy which are used for next step prediction, i.e. h;_1(s;) should
approximate the value s;;1 based on the function h;_; that acts on the current
instance and predicts the value of the next instance of the data stream. After that,
the true value s;4; is revealed and a new model h; is learned. To evaluate this
regression task, the Interleaved train test error (ITTE) is applied:

t
BS) = | 7 3 (hicals) = sisa)?
i=1

ITTE measures the Root Mean Squared Error (RMSE) over every model h; up
to time t. By E(s;) we refer to the sequence of errors rather than the average.

Furthermore, a Reject Option in an incremental learning scheme is a function
r(si, E(s;)) — {0,1}, that acts on the current input data or the local error of
the model h;_1, i.e. a subpart or summary statistics of E(s;), and produces an
indicator that governs whether the current sample is rejected or not. To evaluate
the rejection function, we can refer to the ITTE over all non rejected samples.
This should be compared to the percentage of points which are rejected, since
these two quantities typically form a Pareto front: good reject strategies should
result in an improved remaining I'TTE the more samples are rejected.

3 Rejection Models

We evaluate four different approaches for a Reject Option in incremental regres-
sion. All of these approaches are agnostic to the underlying regression algorithm
and can be used in combination with any online regression model. Based on the
findings in [11], we use a simple kNN regressor to conduct our experiments, since
it displayed competitive and particularly robust results in that work.

3.1 Drift Rejection

The first rejection is based on drift detection. It monitors the local errors of the
underlying regression model on the incoming data stream and applies a standard
drift detection algorithm to detect changes in those error values, using any drift
detection technology [10]. The reasoning behind this is, that when changes in
the error occur, e.g. the error increases, the algorithm does not perform well
in this area of the data stream and therefore samples should be rejected until
the algorithm has learned to deal with the current concept. Here, any drift
detection method from the literature can be used. We opted for the Page-Hinkley
drift detector [21] and its implementation from the online library River [18]. To
determine, how long samples should be rejected once drift has been detected, we
use a simple strategy, that monitors the overall mean error on the data stream,
and compares it to the rolling mean of the last n samples. When the rolling mean
falls under the long term mean, we stop the rejection and the drift detector is
activated again. The hyperparameters that can be adjusted in this approach are
the threshold for drift detection of the Page-Hinkley algorithm and a value «,
that scales the long term mean used to determine the end of a rejection phase.
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3.2 Local Outlier Probabilities Rejector

The next two approaches are based on Local Outlier Probabilities (LoOP) [13].
LoOP is a local density based outlier detection method that provides outlier
scores in the range [0,1]. We use LoOP for two different rejection approaches.

LoOP Data. In the first approach we apply LoOP to the input data. Unlike
drift-based rejection, which targets critical time steps, this approach targets
points in space which are unknown by the current model. When a new concept
manifests itself in the stream, LoOP should assing high outlier probabilities to
these input samples. Since, the underlying incremental regressor has not learned
the new concept yet, these samples should be rejected until enoug of them have
been processed, rendering them not outliers anymore.

LoOP Error. The second approach, like the drift rejector, applies LoOP to the
error stream generated by the underlying regressor. The idea is that unknown
error profiles indicate regions of high insecurity of the process where prediction
should be rejected. If the error values increase, they become outliers and should
be labeled as such by higher outlier probabilities. So, in theory, samples with
high error values are rejected until the error decreases into normal ranges again.
In both variants, the hyperparameter that governs the rejection rate is a
cutoff probability 8 that defines the threshold from which to reject samples.

3.3 Baseline Rejection

The last rejection strategy is a simple baseline approach. It monitors the long
term mean error over the whole data stream and rejects all samples that exhibit
a local error higher than the mean. Hence rejection takes place based on the
recent observed error. Here, the hyperparameter is a value v that scales the long
term mean in order to facilitate various rejection rates.

4 Experiments

As stated previously, we use a kNN regression model which incrementally acts
on time windows as underlying model. We use two distinct types of data sets.
Theoretical benchmark data with known ground truth and data from a real
world scenario from the domain of online human motion prediction.

4.1 Chaotic Time Series Data

For the theoretical part, we create special benchmark data sets from chaotic
systems. We use the Lorenz system [14] along with the Roessler system [22] as
well as the Tinkerbell map [20] along with the Duffing map [5] to create four
new benchmark data sets. Hereby, the Lorenz and Roessler systems are three
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Fig. 1. Example plot of the first 100 data points in the first dimension for all chaotic
systems. The first row shows the Tinkerbell map, the second row shows the Duffing
map, the third row shows the Roessler system, the last row shows the Lorenz system.

dimensional, while the Tinkerbell and Duffing map are two dimensional data
streams. Figure 1 shows the expansion of the first 100 data points in a stream
created from each of the chaotic systems. Our benchmark data sets are created
from the raw streams in the following way. Data streams holding 2000 instances
of the three dimensional Lorenz and Roessler systems are glued together in
alternate fashion, to form a data set with two sudden change points of which
the latter initiates the reoccurring of the first system for a second time. The
same is done for the two dimensional Tinkerbell and Duffing maps, leading to
four data sets of 6000 data points each. Figure2 shows a sample plot of the
Roessler-Lorenz data set.

4.2 Real World Data

For the real world part, we use data from the NEWBEE database [15]. This data
was created at the Honda Research Institute Europe and comprises human gait
recordings from 20 participants that completed three different walk courses with
various terrains, such as stairs, slopes and level walk. The data was recorded
using full body xsens suits as well as insole trackers. We use a subset of this
database comprising of four different persons on the course-A track, where we
only use the lower body features of acceleration and angular momentum in three
directions. This leads to an input space of 42 features.

4.3 RMSE-Reject Curves

We evaluate and compare the different rejection approaches by means of Root
Mean Squared Error (RMSE) - reject curves [19]. This means, that we compute
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First dimension of the Roessler-Lorenz data set
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Fig. 2. Example plot of the first dimension of the Roessler-Lorenz data set. The first
2000 samples are taken from the Roessler system, followed by another 2000 points
from the Lorenz system. In the end another change point back to the Roessler system
is induced.

the rejected samples for a wide range of possible hyperparameters in order to
acquire runs with different rates of rejection. Then, we plot the RMSE of the non
rejected samples per rejection rate and evaluate the algorithms by comparing the
curves. Different RMSE-reject curves for a given data set all start at the same
point in the plot. This point is given by the RMSE of the underlying regressor on
the total data set, i.e. on a run with 0% rejection. As the rejection rate increases,
the RMSE on the non rejected data samples drops, until it reaches 0, for a 100%
rejection. This means, that algorithms with lower curves outperform those with
higher curves because they exhibit a lower RMSE for the same rejection rates.

4.4 Chaotic Data Experiment

In the first experiment we evaluate the four rejection approaches on the chaotic
data sets. It is important to note, that all sets have different internal complexities,
i.e. they exhibit different levels of difficulty for the underlying regressor. For the
two dimensional systems, the Tinkerbell map is easier than the Duffing map,
while for the three dimensional systems, the Roessler expansion is easier than
the Lorenz expansion. Overall, the Lorenz system is the hardest to predict.

All chaotic data sets consist of two different chaotic expansions, one sand-
wiched in between the other. This means, that the underlying incremental regres-
sor first learns one system and then suddenly has to switch to learning the next
system. This clear and sudden switch creates a situation that is very suitable for
the deployment of a reject option. Ideally, a rejection approach should reject the
initial samples of the new system because the underlying regressor needs time



254 J. Jakob et al.
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Fig. 3. Error plot for the chaotic experiment on the Duffing-Tinkerbell data set.

to adequately learn it and return accurate predictions. This, then should lead to
a reduction in RMSE compared to a setting without rejection.

An example of the error progression of the underlying regressor for the
Duffing-Tinkerbell data set is given in Fig. 3. We pre-train the regressor on 1000
samples and plot the local errors and accumulating mean errors on the subse-
quent 2000 samples. Hence the onset of the Tinkerbell expansion is located at
time step ¢ = 1000. One can observe, that the local errors increase drastically
here and then gradually decrease as the regressor adapts to the new system.

4.5 Real World Data Experiment

In the second experiment we evaluate the different approaches in a real world
setting. Here, data is complex and exhibits a high degree of noise. This leads to
a scenario, where the local errors fluctuate strongly over the whole series.

An example is shown in Fig. 4. It shows the error progression for the NEW-
BEE CourseA Person 1 data set in the same fashion as Fig. 3. One can observe,
that changes in the underlying pattern, given for example at time steps ¢t = 300
and ¢ = 1300, are not leading to dramatic error spikes as in the chaotic data.
Instead, the behaviour of the error values is a lot more coherent, which renders
it harder to work on with error based rejection approaches.

5 Results

In this section, we first report the results for both experiments by means of
RMSE-reject curves. Afterwards, we evaluate the effect of different rejection
rates as the relative reduction of the RMSE compared to a scenario without
rejection in tabular form.
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Error Plot for Dataset: NEWBEE CourseA Person 1
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Fig. 4. Error plot for the real world experiment on the NEWBEE CourseA Person 1
data set.

5.1 Chaotic Data Results

The results for the chaotic data experiment are visualized in Fig.5. The plots
show the RMSE-reject curves of all rejection approaches for all chaotic data
sets. The first thing to note is, that both LoOP approaches do not seem to
work very well, meaning, they do not reduce the error substantially even when
the rejection rate increases dramatically. In the case of LoOP Error this can be
explained by the fact, that the error values do not spread out over a large space.
Therefore, only the first few high errors are classified as outliers while the then
slowly diminishing error values form their own group, and thus are not perceived
as outliers anymore. The LoOP Data approach on the other hand does not work
well because the different chaotic expansions do not seem to be very far apart
in input space.

The Page-Hinkley rejector is the best performing approach on three out of
the four data sets and tied for first place on the remaining one.

The baseline works rather well, but only on the Tinkerbell-Duffing and the
Roessler-Lorenz data sets. These are those sets, where the easier chaotic expan-
sion is intercepted by the harder one. Instead, when the harder expansion comes
first, the baseline does not work well because it tracks the mean error over the
whole sequence and therefore is faced with a gradually reducing error in the
interception part, leading to none adequate rejections.

Another observation to note is the behaviour of the approaches with regard
to granularity. Hereby, the baseline shows the most agile behaviour, meaning
that it is possible to tweak its hyperparameters in such a way as to enable the
realization of a wide array of rejection rates. The Page-Hinkley approach on the
other hand, does not come with such a fine granularity. Due to its reliance on
active drift detection it can only realize larger spaced rejection rates. Similarly,
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RMSE-Reject Curves for Chaotic Data Sets
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Fig. 5. RMSE-Rejection Curves for all rejection methods on the four chaotic data sets.

the LoOP approaches can not match the baseline in terms of agility with regard
to the space of rejection rates.

5.2 Real World Data Results

The RMSE-reject curves of the real world data experiment are visualized in
Fig. 6. Again, and for the same reason as in the previous experiment, the LoOP
error approach does not yield good results. Interestingly, the LoOP Data rejector
now becomes the second best performing system, tying for first place on two out
of the four data sets and coming in second on the remaining ones. This can be
explained by the much more complex input space, where clear differences of the
samples can now manifest themselves.

Same as in the previous experiment, the Page-Hinkley rejector is the best
performing approach, although it is tied for first place with the LoOP Data
system on two out of four data sets.

The baseline shows more ambiguous results. It is the worst performer on one
data set but matches the performance of LoOP Data in another one. For the
remaining ones it is clear, that it does not match LoOP Data and Page-Hinkley.

5.3 Tabular Evaluation

Here, we evaluate the previous experiments by means of the reduction in RMSE
for different rejection rates compared to a scenario without rejection. The results
are listed in Table1l. This table shows the mean reduction of RMSE on the
chaotic and real world data sets for four distinct rejection rates. As observed
previously, the Page-Hinkley approach wins outright in all categories. On the
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RMSE-Reject Curves for Real World Data Sets
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Fig. 6. RMSE-Rejection Curves for all rejection methods on the four real world data
sets.

chaotic data sets, it is followed by the baseline, while the LoOP systems come
in last. However, on the real world data, the results of the baseline diminish and
it gets overtaken by the LoOP Data approach.

Furthermore, one can observe, that the rejection works much better on the
chaotic data sets than on the real world setting. This is probably due to the fact,
that those sets are a lot less complex and less noisy than the real world data sets.
However, the Page-Hinkley approach still manages a reduction between 10% and
20% on various rejection rates. In our opinion, this is a very promising result
with high relevance in practice.

Table 1. Relative reduction in RMSE (in %) for different rejection rates. All values
have been averaged over all chaotic and real world data sets respectively.

Rejectors Data sets and rejection rates

Chaotic data Real world data

20% | 30% |40% |50% |20% |30% |40% |50%
LoOP Error |22.23]20.53|20.28 20.28 |1.78 |2.12 |2.12 |2.12
LoOP Data |24.56 |25.94 | 28.52|33.66 | 7.55 |10.22|12.89  14.65
Page-Hinkley | 52.24 | 58.08 | 64.85 | 73.38 | 10.39 | 14.75 | 16.92 | 19.79
Baseline 40.00 | 42.31 | 47.47 1 54.70 | 4.21 | 5.83 |7.51 |9.05
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6 Conclusion

In this contribution we investigated the problem of reject options for online
regression tasks. Out of the four models that we compared one clear winner
emerged. The Page-Hinkley approach works very well on easy data with clear
rejection conditions but it also delivers adequate results in a more messy real
world environment. The baseline is the cheapest version to apply but it can only
deliver good results when the circumstances are appropriate. LoOP Data works
better when the input space is more complex and a clear discrimination of input
samples is possible. Finally, LoOP Error is an approach that is not suitable for
the rejection problem because it does not yield better RMSEs for rising rejection
rates, meaning its rejections are sub par.
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