Generating Coherent and Informative Descriptions for Groups of Visual Objects and Categories: A Simple Decoding Approach

Nazia Attari, David Schlangen, Heiko Wersing, Sina Zarriess

2022

Preprint:

This is an accepted article published in INLG 2022 Proceedings. The final authenticated version is available online at: https://doi.org/[DOI not available]
Generating Coherent and Informative Descriptions for Groups of Visual Objects and Categories: A Simple Decoding Approach

Nazia Attari
Research Institute for Cognition and Robotics
Bielefeld University, Germany
nattari@techkfak.uni-bielefeld.de

David Schlangen
Computational Linguistics
University of Potsdam, Germany

Martin Heckmann
Aalen University, Germany

Heiko Wersing
Honda Research Institute Europe, Germany

Sina Zarrieß
Faculty for Linguistics and Literature Studies
Bielefeld University, Germany

Abstract

State-of-the-art image captioning models achieve very good performance in generating descriptions for instances of visual categories and reasoning about them, e.g. imposing distinctiveness of the description in the context of distractors. In this work, we propose an inference mechanism that extends an instance-level captioning model to generate coherent and informative descriptions for groups of visual objects from the same or different categories. We test our model in the domain of bird descriptions. We show that group-level descriptions generated by our method are (i) coherent, pulling together properties that are true for all or majority of its instances, and (ii) informative, as they allow an external BERT-based text classifier to identify the target category more accurately in comparison to single-instance captions and are preferred by human evaluators.

1 Introduction

State-of-the-art image captioning models excel at generating semantically accurate descriptions of single images (Anderson et al., 2018; Cornia et al., 2020) and can be enhanced with communicative-pragmatic reasoning procedures that impose distinctiveness of the description in the context of distractors at inference time (Vedantam et al., 2017; Cohn-Gordon et al., 2018; Zarrieß and Schlangen, 2019). To date, however, discriminative image captioning has been restricted to informative instance descriptions and has not yet explored descriptions for groups (or sets) of objects – a classical problem in referring expression generation (REG) (Stone, 2000; Gardent, 2002; Horacek, 2004; Gatt, 2007; Krahmer and van Deemter, 2011). In this paper, we investigate whether an instance-level captioning model can be extended to generate coherent and informative descriptions for groups of visual instances, by integrating communicative-pragmatic reasoning at inference time.

Generating a description for a group of visual entities require optimizing two objectives: (i) coherence, i.e., the description should pull together properties that are true for all or most of the groups’ instances and (ii) informativeness, i.e., it should mention those properties that are distinctive in a particular context (Gatt, 2007). Krahmer and van Deemter (2011) point out that the traditional Incremental Algorithm for symbolic REG directly applies to sets of entities, when they have certain properties in common. In this paper, we test whether this also holds for neural captioning models and propose a simple task, an inference scheme and experimental protocol for generating group-level descriptions. In particular, we extend the emitter-suppressor beam search by Vedantam et al. (2017) with an additional, simple coherence objective.

The ability to generate descriptions of groups is not only relevant for reference but also for explanation tasks, which become increasingly important in machine learning (Ribeiro et al., 2016; Lundberg and Lee, 2017). Here, systems commonly need to verbalize their knowledge about the shared properties of instances in a category, for instance, when learning to classify birds in images (Hendricks et al., 2016). However, an instance-based explanation might produce a rather idiosyncratic description of an image rather than a more representative description of the categories (that is true for majority of instances in a set). This becomes cru-
Research on language generation from visual inputs often builds upon generic image captioning models that are trained to produce “neutral” descriptions for images depicting instances of objects or scenes (Vinyals et al., 2015; Xu et al., 2015; You et al., 2016; Rennie et al., 2017; Anderson et al., 2018; Hussain et al., 2019; Cornia et al., 2020; Zhou et al., 2020; Luo et al., 2021). One line of work has extended captioning towards more complex visual inputs, e.g., sequences of images depicting events or stories (Yu et al., 2017; Mun et al., 2019; Gao et al., 2020). Other work has looked at enhancing captioning models towards generating more informative outputs that fulfill specific communicative goals, by leveraging contextual and contrasting information along with the target image at inference time (Vedantam et al., 2017; Cohn-Gordon et al., 2018; Zarrieß and Schlangen, 2019; Nie et al., 2020). Our work connects these two lines by extending Vedantam et al. (2017)’s discriminative instance-level decoding scheme for groups of image instances.

Our task and set-up is similar to Li et al. (2020)’s work on context-aware group captioning, where the goal is to build a model that captions a group of images with a matching scene graph (e.g. women in chair) in the context of a more general reference set of images (e.g. women). Their approach rests on a supervised model that is trained on a dataset of group captions (compiled from instance captions) and that performs group-wise visual feature aggregation with self-attention and contrastive visual feature construction. While Li et al. (2020) investigate rather short group descriptions for common objects (e.g., women with hat) with an average caption length of around 3, we test our approach on bird descriptions which involves a careful selection of properties for informative and coherent descriptions that have an average length greater than 10. Moreover, our work aims at describing groups by reasoning at the word level about which words can be used to refer to the group’s instances, without retraining the underlying captioning model.

In comparison to earlier work on REG for sets, though, our approach targets rather simple descriptions of groups that essentially mention the properties that hold for the members of the set. Thus, we do not address more complex linguistic phenomena such as plurals, coordination, disjunction, or quantification. Gatt (2007), for instance, investigates conceptual coherence for the generation of sets whose entities cannot be referred to by the same head noun, triggering a competition between coordinations like the chef and the engineer and
the Italian and the Frenchman. As our approach assumes that group descriptions can be decoded from an instance-level captioning model, it will not be able to generate linguistic structures that do not appear in the training data of that captioning model. For instance, phenomena like coordination do not appear in our descriptions which typically enumerate properties of a single bird, named bird, see Figure 1. This is the case for our model as it uses bird description data where all captions refer to a single bird, which is named bird, see Figure 1.

3 Approach

This section defines the task and decoding procedures for coherent and informative group-level captioning.

3.1 Task Description

We assume to be given a dataset that pairs image instances i with verbal descriptions s and some category information c. We also assume that a captioning model of some sort, which we refer to as speaker $S(I)$, is trained on this data and predicts the probability of sequences of words given a single image $p(s|ii)$.

We frame the task of generating group descriptions as a decoding or inference task, where the input to the model is a target group of n instances, $G_t = \{i_1, i_2, \ldots, i_n\}$ and the goal is to predict $p(s|G_t)$ based on the speaker $S(I)$, without any further training or fine-tuning of the instance-level captioning.

This basic group description task can be extended towards a discriminative description task where the model receives an additional context, i.e. a distractor group of $G_d = \{i_1, i_2, \ldots, i_m\}$. In discriminative group description decoding, the goal is to predict a pragmatically informative sequence of words s such that a listener can distinguish the target from the distractor group or, more formally, such that $p(G_t|s) > p(G_d|s)$.

3.2 Coherent Group Decoding

The objective of the basic group-level speaker $S(G_t)$ is to maximize the probability of the output sequence given all images in the target group:

$$S(G_t) = \arg\max_s \frac{1}{n} \sum_{i=1}^{n} \log p(s|i)$$

(1)

As the space over possible output sequences s cannot be searched exhaustively, we approximate this objective via beam search: at every time step, we (i) input all instances of the group to speaker $S(I)$ in parallel, (ii) compute the mean of log-probabilities over the entire vocabulary of all instances of the group and (iii) put the top-k words on the beam, as input to the next time-step. The stepwise averaging over log word probabilities directly implements the idea of coherence, i.e. the model should verbalize the common properties that are likely for all instances in the group.

3.3 Discriminative Group Decoding

We expect that $S(G_t)$ produces descriptions that summarize common properties of a group, but that it may not always select particularly informative properties that accurately discriminate a group in context. Thus, we define the discriminative group speaker $S(G_d)$ for instances in the distractor group, with the following objective:

$$S(G_d) = \arg\max_s \frac{1}{m} \sum_{k=1}^{m} \log p(s|i_k)$$

(2)

We use $S(G_d)$ to induce discriminativeness of the output by combining it with $S(G_t)$ and reconstructing the emitter-suppressor beam objective by Vedantam et al. (2017) for groups:

$$S(G_{t,d}) = S(G_t) - (1 - \lambda) \cdot S(G_d)$$

(3)

$S(G_{t,d})$ is the group speaker that maintains a trade-off between coherence and informativeness of the generated sequences, and can be pushed towards higher discriminativeness with appropriate values of the λ parameter.

The speakers in Equation 3 can be further factorized, incorporating word probabilities for the sequence as $\prod_{\tau=1}^{T} p(s_{\tau}|s_{1:\tau-1}, I)$, where T is the length of the sentence. Hence, we obtain the following objective for our inference mechanism:

$$S(G_{t,d}) = \arg\max_s \sum_{\tau=1}^{T} \frac{1}{n} \sum_{i=1}^{n} \log p(s_{\tau}|s_{1:\tau-1}, i_t) - \lambda \left(\frac{1}{m} \sum_{k=1}^{m} \log p(s_{\tau}|s_{1:\tau-1}, i_k) \right)$$

(4)

Again, we approximate this objective via beam search. At every time-step, we subtract the average
Figure 2: Illustration of an example phrase generated by discriminative group-level decoding with beam size 1 (white belly white wingbars in blue boxes). The decoding scheme favours coherent and discriminative properties over less discriminative ones predicted by (target only) group-level decoding (blue crown in top green boxes).

The log probability of a word for the target instances by its log probability for the distractor instances. Words that have high probability for the in-group images and low probability for the out-group images will be more likely to be put on the beam than words that are equally probable for both, or even more probable for the out-group.

We demonstrate the mechanics of our decoding procedure in Figure 2, with a beam size of 1 for simplicity. It shows how the speaker S, at inference time, combines probability scores of the respective groups and produces the best possible output words. In our experiments, we used a beam size of 10.

4 Experimental Set-up

4.1 Data

We base our work on the CUB-200-2011 dataset (Wah et al., 2011), originally designed for subordinate category categorization, detection and part localization. It contains 11788 images of 200 North American bird species and every species has approximately 60 image instances. Each image instance is characterized by 28 symbolic attributes using an online tool for bird identification\[1\] curated by bird experts, further leading to an extensive set of human-annotated 312 binary attribute-value pairs (e.g. beak-shape:hooked, belly-color:white, tail-pattern:spotted). For our first experiment, we used this symbolic information to form groups of image instances from different bird categories.

We also have access to (five) textual descriptions for each image instance collected by Reed et al. (2016); the annotators were asked to mention the physical bird attributes (wing color, beak shape, body color and so on) visible in the image without any reference to the bird species and using basic vocabulary unlike sophisticated expert-level vocabulary. We note, however, that in some cases, the annotators also mentioned non-discriminating properties, for instance, where the bird is looking at, it’s flying or sitting.

4.2 Sampling Groups

The target groups (G_t) in our experiments can be of two kinds: (i) groups of instances from different bird categories with a shared attribute, (ii) groups of instances from the same bird category. For the latter, we induce additional context from a similar distractor group (G_d), composed of instances from a distractor bird category. We use distractor categories that belong to the same bird family as the target, for instance, Black-footed-Albatross and Laysan-Albatross from the bird family Albatross, similar to Vedantam et al. (2017), to test whether
we can generate informative descriptions in challenging contexts.

For training the instance-level speaker \(S \), we used the split as provided by Hendricks et al. (2016) (train:4000, val:1994, test:5794). For our shared attribute grouping, we sample a target group of size 3 for every instance in each split, such that we obtain 1994 and 5794 groups for val and test. For category-level grouping, we sample target groups of size 3 and distractor groups of size 4 for each instance. There are 7 bird species that do not have distractors from the same family and we ignore these here. For discriminative group decoding, we obtain 3358, 1646, and 4833 groups for train, val and test respectively.

4.3 Model

We first train an image classifier by finetuning a pretrained resnet-101 architecture to predict bird categories from bird images. The training parameters were set to: batch size 16, (RGB) image size as 448, learning rate 0.001 for a total of 50 epochs with a decay factor of 0.1 after every 20 epochs. We use this image classifier as visual encoder for our speaker \(S(I) \), the image captioning model.

We trained two versions of our speaker \(S(I) \), (i) a basic recurrent LSTM model architecture from Xu et al. (2015) and (ii) a basic Transformer by (Vaswani et al., 2017). Generally, transformers are currently the more popular model due to their parallel processing and multi-head attention architecture (Devlin et al., 2019; Lan et al., 2020), but they may also be more data-intensive. We wanted to see how both architectures (LSTM and Transformer) perform given our dataset is quite small. Both models use the visual encoder described above. Both our captioning models, the LSTM and Transformer, achieve similar CIDEr-D validation scores of 49.4 and 49.5 respectively, similar to existing captioning models for the birds data (Vedantam et al., 2017).

5.1 Attributes

We sample groups with shared attributes based on the symbolic attribute annotations in the birds data. We use the attribute-value pair as a reference pattern that needs to be included in an accurate, coherent group description (e.g., for \textit{belly-color:white} we look for \textit{white belly}). It is important to note that the symbolic attribute annotations are significantly more detailed and elaborate in terms of their vocabulary (Section 4.1) than the captions which were crowd-sourced with non-experts. This results in a mismatch between aspects of birds that are annotated and properties that are verbalized in the captions and that we can expect the captioning model to be able to pick up. To tackle this, we restricted our group sampling to attributes that can be detected in captions by simple pattern search. We ranked the symbolic attributes present in the captions by frequency and selected randomly four more frequent and two less frequent attributes for our experiment. For simplicity, we used only one shared attribute per group at a time and no distractors, as we expect to obtain rather noisy distractor sets due to above mentioned issues with the attribute annotations.

5.2 Results

We assess the accuracy of decoding for groups with a shared attribute, i.e. whether the output description contains the shared attribute as identified by pattern search. Table 1 shows that for 4 out of 6 selected attribute-value pairs, group captions are clearly more likely to mention the selected common property than the instance captions, with increase in accuracy of up to 17% for \textit{bill length}. We also note that the instance-level captions generated by the LSTM and Transformer show differences in their attribute patterns, despite their overall similar performance. We will discuss differences between the two models further below. Figure 3 shows a qualitative example where the group descriptions mention the shared property (\textit{blue wing}) in contrast to all the instance descriptions.

For the less frequent attribute \textit{bill shape} in the ground-truth instance captions, and not so distinctive attribute \textit{eye color} (as most of the times it’s value is black), the accuracy is low for both instance and group-level decoding and the instance-level decoding outperforms the group-level decoding for the \textit{bill shape} attribute. This suggests that achieving coherence in group descriptions in decoding is contingent on shared properties occurring with

2 Code and models can be found here
Table 1: Accuracy of generated group captions and instance captions in terms of mentioning a shared attribute.

<table>
<thead>
<tr>
<th>Shared Attributes</th>
<th>Frequency (total)</th>
<th>LSTM group instance</th>
<th>Transformer group instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>crown color</td>
<td>9693</td>
<td>31.57</td>
<td>20.57</td>
</tr>
<tr>
<td>belly color</td>
<td>9379</td>
<td>47.67</td>
<td>34.85</td>
</tr>
<tr>
<td>eye color</td>
<td>8666</td>
<td>14.86</td>
<td>10.06</td>
</tr>
<tr>
<td>bill length</td>
<td>7372</td>
<td>61.63</td>
<td>44.61</td>
</tr>
<tr>
<td>bill shape</td>
<td>6882</td>
<td>7.61</td>
<td>11.54</td>
</tr>
</tbody>
</table>

(a) this bird has a white belly and a breast with a blue belly and a blue long bill crown head.
S(G)_LSTM: this is a bird with blue wings.
S(G_t,a)_Transformer: this is a bird with blue wing.

Table 1: Accuracy of generated group captions and instance captions in terms of mentioning a shared attribute. Frequency shows occurrence of a shared attribute in original captions.

6 Experiment 2: Category-level Grouping

In the second experiment, we test whether our decoding mechanism generates coherent and informative descriptions of groups that correspond to categories, i.e. instance captions are sampled based on category-level annotation in the birds dataset and, optionally, paired with distractor groups/categories.

6.1 Evaluation

Evaluation is challenging as we do not have vision-oriented ground-truth category descriptions. Expert-level category definitions from, e.g., bird dictionaries would not help to objectively assess our group descriptions as they use a more sophisticated vocabulary and commonly mention non-visual properties that cannot be learned by a captioning model. Therefore, we combine automatic evaluation based on automatically selected, prototypical reference descriptions, automatic category inference and human evaluation on the most promising models.

General quality of group captions We want to ensure that we do not lose lexical richness by moving from instance to group descriptions, as these problems have commonly been observed in neural NLG models. We computed average sentence length and Dist-k (Ippolito et al., 2019) (distinct unigrams and bigrams) to measure lexical diversity and repetitiveness in generated captions.

Prototypical reference captions We compile the reference set for a category by taking the top-5 prototypical descriptions for each bird category. We select these descriptions using kmodes clustering (de Vos, 2015) on pre-trained BERT sentence embeddings. We compute the centroid of the bird description embeddings and take the five most similar instance descriptions (according to cosine-similarity) as a stand-in for general, prototypical descriptions for the target category. Figure 4 shows an example of the top-5 descriptions determined by the clustering algorithm. It shows that they cover distinctive representative parts of a bird category, thereby getting rid of the erroneous (non-discriminating) descriptions.

Overlap with target and distractor references We use two standard overlap metrics, BLEU-4 (Papineni et al., 2002) and CIDEr (Vedantam et al., 2015), to assess the similarity of generated group descriptions with reference sentence groups. We re-purpose these for: (i) for target-target similarity, i.e. measuring the overlap of generated group descriptions to a set of references for the target group, (ii) for target-distractor similarity, i.e. measuring the overlap of generated group descriptions to a set of references for the distractor group. We expect the target-target similarity to go up for group captions and the target-distractor similarity to go down for group captions that are informative.

Category-level Inference In order to verify that the generated group descriptions indeed pull to-
gether properties relevant for the target category and make it distinct from the other distractor category, we learn an external text classifier based on BERT (Devlin et al., 2019). As we do not have ground-truth category descriptions, we use the generated group captions from our different group decoding methods and for a fair comparison, generated instance captions from the speaker \(S(I) \) for training. The performance of these text classifiers give us some indication as to whether using group of instances during decoding leads to descriptions that make it easier to identify the target category, as compared to descriptions for single instances, in the absence of concrete visual instances. This resembles a setting where a speaker explains to a listener the properties that it has learned to detect for a given category. As for the training parameters of the text classifier, we set the batch size to 64 and learning rate to 0.00002 for a total of 60 epochs.

Human Evaluation We performed human evaluation on the most promising LSTM and Transformer speaker models using the Amazon Mechanical Turk (AMT) crowdsourcing platform, in order to analyze whether group descriptions were preferred over instance descriptions for describing a group of image instances. We showed the participants all images from the target group and two competing descriptions: (A) the generated discriminative group description and (B) the generated instance description (from a random instance in the group). We asked them to carefully observe the images and select the description(s) that best describe all or most of the images in the group in a forced-choice task with 3 options, (A), (B) or (C) both. We included the third choice as we observed that the instance descriptions in the birds data can be very similar to the prototypical description of the target category and we wanted to avoid random choices by participants for these cases. We randomly selected 2 groups out of 60 bird categories, having a total of 120 group and instances descriptions. More details on the set-up are provided in Appendix B.

6.2 Results

Figure 5 shows generated descriptions produced for instances and groups using category-level decoding with both LSTM and Transformer based speakers.

Quality and Overlap Metrics Table 2 reports the automatic overlap metrics for target-target similarity and for target-distractor similarity for different models and decoders. These results indicate that there is a general positive tendency towards higher target-target similarity and lower target-distractor similarity when using group-level instead of instance-level decoding. Another general tendency is that the difference between the instance-level decoding and the coherence-only group decoding (with distractors) is rather subtle and that the real gain comes from combining the coherence and discrimination objective, i.e. CIDEr scores for target-target similarity increase from 68 to 81 and 79 to 88 for the LSTM and Transformer when used with \(S(G_{t,d}) \) instead of \(S(G_t) \) (the \(\lambda \) parameter needs to be set differently with the two captioning models). CIDER also predicts a rather sharp decrease of target-distractor similarity for the transformer-based decoding (47 to 36), but less of a decrease for the LSTM-based discriminative group decoding. This suggests that captions decoded on the group-level are more likely to mention properties that are both more coherent and informative for the target category. CIDEr scores show a big positive effect for using discriminative group-level decoding with the LSTM and the Transformer on target-target similarity, whereas the BLEU-4 score indicates a smaller increase. Furthermore, CIDER indicates a strong difference for instance-level decoding between LSTM und Transformer, whereas BLEU-4 favours instance-level captions generated by the LSTM (in terms of their similarity to the group reference). For this reason, we complement this type of evaluation with further assessments below. Finally, we find that the average sentence length and the dist-k scores are high for the instance and for category descriptions, as shown in Table 2. This shows our group-based decoding does not lead to negative effects regarding length or repetitiveness which have been observed for other decoding methods in neural NLG (Ippolito et al., 2019; Zarrieß and Schlangen, 2018).

Category-level Inference Table 3 shows accuracy results for text classifiers trained to identify the bird category based on generated captions. We find that coherent group decoding improves the prediction of target categories and discriminative decoding enhances the classifier further. Moreover, this evaluation indicates the superior performance of the Transformer over the LSTM speaker, in line with the CIDEr evaluation in Table 2. This suggests that the power of the underlying captioning model, which may not become apparent in instance-
Table 2: Evaluation of category-level group captions for overlap with prototypical target and distractor references.

Decoding: $S(I)$ instance-level, $S(G_t)$ coherent group decoding, $S(G_{t,d})$ discriminative group decoding.

<table>
<thead>
<tr>
<th>Model</th>
<th>Decoding</th>
<th>λ</th>
<th>BLEU-4</th>
<th>CIDEr</th>
<th>BLEU-4</th>
<th>CIDEr</th>
<th>Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Target-target sim. (↑)</td>
<td></td>
<td>Target-distractor sim. (↓)</td>
<td></td>
<td>Dist-1</td>
</tr>
<tr>
<td>LSTM</td>
<td>$S(I)$</td>
<td>-</td>
<td>42.41</td>
<td>68.89</td>
<td>36.56</td>
<td>44.97</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>$S(G_t)$</td>
<td>-</td>
<td>42.54</td>
<td>68.11</td>
<td>36.70</td>
<td>44.59</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>$S(G_{t,d})$</td>
<td>0.3</td>
<td>45.11</td>
<td>81.32</td>
<td>34.04</td>
<td>40.86</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>$S(G_{t,d})$</td>
<td>0.5</td>
<td>44.55</td>
<td>78.21</td>
<td>36.10</td>
<td>43.79</td>
<td>0.88</td>
</tr>
<tr>
<td>Transf</td>
<td>$S(I)$</td>
<td>-</td>
<td>40.68</td>
<td>77.44</td>
<td>32.89</td>
<td>47.02</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>$S(G_t)$</td>
<td>-</td>
<td>41.16</td>
<td>79.45</td>
<td>32.45</td>
<td>44.46</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>$S(G_{t,d})$</td>
<td>0.3</td>
<td>42.62</td>
<td>83.79</td>
<td>28.58</td>
<td>36.96</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>$S(G_{t,d})$</td>
<td>0.5</td>
<td>43.69</td>
<td>88.87</td>
<td>31.27</td>
<td>41.54</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Transformer captions where participants rate the instance and group-level caption equally. Generally, this clearly supports our hypothesis that group-level decoding can pull together multiple distinctive properties common to a group or category.

Figure 5: Generated group caption for category.

Table 4: Human evaluation with portion of items where participants selected generated instance-level, group-level or both captions as appropriate for a group.

<table>
<thead>
<tr>
<th>Model</th>
<th>Selected by participants (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$S(I)$</td>
</tr>
<tr>
<td>LSTM</td>
<td>9.17</td>
</tr>
<tr>
<td>Transformer</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Table 3: Text classification performance for category identification. Discriminative group decoding $S(G_{t,d})$ leads to best performance for LSTM and Transformer.

Human Evaluation Table 4 shows that participants prefer group over instances descriptions for the LSTM and Transformer model for 59% of the items. Again, we see that the instance-level Transformer outperforms the LSTM, i.e. there are fewer Transformer captions where participants rate the instance and group-level caption equally. Generally, this clearly supports our hypothesis that group-level decoding can pull together multiple distinctive properties common to a group or category.

6.3 Limitations

As our approach to decoding group-level descriptions is conceptually simple, it is not surprising that it has certain limitations in terms of the linguistic phenomena it is able to account for. Figure 6 shows examples for systematic limitations (and directions for future work): (i) **describing discriminative details**: for some bird families, the effect of group decoding is not significant and fixating fine-grained details is not yet possible, see the sparrow example in Figure 6’s first row. (ii) **completeness**: group descriptions do not always mention all the properties that might be used to define a category because the distractor group has similar properties, in Figure 6 third row, black on its wings was ignored due to the distractor group. (iii) **disjunctive properties within a category**: different physical appearance of male and female instances of a bird species leads to incoherent captions as in Figure 6 second row.
7 Conclusion

In this paper, we have proposed a task, a set-up and a decoding procedure for generating group-level descriptions with an instance-level captioning model. Despite our decoding approach being arguably simple, the results are encouraging and point into some interesting directions for future work. The classical problem of REG could be re-visited on a larger scale for sets of “real-world” objects or one could explore the use of group decoding in explanation scenarios where additional category label information or predicted attention maps could be integrated to provide post-hoc justifications. Finally, enhancing the decoding mechanism with deeper logical reasoning capabilities (e.g. on disjunctions) seems to be a promising direction.

References

A Automatic Evaluation II

We used another reference set for automatic evaluation of category-level group descriptions which is union of ground-truth descriptions of all instances in a group. This amounts to 15 reference captions for the target group of size 3 in our case and 20 reference captions for the distractor group as distractor group size is 4. We observe that group of ground-truth instance descriptions are still to some extent composed of idiosyncratic properties of instances. This can be seen from small amount of increase in CIDEr scores from instance to discriminative group descriptions in Table 5 compared to that of in Table 2 using prototypical references.

B Crowdsourcing Details

In this section, we provide additional information on how we conducted the human evaluation using AMT crowdsourcing platform. We recruited

Table 5: Evaluation of category-level group captions for overlap with union of ground-truth instance descriptions from target and distractor groups.

participants who are native English speakers (e.g., from United Kingdom, United States) as our task requires English proficiency. We paid the participants 0.15$ for successfully completing the task based on a fair hourly wage. Figure 7 shows an example of how our task was presented to the participants. The participants were aware that the task is purely for research purposes and contains no form of controversial data.