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Coordinated Adaptation of Reference Vectors and
Scalarizing Functions in Evolutionary

Many-objective Optimization
Qiqi Liu, Yaochu Jin, Fellow, IEEE, Martin Heiderich, and Tobias Rodemann

Abstract—It is highly desirable to adapt the reference vectors
to unknown Pareto fronts in decomposition based evolution-
ary many-objective optimization. While adapting the reference
vectors enhances the diversity of the achieved solutions, it
often decelerates the convergence performance. To address this
dilemma, we propose to adapt the reference vectors and the
scalarizing functions in a coordinated way. On the one hand,
the adaptation of the reference vectors is based on a local
angle threshold, making the adaptation better tuned to the
distribution of the solutions. On the other hand, the weights of
the scalarizing functions are adjusted according to the local angle
thresholds and the reference vectors’ age, which is calculated
by counting the number of generations in which one reference
vector has at least one solution assigned to it. Such coordinated
adaptation enables the algorithm to achieve a better balance
between diversity and convergence, regardless of the shape of the
Pareto fronts. Experimental studies on MaF, DTLZ and DPF test
suites demonstrate the effectiveness of the proposed algorithm in
solving problems with both regular and irregular Pareto fronts.

Index Terms—Evolutionary many-objective optimization, ref-
erence vector, scalarizing function, irregular Pareto fronts

I. INTRODUCTION

In real-world applications, there are a great deal of multi-
objective optimization problems (MOPs) that comprise two
or three objectives, or many-objective optimization problems
(MaOPs) with more than three objectives. Over the past
decades, multi-objective evolutionary algorithms (MOEAs)
have been shown to be promising in solving both MOPs
[1], [2] and MaOPs [3]. Generally speaking, MOEAs can
be grouped into four main categories, namely decomposition
based [4]–[7], performance indicator based [8]–[10], modified
dominance relationship based [11], [12], and preference based
algorithms [13], [14]. Among these MOEAs, decomposition
based algorithms with evenly distributed reference vectors work
particularly well in solving MaOPs with regular Pareto fronts
(PFs) that cover the whole objective space. Nonetheless, they
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become less efficient in handling MaOPs with irregular PFs,
i.e., those with discontinuous, inverted, or degenerate PFs. One
reason is that in solving such problems, some reference vectors
in decomposition based algorithms may become inactive, in
other words, with no solutions being associated, making the
search process inefficient. For example in NSGA-III [5] or
RVEA [6], each solution is associated to the reference vector
that is closest to it according to the Euclidean distance or
angle. Consequently, some reference vectors may have multiple
solutions associated to them, while others may have no solution,
resulting in inactive reference vectors.

In recent years, a large body of research has been dedicated
to designing decomposition based MOEAs for solving irregular
MaOPs and a detailed survey of MOEAs for handling irregular
problems can be found in [15], [16]. Since no a priori
information is given about the shape of the true Pareto fronts
(PFs), a major difficulty arises when there is a mismatch
between the distribution of the reference vectors and the shape
of the PF. To address this challenge, either solutions in the
current population as in MOEA/D-AM2M [17] or solutions
in the archive as in MOEA/D-AWA [18], AdaW [19] and
AR-MOEA [20], can be utilized to adapt the distribution
of reference vectors after a given number of generations.
Note that the reference vectors should not be adjusted too
frequently and the solutions that survive for a consecutive
number of generations can reflect the distribution of Pareto
optimal solutions to some extent. This class of methods can
ensure that the convergence speed is not seriously slowed down
since the reference vectors are kept unchanged during a number
of generations. Note, however, that adjusting reference vectors
after a number of fixed generations may lead to the loss of
promising solutions.

Another intuitive idea is to replace inactive reference vectors
with newly generated ones during the search process [6], [21],
[22]. As pointed out in [21], however, frequent adaptation or
even maladaptation of reference vectors will seriously slow
down the convergence. Thus, only one inactive reference
vector is adjusted in each generation in [21]. In A-NSGA-
III [22] and [22], multiple reference points are added around
the active reference points if the number of active reference
points is not enough. However, the above ways of adding new
reference points may become ineffective if the objective space
is very large, as it is unpractical to expect that newly generated
solutions will always locate near the newly added reference
points. As a result, newly added reference points may remain
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inactive even if they locate in a promising region.

Furthermore, the best distribution of the reference vectors
may be learned using machine learning methods. For instance,
in MOEA/D-SOM [23], DEA-GNG [24], and RVEA-iGNG
[25], the topology of approximated PFs is learned by training a
self-organizing mapping (SOM) [26] and a growing neural gas
network (GNG) [27], respectively. This class of methods does
not require to determine which reference vectors should be
adjusted and when, since the distribution of reference vectors
are learned by training the SOM or GNG using the solutions
in the population.

Apart from adjusting the distribution of reference vectors
based on the framework of decomposition based algorithms,
clustering based algorithms have also been widely used to deal
with problems with various PF shapes. This can be attributed
to the relative insensitivity of the clustering algorithms to the
shapes of PFs, regardless whether the MaOP is regular or
irregular. For instance, in EMyO/C [28] and CA-MOEA [29],
hierarchical agglomerative clustering is adopted to cluster the
non-dominated solutions according to the Euclidean distance
between normalized solutions. Despite the great success
achieved by the clustering based approaches such as [30],
[31], it is well recognized, however, that it is nontrivial to
specify the number of clusters beforehand, nor is it easy
to determine which solution should be selected from each
cluster to balance the proximity and diversity. It is also hard to
determine the frequency of performing clustering since overly
frequent clustering may slow down the convergence.

II. MOTIVATION AND CONTRIBUTIONS

No matter whether we use reference vector based or
clustering based methods to solve MaOPs, a key issue is the
normalization of solutions. Before clustering the solutions or
associating solutions to reference vectors, the solutions in the
population need to be normalized because of different scales of
objectives. In [32], the effect of the ideal point (the minimum
value of each objective) for normalization on the performance
of MOEA/D is analyzed. Since the ideal point and the scale
of the objectives keep changing during the optimization, it
becomes more challenging for the MOEAs to properly adapt
the reference vectors. Fig. 1 plots an example of solutions
and reference vectors in generation t and t+ 1. In Fig. 1 (b),
the new solution denoted by a star will change the relative
position of all solutions in the population. Consequently, no
solutions can be associated with reference vector v2, and all
solutions denoted by a solid circle will be associated with v1,
resulting in the loss of some promising solutions. Therefore,
even if the reference vectors are not adjusted, the changes
in the relative position of the solutions within a population
because of normalization during the search process may lead
to the loss of promising solutions.

Preservation of solutions in promising regions can be even
more challenging for solving irregular problems, since reference
vectors may become inactive also due to the irregular shapes
of true PFs. For irregular PFs, only part of the objective space
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(a) generation t (b) generation t+ 1
Fig. 1: Loss of promising solutions caused by normalization. (a) Three
solutions denoted by circles are associated with v1 to v3, respectively.
(b) After a new solution (denoted by a star) emerges, no solutions
can be associated with reference vector v2, and all solutions denoted
by a solid circle will be associated with v1, resulting in the loss of
some promising solutions.

is covered; thus, some of the predefined reference vectors
covering the whole objective space may become inactive.
That is to say, one needs to take both the normalization
mechanism and the shape of the PFs into consideration in
reference vector adaptation to preserve promising solutions or
promising regions emerging in the search process. By promising
solutions, we mean the solutions having better convergence
and/or diversity properties. In this study, we aim to preserve
these promising solutions to assure that they do not easily get
lost, especially when the objective space is very large. If the
promising solutions cannot be kept as soon as they emerge,
promising search regions may get lost forever when handling
irregular problems.

Faced with these challenges, some researchers propose to
adjust the distribution of reference vectors after a number of
fixed generations for dealing with irregular problems so that
the reference vectors do not change too frequently. However,
keeping the reference vectors unchanged even for a few
generations may lose promising solutions that are newly
generated within these generations, resulting in failures to
generate reference vectors that can cover some unexplored PFs.
On the other hand, the convergence speed will be decelerated
if the reference vectors are adjusted whenever the number
of active reference vectors is insufficient. Thus, when and
where to add new reference vectors is extremely important
to ensure that promising regions can be preserved without
impairing the convergence performance. In summary, it is
argued that the adaptation of the reference vectors is non-
trivial, which should simultaneously consider the frequency of
performing adaptation and where reference vectors should be
adjusted. Thus, a mechanism that is able to adapt reference
vectors to explore more promising regions without impairing
the convergence performance is highly desirable.

Motivated by the distance threshold of nodes in the growing
neural gas network [37], we propose to introduce a local angle
threshold for each reference vector to determine when and
where to add new reference vectors to tackle the above issues.
The angle threshold of a reference vector is defined as the range
in angle that the reference vector can cover. A new reference
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(a) (b) (c)
Fig. 2: Comparisons of different ways of adding a new reference vector: a) a solution s3 which is of the largest similarity in terms of angle
or Euclidean distance is chosen as the new reference vector v′ [21], [33], [34]; b) the new reference vector v′ is generated by interpolating
the existing active reference vectors v2 and v3 since these two have the largest angle between them [5], [35], [36]; c) the new reference
vector v′ is generated by the proposed angle threshold.

vector can be added only when there is a solution outside the
range, i.e., when the acute angle between the solution vector
and the reference vector is larger than the angle threshold. To
better understand the advantages of using an angle threshold
for adding new reference vectors, we compare it with other two
commonly used methods. In Fig. 2, solutions in the population
are denoted by solid circles and those that will be selected to
the next generation are denoted by solid stars. Suppose three
solution sets S1, S2 and S3 are associated with three reference
vectors v1, v2 and v3, respectively. Figs. 2 (a) and (b) illustrate
two existing ways of adding a new reference vector, and Fig. 2
(c) shows the idea proposed in this work. In Fig. 2 (a), the
solution that has the largest cosine distance to the existing
active reference vectors v1 to v3, that is, solution S3, will be
used for creating a new reference vector v′. It can be found,
however, that the addition of v′ will not have any influence on
the assignment of the solutions because still only three solutions
denoted by stars can be associated with a reference vector, even
if the new reference vector v′ is added. A similar situation
can happen in Fig. 2 (b), where a new vector, v′ is added by
using the weighted sum of two active reference vectors v2 and
v3, which have the maximum angle distance among all active
reference vectors. By contrast, by using an angle threshold as
proposed in this work, the solution outside the angle threshold
of reference vector v2 will be chosen as a new reference
vector v′, as shown in Fig. 2 (c). The angle threshold of a
reference vector proposed in this work utilizes information such
as the number of solutions associated with this reference vector,
the number of solutions associated with its two neighbouring
reference vectors, the angle between this reference vector and
its two neighbouring reference vectors, and the angle between
this reference vector and its associated solutions. This means
the angle threshold of each reference vector depends on the
local distribution of both the reference vectors and solutions in
its neighborhood. In Fig. 2 (c), as a result, one more solution
will be associated with the newly generated vector, which will
survive in the environmental selection. The main idea here
is that the addition of new reference vectors should take into
account the number of solutions associated with each reference
vector and its neighboring reference vectors. For example, five
solutions are associated with v2, meaning that the region near
v2 is very promising. We should allocate more search resources

to the region near v2.

For decomposition based algorithms, the design of scalariz-
ing functions should take both the convergence and diversity
into consideration, since eventually, the scalarizing functions
will be used to rank the solutions before selection based on
the reference vector with which the solutions are associated.
Even though many scalarizing functions are proposed over the
past decade, little work has been reported that coordinates the
adaptation of the reference vectors and the adaptation of the
scalarizing function. Note that most scalarizing functions are
designed based on a set of predefined fixed reference vectors.
If the reference vectors are frequently adjusted, a solution
in the population may change its associated reference vector
very frequently, resulting in reduced selection pressure along a
particular search direction and slowing down the convergence.
For example, the selection pressure for convergence along
a reference vector should be emphasized if the reference
vector has not been adjusted and has been active in many
generations. By contrast, diversity should be emphasized for
a newly generated reference vector. Therefore, in this work,
to preserve the promising solutions as soon as they emerge in
dealing with irregular problems, we propose a new adaptive
scalarizing function tailored for adaptive reference vectors so
that the adaptation of the weights in the scalarizing function
can take into account the age and angle threshold of each
reference vector, thereby better balancing the trade-off between
convergence and diversity.

The contributions of this work are summarized as follows.

• An angle threshold specific to each reference vector is
designed to determine when and where new reference
vectors should be inserted so that more regions can be
explored and promising regions can be exploited whenever
they emerge. To further enhance the exploratory capability
of the proposed algorithm, inactive or overly crowded
reference vectors will be deleted in a predefined frequency.

• A new adaptive scalarizing function dedicated to adaptive
reference vectors is proposed. Both the angle threshold
and the age of reference vectors are considered in the
scalarizing function. This way, a coordinated adaptation
of the reference vectors and the scalarizing function can
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be achieved and a better balance between convergence
and diversity can be realized.

The rest of this paper is organized as follows. Section III
describes the proposed algorithm in greater detail and Section
IV presents the experimental results by comparing the proposed
algorithm with eight state-of-the-art algorithms. Finally, Section
V concludes this paper and discusses promising future research
directions.

III. PROPOSED ALGORITHM

The reference vectors in the initialization are generated using
the canonical simplex-lattice design method [38]. As discussed
in Section II, a new reference vector is typically generated
based on the solution whose angle with the reference vector
it is associated is particularly large [21], or by interpolating
two existing reference vectors that have a large angle between
them [35]. The potential problem of these methods is that
they may fail to preserve newly generated promising solutions
mainly due to two reasons. First, a newly generated reference
vector may be far from newly generated promising solutions
due to the high-dimensional objective space. Second, the
scalarizing function is not able to give a higher priority
to the newly generated reference vectors in environmental
selection. To address the above problems, we hypothesize that
the adaptation of the reference vectors should be coordinated
with that of the scalarizing functions. To this end, an MOEA
with coordinated adaptation of reference vectors, termed as
CARV-MOEA is proposed. CARV-MOEA consists of four
main components: reproduction, reference vector adaptation,
scalarizing function adaptation, and environmental selection,
as shown in Algorithm 1.

Algorithm 1: General Framework of CARV-MOEA.
Input : Population P , Maximum generations tmax,

The frequency of adapting reference vectors fr
Output : The final Population P

1 Initialize: reference vectors V = {v1,v2, · · · ,vN},
o = (1, 1, · · · , 1), fr = 0.05;

2 while t < tmax do
/* Reproduce the offspring O */

3 O ← Reproduction(P );
4 P ← P ∪O;

/* Adapt reference vectors V according to

proposed angle threshold */

5 V,Φ ← Reference Vector Adaptation(V, P, fr);
/* Environmental Selection */

6 P ← Scalarizing Function Adaptation and
Environmental Selection(P , V ,Φ);

7 t ← t+ 1;
8 end

1) Reproduction: Offspring O are generated using the
simulated binary crossover (SBX) [39] and polynomial
mutation [40] operator.

2) Reference vector adaptation: This step consists of angle
threshold based reference vector generation, and deletion
of inactive or overly crowded reference vectors.

3) Scalarizing function adaptation and environmental selec-
tion: The scalarizing function is adjusted based on the
angle threshold and age of the reference vectors and then
environmental selection is performed.

Next, the details of reference vector adaptation, scalarizing
function adaptation and environmental selection in CARV-
MOEA will be presented.

A. Reference Vector Adaptation

Since the adaptation of reference vectors heavily depends
on the normalization of solutions, we propose to keep the
scale of different objectives unchanged for a number of fixed
generations to avoid too frequent changes of the relative
position between the normalized solutions and the reference
vectors. For this purpose, we normalize the solutions in the
population as follows:

f
′

j = (fj − f∗j )/oj , (1)

where fj is the j-th objective value, f∗j is the minimum
value of the j-th objective among all non-dominated solutions,
and o is obtained by the scale of the objectives of the non-
dominated solutions obtained during every fr generations
(oj = fmaxj −f∗j , where fmaxj and f∗j are set as the maximum
and minimum value of all non-dominated solutions.) Note that
o is changed in every fr · tmax generations only, where fr is
the frequency of adjusting the o and tmax is the maximum
number of generations. Note that once o is calculated, it remains
unchanged for the next fr · tmax generations before it is
recalculated. The reason is that the relative position of the
normalized solutions will change frequently if o is calculated
in each generation, making the adaptation of reference vectors
more difficult. Thus, in this study, we propose to keep o
unchanged in every fr · tmax generations to strike a better
balance between convergence and diversity.

1) Angle threshold based reference vector generation: One
main challenge in reference vector adaptation is to determine
when reference vectors should be adjusted and where new
reference vectors should be inserted. Inappropriate adjustment
of the reference vectors may slow down the convergence, reduce
the population diversity or even mislead the search process.
Thus, in this work, we propose an angle threshold that is
specific to each reference vector to decide when to add a new
reference vector so that newly generated promising solutions
are most likely to survive during the search process.

In this study, a solution is associated with the reference
vector with which it has the maximum cosine similarity. For
the proposed angle threshold based reference vector generation
method, the main idea here is that a new reference vector
should be generated only if the angle between a solution
and its associated reference vector is larger than a threshold
that is dependent on the density of the solutions around the
reference vector, i.e., the number solutions associated with the
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Fig. 3: An example illustrating the definition of the angle threshold.
Calculation of the angle threshold of v2 requires the information of
its neighbouring reference vectors v1 and v3, including the angle
between reference vectors and the number of solutions associated
with v1 to v3.

reference vector and the angles between these solutions and
the reference vector, and the angles between the vector with
its M neighbouring reference vectors, where M is the number
of objectives. Specially, the angle threshold Φj of reference
vector vj is defined as follows:

Φ
j

=

∑
s∈Sj

α(s, vj) +
∑
i∈{j1,j2,...,jM} |Si|α(vi, vj) · (Nav

N )k

|Sj |+
∑
i∈{j1,j2,...,jM} |Si|

(2)
where Sj are the solutions associated with vj , α(s, vj) is the
angle between a solution s and vj (s ∈ Sj), j1, j2, . . . , jM
are the index of M nearest neighbouring reference vectors of
reference vector vj , |Si| (i ∈ {j1, j2, . . . , jM}) is the number
of solutions associated with each of the neighbouring reference
vectors. Note that if several neighboring reference vectors are
on the same side of reference vector vi, then only one of
the neighboring reference vectors will be randomly selected.
α(vi, vj) (i ∈ {j1, j2, . . . , jM}) is the angle between reference
vector vj and each of its neighbouring reference vectors vj1 to
vjM . Nav is the number of active reference vectors associated
with all non-dominated solutions and N is the predefined
population size. k is a user-defined parameter and k is set to 2
in this study. (Nav

N )k is used to penalize the angle between the
active reference vectors α(vi, vj) in case the number of active
reference vectors Nav is far less than the population size N .

Fig. 3 gives an example to illustrate the definition of the angle
threshold for a 2-objective problem. In this example, the angle
threshold of reference vector v2 is equal to 1∗α2+4∗α1+2∗α3

1+4+2 .
Among them, 1, 4, 2 are the number of solutions associated
with v2, and its two neighbouring reference vectors v1 and v3,
respectively. α2 is the angle between the solution s2 and v2.
α1 and α3 are the angle between v1 and v2, and v3 and v2,
respectively.

Note that the angle threshold of v2 is weighted by both the
number of solutions associated with v2, the angles between v2

and its M neighbors, and the number of solutions associated
with its neighbouring reference vectors. As plotted in Fig. 2
(c), suppose seven solutions denoted by solid circles and star
are associated with v1, v2 and v3, respectively, among which
five solutions inside the oval are associated with v2. Since
most of solutions are associated with v2, the angle between
these five solutions and v2 is more important than the angle

between v2 and v1 and the angle between v2 and v3. As a
result, the angle threshold of v2 will be smaller. In Fig. 2 (c),
the angle threshold is indicated by the shaded area and we
can find that the solution denoted by the star is outside the
angle threshold of v2. Consequently, the solution denoted by
the star will be used to generate a new reference vector. By
defining this angle threshold, we are able to determine when
and where a new reference vector should be added according to
the location of a solution and the distribution of the solutions
as well as the vectors in its neighborhood, thereby improving
the effectiveness of the newly added reference vectors.

To more clearly show rationale behind the proposed angle
threshold, we have rigorously proven that the proposed angle
threshold can ensure that only solutions with a large con-
tribution to the diversity will have a chance to be selected
for generating a new reference vector. We have derived
the condition based on the angle threshold to generate new
reference vectors in Equation 1 to 3 in Section I in the
Supplementary material.

The pseudo code of the angle threshold based reference
vector adaptation is given in Algorithm 2. Firstly, all solutions
in the current population are sorted by the non-dominated
sorting, and then N solutions (N is the population size) are
randomly chosen for calculating the angle threshold of each
reference vector, as given in Lines 1 to 6 in Algorithm 2. A
solution vector will be added as a new reference vector if the
angle between this solution and its associated reference vector
vat is larger than the angle threshold Φt, as described in Lines
8 to 18 in Algorithm 2.

2) Deletion of inactive and crowded reference vectors: As
mentioned above, new reference vectors can be added if they
satisfy the angle threshold defined for each reference vector.
Meanwhile, we also delete inactive reference vectors and those
in overly crowded regions according to the angle between the
reference vectors, when the total number of reference vectors is
larger than the population size. In every fr · tmax generations,
redundant reference vectors are deleted after new reference
vectors are generated. At first, all inactive reference vectors are
deleted. If the number of active reference vectors is still larger
than the population size, reference vectors will be deleted one
by one according to the angle between the reference vectors. To
this end, we calculate the angles between all reference vectors,
and the one with the minimum angle will be deleted. Then we
recalculate the angle between the remaining reference vectors
and repeat this process until the number of reference vectors
reaches the population size. Note that reference vector deletion
is carried out in every fr · tmax generations only, when o in
Equation (1) for solution normalization is also updated. After
deleting the inactive or overly crowded reference vectors or
adding new reference vectors according to the angle threshold,
we will recalculate the angle threshold for each reference vector,
as described in Lines 26 to 28 in Algorithm 2.

B. Adaptation of Scalarizing Function and Environmental
Selection

Various scalarizing functions have been proposed for decom-
position based MOEAs, such as the weighted sum, Tchebycheff,
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Algorithm 2: Reference vector adaptation.
Input : Population P , reference vectors V , generation

number t, maximum generations tmax
Output : The reference vectors V , angle threshold Φ,

the scale of reference vectors o
/* FP

1 denotes the non-dominated solutions in P

*/

1 FP1 ← Pareto non-dominated sorting(P );
2 if

∣∣FP1 ∣∣ > N then
3 Pa ← Randomly select N solutions from FP1 ;
4 else
5 Pa ← Randomly select N solutions from P ;
6 end
7 V a ← Find the reference vectors that are associated

with solutions in Pa;
/* Insert new reference vectors based on the

proposed angle threshold */

8 for t=1:size(V a) do
9 S ← Find solutions associated with vat ;

10 vt1 , vt2 , · · · , vtM ← Find M nearest neighbouring
reference vectors of V at ;

11 Φt ← Calculate the angle threshold of vat ;
12 for j=1:size(S) do
13 if angle(sj , vat ) > Φt then
14 vnew ← Normalize the solution sj ;
15 end
16 V ← V ∪ vnew;
17 end
18 end

/* Delete inactive reference vectors generated

over every fr · tmax generations */

19 if mod(t,fr · tmax)==0 then
20 V ← Identify active reference vectors that the age

is bigger than zero over a period;
21 if size(V ) > N then
22 V ← Delete crowed reference vectors by

angle(V);
23 end
24 o ← Recalculate the scale.
25 end

/* Recalculate the angle threshold. */

26 if vnew is not empty or mod(t,fr · tmax)==0 then
27 Φ ← Repeat step 8 to step 18 to recalculate the

angle threshold of each active reference vector ;
28 end

penalty-based boundary intersection (PBI) in MOEA/D [4], and
their variants [41], [42]. In [43], the weighted sum and weighted
Tchebycheff scalarizing functions are adaptively adopted for
each individual considering that the convexity of PFs differs
over the whole objective space. In MOEA/D-PaS [44], p value
in Lp scalarizing function is adapted for each weight vector
according to the PF geometry. In the angle penalized distance
(APD) in RVEA [6], a scalarizing function with a generation-
varying parameter is introduced to adapt the priority over

convergence and diversity. An adaptive hybridation of different
scalarizing functions is presented in [45]. However, most of
the above scalarizing functions are designed for a fixed set of
reference vectors, and they may fail to perform properly if the
reference vectors are frequently adjusted. This is because if a
solution is frequently associated with different reference vectors,
it will then be compared with different solutions, reducing the
selection pressure towards a particular search direction. To
ensure the promising solutions to be selected without severely
slowing down the convergence speed, we propose an adaptive
scalarizing function, called adaptive angle penalized distance
(A-APD) that is able to take the adaptation of the reference
vectors into account.

As its name suggests, A-APD is a variant of the angle
penalized distance [6], which is defined as follows:

di,j = (1 + (1−
ρij
∆

) · αi,j
Φj
· γj
γmax

) ·
∥∥∥f̂ i∥∥∥ (3)

and

γj =


T · Φj if reference vector j is new
or has only one solution
mini′⊂1,2,...Nαvi′ ,vj if otherwise

(4)
where i is a solution index, representing one of the solutions
associated to the j-th reference vector, αi,j is the angle between
solutions i and reference vector j, and Φj is the angle threshold
of reference vector j. γj is the smallest angle between reference
vector j and all pairs of reference vectors, γmax is the maximum
of all γj .

∥∥∥f̂ i∥∥∥ represents the Euclidean distance from the

solutions in the population to the ideal point f∗, that is f̂ i =
f i − f∗. In the above definition, ρij is the age of the reference
vector j associated with solution i, which counts the number of
generations in which the reference vector is active. ∆ = fr·tmax,
where fr is the frequency of deleting inactive reference vectors
and tmax is the maximum number of generations. The age of
the reference vector j, i.e., ρij , starts from zero and increases by
one if there are solutions associated with it in every generation.
If there is no solutions to be associated with the reference
vector, then the age is not changed. The larger ρij is, the
larger the age of the reference vector j is. We assume that
the convergence should be more emphasized for an reference
vector with a larger age. Thus, 1− ρij

∆ is used as a penalization
term.

Note from Equation (4) that there are two scenarios for
determining γj . For newly generated reference vectors or for
those having only one solution associated to them, at least two
solutions will be identified for environmental selection, which
is achieved by enlarging the range of solution association by
T times, where T is a parameter depending on the location
of the assigned solutions. In this case, γj = T · Φj , which is
meant to make sure that very poorly converged solutions will
be unlikely to survive. For other active reference vectors, γj
is the smallest angle between reference vector j and all other
reference vectors.

From the definition of A-APD, we can make the following
observations. First, an age is introduced for reference vectors to
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(a) (b) (c)
Fig. 4: An illustrative example of how A-APD works : a) a solution s4 is outside the angle threshold of v3. b) The solution vector of s4 is
used to generate a new reference vector v4. s4 is a very poorly converged solution. s4 is not going to be selected based on the A-APD. c) s4
is a well converged solution. s4 will be selected based on the design of A-APD.

increase the selection pressure along those stable (consistently
active) reference vectors to accelerate convergence. In addition,
the angle threshold Φj of reference vector j is used for
normalizing the angle between a solution and the reference
vector αi,j . This indicates that a priority will be given to
diversity, if αi,j is larger than the threshold Φj , meaning that
solution i is outside the angle threshold. Finally, an adaptation
of the selection pressure is included, making sure that very
poorly converged solutions associated to a newly generated
reference vectors or those having a single solution associated
with will not be selected to enhance convergence.

We give an illustrative example here to show why the
proposed adaptive scalarizing function based on the age and the
angle threshold of the reference vectors is effective. As shown
in Fig. 4 (a), there are three reference vectors, v1 to v3, and
four solutions s1 to s4, of which s3 and s4 are associated with
v3 according to their cosine similarity to the vectors. Based
on the definition of the angle threshold, since s4 is outside
the angle threshold of v3, thus, solution vector s4 is used to
generate a new reference vector v4. Note that if the angle
between one solution and its associated reference vector is
larger than the calculated angle threshold, then we say the
solution is outside the angle threshold of the reference vector.
In Fig. 4 (b), the angle threshold of v4 is highlighted with the
shade region. Based on Equation (3), the A-APD value of s4

is
∥∥∥f̂ s4

∥∥∥ without angle penalization, since the angle between
s4 and v4 (that is α4,4 ) is zero. In Equation (4), if a reference
vector is new or has one solution associated with it only, at least
two solutions will be identified for environmental selection.
Thus, in Fig. 4 (b) and (c), s3 will be compared with s4 in
terms of the A-APD value. In Fig. 4 (b), the A-APD value
of s3 is penalized with the relatively large angle value since
the angle between s3 and v4 (α3,4) is larger than the angle
threshold of v4 (Φ4). Suppose s4 is a poorly converged solution
in Fig. 4 (b), and s4 will need to be compared with s3 based
on Equation (4). Compared with s3, the very poorly converged
solution s4 will have little chance to survive in environmental
selection since the A-APD value of s4 is still much larger than
that of s3, because

∥∥∥f̂ s4
∥∥∥ is much larger than

∥∥∥f̂ s3
∥∥∥. In this

case, we can ensure that very poorly converged solutions will
have no chance to be selected. Moreover, it is also important
to make sure that well converged solutions associated with
new reference vectors will be selected by comparing them with
their neighboring solutions. For example, in Fig. 4 (c), s4 and
s3 are both well converged. The Euclidean distance of s3 to the
ideal point is similar to that of s4, however, since the A-APD
value of s3 is penalized with the angle value, the A-APD value
of s3 will be larger than that of s4, making the well converged
s4 have a larger chance to be selected.

The pseudo code for environmental selection based on A-
APD is presented in Algorithm 3. Line 6 to Line 20 present the
A-APD selection criterion. The solutions from the first layer
to the critical layer will involve in the selection process. If the
front Fk satisfies the condition |F1

⋃
F2

⋃
· · ·Fk−1| < N and

|F1

⋃
F2

⋃
· · ·Fk| > N (N is the population size), we define

Fk as the critical layer. Only one solution will be selected for
each active reference vector. Note that the number of active
reference vectors may be larger than the population size N .
Thus, a number of solutions will be deleted according to the
angle after the A-APD selection process, which is shown in
Line 21 to Line 22.

IV. EXPERIMENTAL RESULTS

This section presents the empirical results to demonstrate the
competitiveness of CARV-MOEA by comparing it with eight
state-of-art algorithms on both regular and irregular MaOPs,
namely VaEA [46], DEA-GNG [24], RVEA∗ [6], AdaW [19],
MOEA/D-AM2M [17], MOEA/D-SOM [23], MaOEA/SRV
[47] and CA-MOEA [29]. Among these algorithms, DEA-
GNG, RVEA∗ are based on two sets of reference vectors: one
is fixed and the other is adaptive. VaEA does not use reference
vectors and is designed for solving both regular and irregular
problems. AdaW and MOEA/D-AM2M are both based on a set
of adaptive reference vectors for solving irregular problems, and
an archive or the current population is preserved for determining
the distribution of adaptive reference vectors after a number
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Algorithm 3: Adaptive scalarizing function and envi-
ronmental selection.

Input : Population P , Reference Vectors V , angle
threshold Φ

Output : Population Po
/* FP

1 , FP
2 , · · · , FP

c denotes the solutions from the

first layer to the critical layer */

1 FP1
⋃
FP2 , · · · ,

⋃
FPc ← Non-dominated sorting(P );

2 Associate the solutions in FP1
⋃
FP2 , · · · ,

⋃
FPc with

the reference vectors;
3 Increase the age ρ of each active reference vector by 1;
4 α(S, V ) ← Calculate the angle between solutions and

reference vectors(FP1 , F
P
2 , · · · , FPc ,V );

5 γ ← Calculate the angle between reference vectors(V );
6 for j=1:size(V ) do
7 S ← Identify the solutions associated with vj ;

/* enlarging the range of solution

association by T times */

8 if size(S)== 1 or vj is new added then
9 T = 1;

10 Sneighbor ← empty;
11 while Sneighbor is empty do
12 T ← T + 1;
13 γj ← T ∗ Φj ;

/* If the angle between one solution

and its associated reference

vector is smaller than the

calculated angle threshold, then

we say the solution is within the

angle threshold of the reference

vector */

14 Sneighbor ← find solutions within the angle
γj ;

15 end
16 end
17 S ← S ∪ Sneighbor;

/* A-APD is defined in Equation (3) */

18 sb ← Pick up a solution with the best A-APD
values among S;

19 Po ← P ∪ sb;
20 end
21 Po ← Delete duplicated solutions (Po) ;
22 Po ← Delete crowded solutions (Po) ;

of fixed generations. MaOEA/SRV [47] adopts a set of self-
guided reference vectors in each generation to guide the search,
which has been shown to be very competitive in handling
irregular problems. The distribution of the reference vectors in
MOEA/D-SOM and DEA-GNG are learned by training a self-
organizing mapping network or a growing neural gas network,
which does not need to determine when and where to adjust
the reference vectors, showing competitive performance on
handling irregular problems.

Three suites of test problems are considered for testing
the compared algorithms, i.e., MaF benchmarks (MaF1-15)

[48], DTLZ benchmarks (DTLZ1-4) [49], IDTLZ2 [36] and
DPF benchmarks (DPF1-5) [50]. We also test the performance
of the proposed CARV-MOEA on a real world application,
hybrid electric vehicles (HEVs). HEVs has 7 objectives and
11 decision variables. All algorithms under comparison except
for MaOEA/SRV are implemented on the PlatEMO platform
[51] with MATLAB 2018a on Intel Core i7-8700 (3.20GHz).
MaOEA/SRV is implemented in Java. The code of CARV-
MOEA is uploaded to https://github.com/qiqi6770304/CARV
MOEA.git.

A. Parameter Settings

The proposed CARV-MOEA and all compared algorithms
adopt SBX [39] as the crossover operator with a crossover
probability Pc = 1.0 and a distribution index of crossover
nc = 20 except for MaOEA/SRV, in which nc = 30, and
the polynomial mutation [40] as the mutation operator with a
mutation probability Pm = 1/D (D is the dimension of the
decision space), and a distribution index of mutation nm = 20.

The population size for 5-, 10- and 15-objective problems are
set to 126, 230 and 240 for CARV-MOEA and the compared
algorithms except for MOEA/D-SOM. For MOEA/D-SOM,
the population size is set to 144, 256 and 256, respectively.
The maximum number of fitness evaluations for problems with
5, 10 and 15 objectives is set to M ∗ 1e4, respectively, for
all test functions, where M is the number of objectives. The
frequency of adjusting the scale of different objectives fr is
set to 0.05. Parameter k in the angle threshold is set to 2. The
sensitivity analysis of fr and k is given in Section III of the
Supplementary material. The population size set for HEVs is
112 and the maximum number of fitness evaluations for HEVs
is set to 30000.

B. Performance Indicators

Two widely used performance indicators, hypervolume (HV)
[52] and inverted generational distance plus (IGD+) [53] are
adopted for comparison. IGD+ and HV can both be used
to account for convergence and diversity. For calculating the
IGD+ indicator, a set of uniformly distributed reference points
sampled from the true PFs are needed. We use the canonical
simplex-lattice design method [38] to generate 10,000 reference
points for calculating IGD+ indicator, as in PlatEMO [51].
In this study, IGD+ is used for evaluating the performance
of algorithms as the first performance indicator and HV is
served as the secondary performance indicator. The comparative
results in terms of the IGD+ values on regular problems is
presented in Table SI in the Supplementary material. The
comparative results in terms of the HV values on regular
and irregular problems are presented in Table SII and SIII
in the Supplementary material for reference. Note that all
solutions are normalized by 1.1 znadir and the reference point
for calculating the HV value is set to (1, 1, ..., 1) for problems
except for MaF1, IDTLZ2 and MaF4. As suggested in [54],
since MaF1 has the same PF as IDTLZ1 [36], the reference
point for MaF1 is set to 1+ 1

H , where H is the number of

https://github.com/qiqi6770304/CARV_MOEA.git
https://github.com/qiqi6770304/CARV_MOEA.git
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TABLE I: IGD+ VALUES OF THE SOLUTION SETS OBTAINED BY NINE ALGORITHMS ON IRREGULAR TEST INSTANCES. THE
BEST RESULT ON EACH TEST INSTANCE IS HIGHLIGHTED IN DARK GREY.

Shape of PFs Problem M D CARV-MOEA DEA-GNG CA-MOEA VaEA RVEA* AdaW MOEA/D-AM2M MOEA/D-SOM MaOEA/SRV

inverted

MaF1
5 14 8.5062e-2 8.7768e-2 − 1.0557e-1 − 9.1329e-2 − 1.2807e-1 − 8.4376e-2 + 1.2816e-1 − 2.0409e-1 − 8.4215e-2 +

10 19 1.5926e-1 1.7110e-1 − 2.0869e-1 − 1.6583e-1 − 2.7853e-1 − 1.6429e-1 − 3.2512e-1 − 3.0841e-1 − 1.5971e-1 ≈
15 24 1.9221e-1 2.1414e-1 − 2.5101e-1 − 2.0101e-1 − 3.4280e-1 − 1.9738e-1 − 3.4953e-1 − 2.8524e-1 − 1.9025e-1 +

IDTLZ2
5 14 9.9964e-2 1.1196e-1 ≈ 1.3522e-1 − 1.2065e-1 − 1.1694e-1 − 1.0779e-1 − 1.3139e-1 − 2.7307e-1 − 1.1359e-1 −
10 19 2.2221e-1 2.4809e-1 − 4.1981e-1 − 2.7255e-1 − 2.6222e-1 − 2.5469e-1 − 3.5543e-1 − 4.1452e-1 − 2.2861e-1 −
15 24 2.9882e-1 3.8220e-1 − 6.6241e-1 − 3.4004e-1 − 3.6854e-1 − 3.2396e-1 − 4.4364e-1 − 4.4901e-1 − 3.2053e-1 −

MaF4
5 14 1.3400e+0 1.4703e+0 − 2.9718e+0 − 1.7868e+0 − 7.8799e-1 + 1.3875e+0 − 4.2391e+1 − 3.9728e+0 − 1.4474e+0 −
10 19 1.5183e+1 2.9429e+1 − 2.1477e+2 − 1.7414e+1 − 9.3343e+0 + 1.7473e+1 − 9.9954e+1 − 2.5477e+1 − 2.9219e+1 −
15 24 3.1978e+2 8.6420e+2 − 6.8301e+3 − 4.4098e+2 − 1.7063e+2 + 4.7777e+2 − 5.2425e+2 − 5.8270e+2 − 8.9977e+2 −

discontinuous

MaF7
5 24 1.2912e-1 1.3501e-1 ≈ 2.4744e-1 − 1.9111e-1 − 1.4596e-1 − 1.5432e-1 − 3.2754e-1 − 1.2681e+0 − 1.8976e-1 −
10 29 5.5002e-1 5.9114e-1 ≈ 2.1217e+0 − 8.6838e-1 − 7.7203e-1 − 8.2637e-1 − 8.4388e-1 − 3.8417e+0 − 1.4787e+0 −
15 34 1.0681e+0 4.8306e+0 − 1.3393e+1 − 1.4978e+0 − 1.2990e+0 − 6.4073e+0 − 1.5533e+0 − 1.0344e+1 − 6.4577e+0 −

MaF11
5 14 1.2750e-1 1.7445e-1 − 3.5120e-1 − 1.8693e-1 − 1.5685e-1 − 2.5300e-1 − 1.9861e-1 − 1.9042e+0 − 1.2359e-1 +

10 19 1.9680e-1 5.4820e-1 − 7.5030e-1 − 3.0715e-1 − 1.6876e-1 + 7.2778e-1 − 3.5574e-1 − 1.8190e+0 − 2.8462e-1 −
15 24 2.0047e-1 1.3095e+0 − 1.0538e+0 − 3.9765e-1 − 1.9946e-1 + 1.0078e+0 − 3.8493e-1 − 4.3465e+0 − 4.1667e-1 −

Pareto box

MaF8
5 2 6.5497e-2 7.7107e-2 − 7.0513e-2 − 6.6564e-2 − 2.8134e-1 − 1.0300e-1 − 2.6965e-1 − 6.5657e-1 − 6.9383e-2 −
10 2 7.5299e-2 8.8618e-2 − 7.6296e-2 ≈ 7.4843e-2 ≈ 6.4748e-1 − 7.8518e-2 ≈ 4.5476e-1 − 1.0935e+0 − 7.0633e-2 +

15 2 9.1473e-2 1.0130e-1 − 9.3871e-2 − 9.5303e-2 − 8.4391e-1 − 8.8318e-2 + 5.1935e-1 − 9.8047e-1 − 8.6112e-2 +

MaF9
5 2 1.3563e-1 3.0405e-1 − 1.8325e-1 − 3.4557e-1 − 2.1043e-1 − 1.8894e-1 ≈ 1.8891e-1 − 1.7299e+0 − 5.9357e-1 −
10 2 6.8620e-1 5.0061e-1 + 2.9959e+1 − 1.3957e-1 + 6.4961e-1 ≈ 1.1629e+1 − 2.8566e-1 + 2.0458e+0 − 2.0707e-1 +

15 2 1.2180e-1 2.6622e-1 − 2.4032e-1 − 1.7641e-1 − 7.8249e-1 − 8.3170e-1 − 6.9765e-1 − 4.7149e+0 − 3.5086e-1 −

degenerate

MaF6
5 14 1.9893e-3 1.4368e-3 + 1.6644e-3 + 1.8853e-3 + 1.2418e-2 − 1.4839e-3 + 3.5676e-3 − 2.6906e-2 − 3.2647e-3 −
10 19 1.9172e-1 1.5110e+0 − 4.0019e+0 − 7.5322e-1 − 2.2362e-2 ≈ 8.5844e-4 + 1.5001e-3 + 7.9989e-3 ≈ 6.5856e-1 −
15 24 2.8296e-1 2.1227e+1 − 6.7430e+0 − 4.0222e-1 − 5.9677e-2 + 8.4888e-4 + 1.1987e-3 + 3.0643e-2 + 4.1965e-1 −

MaF13
5 5 1.2590e-1 1.4939e-1 − 1.0187e-1 + 1.2561e-1 ≈ 4.0283e-1 − 6.3177e-2 + 9.2191e-2 + 1.6446e-1 − 1.0093e-1 +

10 5 1.4283e-1 1.4608e-1 ≈ 7.8926e-2 + 1.0021e-1 + 2.6393e-1 − 5.1029e-2 + 1.1130e-1 + 1.2017e-1 + 9.0302e-2 +

15 5 1.3732e-1 1.4222e-1 ≈ 7.6691e-2 + 1.0617e-1 + 3.1331e-1 − 4.7576e-2 + 1.1943e-1 + 1.3057e-1 ≈ 8.7151e-2 +

DPF1
5 12 2.6863e-2 4.8123e-2 − 2.0711e-2 ≈ 4.5097e-2 ≈ 2.5934e-2 ≈ 1.9522e-2 + 7.5581e+0 − 1.6413e-1 − 4.3628e-2 ≈
10 14 4.3796e-2 1.7213e-1 − 9.9788e-2 − 8.9416e-2 − 9.0616e-2 − 5.1037e-2 − 3.8249e+0 − 1.4723e-1 − 5.4345e-2 −
15 17 7.9489e-2 2.0899e-1 − 2.9100e+1 − 1.4729e-1 − 1.2972e-1 − 9.8974e-2 − 3.8024e+0 − 2.0912e-1 − 1.2226e-1 −

DPF2
5 22 4.5667e-2 6.0193e-2 − 5.4132e-2 − 4.1478e-2 + 1.6726e-1 − 3.7026e-2 + 8.6942e-2 − 1.3052e+0 − 3.0513e-2 +

10 24 2.2141e-1 1.6505e-1 + 5.0288e-1 − 2.8906e-1 − 5.3678e-1 − 2.0005e-1 + 5.2271e-1 − 8.2411e+0 − 1.2118e-1 ≈
15 27 3.8754e-1 3.9458e-1 − 5.4038e+0 − 5.4799e-1 − 1.3864e+0 − 4.0990e-1 − 1.5570e+0 − 5.8077e+1 − 3.1550e-1 +

DPF3
5 9 2.4585e-2 2.6253e-2 − 3.1119e-2 − 2.8793e-2 − 4.4765e-2 − 2.5271e-2 − 5.6442e-2 − 1.6040e-1 − 2.6063e-2 −
10 14 8.4801e-2 8.7481e-2 − 1.2199e-1 − 1.1846e-1 − 9.1265e-2 − 1.3525e-1 − 2.2531e-1 − 2.4081e-1 − 9.4307e-2 −
15 19 1.6456e-1 1.8826e-1 − 2.8172e-1 − 2.4408e-1 − 2.2301e-1 − 2.5517e-1 − 3.8346e-1 − 4.6172e-1 − 1.9077e-1 −

DPF4
5 12 9.1992e-2 2.8401e-2 ≈ 6.6655e-2 ≈ 4.8006e-2 ≈ 2.1213e-2 + 5.8740e-2 ≈ 7.3763e+1 − 1.9863e+4 − 4.0785e-2 +

10 14 9.4762e-2 1.2771e-1 − 1.0951e-1 − 1.0424e-1 − 7.2398e-2 + 1.0072e-1 ≈ 6.5817e+0 − 4.9710e+4 − 5.2717e+0 −
15 17 1.9585e-1 9.2144e-1 − 3.7816e-1 − 2.5531e-1 − 1.7070e-1 + 2.3127e-1 − 2.4868e+0 − 1.4720e+5 − 2.3217e+1 −

DPF5
5 14 7.3827e-2 1.2499e-1 − 1.1629e-1 − 9.2459e-2 − 7.6878e-2 − 7.7846e-2 − 1.0754e-1 − 2.5928e-1 − 5.0894e-2 +

10 19 1.7287e-1 2.8527e-1 − 1.4093e+0 − 2.2101e-1 − 2.1497e-1 − 1.9949e-1 − 2.3085e-1 − 2.4730e-1 − 1.2809e-1 +

15 24 2.3279e-1 3.6736e-1 − 1.2436e+0 − 3.0172e-1 − 2.5663e-1 − 3.4208e-1 − 3.5844e-1 − 3.9504e-1 − 1.6721e-1 +

other MaF2
5 14 5.7329e-2 5.4894e-2 + 7.4300e-2 − 6.4094e-2 − 5.5877e-2 + 5.6337e-2 + 8.1271e-2 − 1.0899e-1 − 6.1057e-2 −
10 19 1.1915e-1 1.4187e-1 − 1.1182e-1 + 1.2220e-1 − 1.4569e-1 − 1.1076e-1 + 1.3882e-1 − 2.0424e-1 − 1.2676e-1 −
15 24 1.2712e-1 1.6039e-1 − 1.2624e-1 ≈ 1.2457e-1 + 1.4665e-1 − 1.1977e-1 + 1.5354e-1 − 2.0216e-1 − 1.4288e-1 −

+/− / ≈ 4/35/6 5/36/4 6/35/4 10/32/3 14/27/4 6/39/0 2/41/2 15/27/3

1 Here +/− / ≈ indicates whether the compared algorithms are statistically significantly better, worse, or equivalent to CARV-MOEA.

intervals for generating the uniform reference vectors. The
reference point for inverted IDTLZ2 and MaF4 with nonlinear
PFs is set to (2,2,...,2) according to [54].

C. Comparison on Irregular Problems

Table I presents the IGD+ values of the solutions obtained
by CARV-MOEA and eight compared algorithms on solv-
ing irregular test instances, consisting of inverted problems
(MaF1, IDTLZ2 and MaF4), discontinuous problems (MaF7
and MaF11), Pareto box problems (MaF8 and MaF9), and
degenerate problems (MaF6, MaF13, and DPF1 to DPF5).The
best mean value in terms of IGD+ indicator are highlighted in
dark grey in Table I, respectively. From these results, we can see
that CARV-MOEA achieves the best performance on 15 out of
45 test instances. Overall, CARV-MOEA, MaOEA/SRV, AdaW
show competitive results in dealing with irregular problems.
On all irregular test instances, CARV-MOEA outperforms
MaOEA/SRV on 27 test instances and performs worse than
MaOEA/SRV on 15 test instances. Among eight compared

algorithms, AdaW adjusts the distribution of reference vectors
using the solutions in an archive after a number of predefined
generations. As shown in Table I, AdaW performs the best on
degenerate MaF6 and MaF13, but is outperformed by CARV-
MOEA on most test instances. Recall that DEA-GNG, and
RVEA∗ use a set of fixed reference vectors along with a
set of adaptive reference vectors, which aims to solve both
regular problems as well as the irregular problems. It can
be found that RVEA∗ performs the best on inverted MaF4
and degenerate DPF4. DEA-GNG is outperformed by CARV-
MOEA on most test instances. CA-MOEA, MOEA/D-SOM and
MOEA/D-AM2M show competitive performance on degenerate
problems such as MaF6 and MaF13.

We plot the solution sets obtained by CARV-MOEA and
MaOEA/SRV on 10-objective inverted MaF4, discontinuous
MaF7, degenerate MaF6, DPF1 and DPF4, respectively, in
Fig. 5. The PF of DPF4 is both degenerate and discontinuous.
From these results, we can observe that the approximated
PFs obtained by CARV-MOEA are very close to the true
PFs. The true PFs of adopted test problems are also given
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Fig. 5: The non-dominated solution set obtained by CARV-MOEA and MaOEA/SRV on solving MaF4 (inverted), MaF7 (discontinuous),
MaF6, DPF1, DPF4 (degenerate) with 10 objectives. The set with the median IGD+ value out of 30 independent runs is plotted.

Fig. 5. By contrast, MaOEA/SRV fails to converge to the true
PFs on MaF6 and DPF4. Although both CARV-MOEA and
MaOEA/SRV converge to the true PFs on 10-objective MaF4
and MaF7, CARV-MOEA seems to cover larger regions of
true PFs than MaOEA/SRV. The Parto front of MaF7 contains
a large number of discontinuous segments and the reason for
CARV-MOEA’s ability to handle MaF7 well could be attributed
to the fact that the solution vectors of promising solutions with
better diversity will be used to generate new reference vectors
based on the angle threshold in CARV-MOEA, ensuring that
promising regions can be preserved when they emerge.

D. Comparison on Regular Problems

Table SI in the Supplementary material presents the IGD+

values of the solution sets obtained by CARV-MOEA and
eight compared MOEAs on the regular test instances. As
shown in Table SI, CARV-MOEA wins on 14 out of 30
test instances, while DEA-GNG, CA-MOEA, VaEA, RVEA∗,
Adaw, MOEA/D-AM2M, MOEA/D-SOM, and MaOEA/SRV
wins on zero, zero, zero, seven, two, two, zero, and five test
instances, respectively, out of 30 test instances in terms of the
IGD+ value. CARV-MOEA and MaOEA/SRV achieve the best
performance on the regular problems with concave PFs. On the
concave problems, MaOEA/SRV achieves the best in solving
MaF12 and DTLZ2, while CARV-MOEA achieves the best on
MaF5, DTLZ3 and DTLZ4. DTLZ3 contains a large number of
local Pareto-optimal fronts and DTLZ4 is of biased density in
the search space, which shows CARV-MOEA is competitive in
convergence. However, the performance of CARV-MOEA on
the problem with mixed PFs, MaF10 is worse than AdaW. The
performance of CARV-MOEA on linear DTLZ1 and convex
MaF3 is the best in terms of IGD+.

As mentioned above, RVEA∗ has one set of fixed reference
vectors, making it also capable of handling regular problems.
Overall, CARV-MOEA achieves the best performance in terms

of the IGD+ value on all regular problems studied in this work,
followed by MaOEA/SRV and RVEA∗.

The Wilcoxon signed-rank test [55] is adopted to assess the
performance between CARV-MOEA and the eight compared
algorithms. Fig. S4 and Fig. S5 in the Supplementary material
plot the performance score in terms of IGD+ and HV indicator
value averaged over all regular and irregular test instances.
It can be seen that CARV-MOEA ranks the first, followed
by MaOEA/SRV and AdaW, RVEA∗ in terms of both IGD+

and HV values. In summary, we can conclude that CARV-
MOEA achieves competitive results on solving both irregular
and regular problems and performs particularly well on
discontinuous and degenerate problems.

E. Analysis of Convergence

To study the convergence speed of CARV-MOEA, we plot
the IGD+ values of solutions over the generations obtained
by CARV-MOEA and eight compared algorithms on solving
discontinuous MaF7, Pareto box MaF8 and degenerate DPF3
in Fig. 6. It can be seen that CARV-MOEA converges a little
slower than RVEA∗ and MOEA/D-AM2M on MaF7 over the
first 50 generations, but then it quickly converges much faster
than the compared algorithms after the first 50 generations.
On solving MaF8, we can find that the performance of CARV-
MOEA converges much better than the compared algorithms,
then finally CARV-MOEA, MaOEA/SRV,VaEA and CA-MOEA
converge to almost the same point. On solving degenerate DPF3,
CARV-MOEA converges slightly more slowly than AdaW, but
much faster than other seven compared algorithms over the first
100 generations, then CARV-MOEA surpasses eight compared
algorithms after 100 generations.

In addition, we also give the IGD+ indicator values obtained
by CARV-MOEA and eight compared algorithms on solving
regular problems, such as MaF5, DTLZ3 and DTLZ4. The
plots are given in Fig. S3 in the Supplementary material.
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Fig. 6: Mean IGD+ indicator value of solutions obtained by CARV-MOEA and eight compared algorithms on handling discontinuous MaF7,
Pareto box MaF8 and degenerate DPF3 over 30 independent runs.

F. The Effectiveness of A-APD and the Angle Threshold

In this subsection, we perform a set of experiments to show
the importance of the coordinated adaptation of the reference
vectors and scalarizing function. To this end, we compare
CARV-MOEA with three of its variants. In the first variant, the
proposed A-APD is replaced with the original APD, termed
as CARV-MOEA-APD. The second variant uses a simplified
version of A-APD, where γj is determined in the same way as
in the original APD, which is denoted as CARV-MOEA-noC. In
the third variant, we replace the proposed reference adaptation
method with the one in MOEA/D-2ADV [35], which adds
new reference vectors between sparsely distributed reference
vectors, which is denoted as CARV-MOEA-IRV. The average
performance scores in terms of IGD+ over all test instances
of CARV-MOEA, CARV-MOEA-APD, CARV-MOEA-IRV
and CARV-MOEA-noC are 1.9333, 2.7067, 3.08 and 2.28,
respectively. All comparative results obtained by CARV-MOEA
and three of its variants in terms of IGD+ and HV values are
listed in Table SIV and Table SV in the Supplementary material,
respectively.

As shown in the Table SIV, we can find CARV-MOEA-APD
performs significantly worse than, comparable to, and better
than CARV-MOEA on 52, 10, and 13, respectively, out of 75
test instances in terms of IGD+. These results confirm that the
proposed A-APD performs better than APD on MaOPs when
the reference vectors are adapted during the search process.

In addition, we observe from Table SIV that CARV-MOEA-
IRV performs significantly worse than, comparable to and better
than CARV-MOEA on 50, 12, and 13 among 75 test instances,
respectively. Note that, the interpolated reference vectors in
CARV-MOEA-IRV will be deleted only after a number of
fixed generations, which is the same as in CARV-MOEA. As
a result, the algorithm will have a better chance to exploit the
search space along the interpolated reference vectors during
the search space, which, however, may limit the exploration
capability of the algorithm.

Finally, we note that CARV-MOEA-noC performs signifi-
cantly worse than CARV-MOEA on those problems with a huge
number of local PFs, such as DTLZ1, DTLZ3 and MaF3. The
results demonstrate that the adaptation of γ in A-APD is helpful
to ensure that convergence is not significantly slowed down.
In Fig. S6, we plot the non-dominated solution set obtained by
CARV-MOEA and CARV-MOEA-noC on solving 10-objective
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Fig. 7: Mean HV value of the solutions obtained by CARV-MOEA
and eight compared algorithms on the HEV controller design problem
over the generations averaged over 24 independent runs.

DTLZ3 and MaF1. It can be seen that CARV-MOEA-noC
performs much worse than CARV-MOEA on DTLZ3. Both
CARV-MOEA and CARV-MOEA-noC achieve competitive
results on MaF1. Thus, we can conclude that the adaptation
of γ in A-APD can help avoid selecting the poorly converged
solutions. At the same time, it can prevent the well converged
solutions associated with new reference vectors from getting
lost.

G. Hybrid Electric Vehicle Controller Design

The performance of the proposed CARV-MOEA is further
tested on a real-world application, i.e., the design of a controller
of hybrid electric vehicles (HEVs). The design of HEV
controller contains seven objectives and 11 decision variables.
A description of objectives and the design variables are given
in Section V in the Supplementary material and a more detailed
description of the HEV controller optimization problem can
be found in [14].

We compare CARV-MOEA on the HEV controller design
problem with eight compared algorithms. In Fig. 7, we give the
HV indicator values of the solutions obtained by CARV-MOEA
and the compared algorithms over the generations averaged
over 24 independent runs. The maximum objective values of
all non-dominated solutions obtained by these nine algorithms
are used as the nadir point. From Fig. 7, it can be seen that
CARV-MOEA performs the best in terms of the HV indicator
values over all generations, which further demonstrates the
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competitiveness of CARV-MOEA in solving many-objective
problems.

V. CONCLUSION

In this study, we propose a new criterion for adapting the
reference vectors based on the angle threshold specific to each
reference vector. Additionally, we design an adaptive scalarizing
function, termed A-APD in coordination with the adaptation
of the reference vectors. This way, the algorithm is able to
preserve promising solutions and explore new regions in the
search space without severely slowing down the convergence.
Experimental results show that the coordinated adaptation of
the reference vectors and scalarizing functions is effective
in enhancing the search performance on MaOPs with both
regular and irregular PFs, compared with eight state-of-the-art
algorithms.

However, the proposed CARV-MOEA is ineffective in
preserving the extreme solutions when the PF is convex but
has a very large curvature. Thus, our future work will focus on
detecting the shape of the PFs during the search process and
then adapt the scalarizing function to the shape of Pareto fronts.
In addition, diversity measures will be introduced to enhance
the evenness of the distribution of the reference vectors in
reference vector adaption to further enhance the diversity of
the obtained solutions. Finally, efforts will be made to develop
more dedicated solution generation methods [56] by taking
the distribution of the Pareto optimal solutions into account to
enhance the search efficiency.
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