I}Jﬂ@ﬂ Honda Research Institute Europe GmbH
Honda Research Institute EU httpS//WWW honda'ri de/

Cooperative multi-objective topology
optimization using clustering and metamodelling

Nivesh Dommaraju, Mariusz Bujny, Stefan Menzel,
Markus Olhofer, Fabian Duddeck

2022
Preprint:
This is an accepted article published in IEEE 2022 Congress on Evolutionary

Computation. The final authenticated version is available online at:
https://doi.org/[DOI not available]


http://www.tcpdf.org

Cooperative Multi-objective Topology Optimization
Using Clustering and Metamodeling

1% Nivesh Dommaraju
Technical University of Munich
Munich, Germany
nivesh.dommaraju @tum.de

4™ Markus Olhofer

Honda Research Institute Europe
Offenbach, Germany
markus.olhofer@honda-ri.de

Abstract—Topology optimization optimizes material layout in
a design space for a given objective, such as crash energy
absorption, and a set of boundary conditions. In industrial appli-
cations, multi-objective topology optimization requires expensive
simulations to evaluate the objectives and generate multiple
Pareto-optimal solutions. So, it is more economical to identify
preferred regions on the Pareto front and generate only the
desired solutions. Clustering methods, a widely used subclass
of machine learning methods, provide an unsupervised approach
to summarize the dataset, which eases the identification of the
preferred set of designs. However, generating solutions similar to
the preferred designs based on different metrics is a challenging
task. In this paper, we present an interactive method to generate
designs similar to a preferred set using one of the state-of-
the-art weighted-sum approaches called scaled energy weighting
- hybrid cellular automata (SEW-HCA). To avoid unnecessary
computations, metamodels are used to predict the desired weight
vectors needed by SEW-HCA. We evaluate an application of our
method for cooperative topology optimization using a cantilever
multi-load-case problem and a crashworthiness optimization
problem. Using the proposed method, we could successfully
generate designs that are similar to preferred solutions based
on geometry and performance. We believe that this is a crucial
component that will improve the usefulness of multi-objective
topology optimization in real-world applications.

Index Terms—multi-objective optimization, topology optimiza-
tion, similarity measures, data mining, geometric processing

I. INTRODUCTION

Topology optimization (TO) [1] optimizes the material
layout in a design space for a given set of objectives such
as structural stiffness or crash energy absorption, given a set
of boundary conditions such as loads and supports. In real-
world applications, TO uses multiple expensive simulations to
iteratively find solutions in a high-dimensional design space.
Multi-objective topology optimization (MTO) is even more
challenging due to additional, usually conflicting, objectives.
Furthermore, methods are needed to analyze the numerous
Pareto optima and identify desirable solutions.
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Multi-objective evolutionary algorithms (MOEAs) such as
NSGA-III are successful in identifying diverse as well as pre-
ferred solutions [2]. Since the search space in TO problems is
in general high-dimensional, it is difficult or not feasible to use
MOEAs. Methods such as the evolutionary level set method
[3], [4] alleviate this problem by using feature mapping to
reduce the dimensionality of the problem. However, MOEAs
still tend to be computationally intensive since they require
a high number of fitness calculations with each evaluation
requiring one or more expensive simulations.

In contrast, an MTO method using a weighted-sum approach
(w-MTO) can handle the high-dimensional decision space by
incorporating computationally-efficient TO approaches. For
example, weighted-sum methods can be used with two of
the start-of-the-art TO algorithms: gradient-based SIMP (solid
isotropic material with penalization) [1] and heuristic-based
HCA (hybrid cellular automata) [5] methods. In the weighted-
sum approach, each objective is assigned a weight and an
optimal solution is computed. However, it is difficult to choose
the weights such that the resulting structure meets all the
design requirements, which are often difficult to formulate
mathematically [6]. Furthermore, given the high cost of MTO,
it is more efficient to progressively incorporate the user
preference to generate only the desired solutions, i.e., using the
interactive method for multi-objective optimization [7]. So, we
investigate if machine learning techniques such as clustering
and regression methods can be used to choose the weights and
generate desired solutions in collaboration with an engineer.

An unsupervised machine learning method to analyze
datasets is clustering which groups designs based on a sim-
ilarity criterion. Since it is difficult to analyze each optimal
solution, designs can be clustered based on performance [8]
or geometrical structure [9]. For each cluster of solutions,
only the representative design may be analyzed, reducing the
effort in the design process considerably [10]. In the literature,
preferred regions are defined using reference directions, points,
or other supervised methods [2]. In contrast, in this paper,



we use cluster analysis to identify a reference set of designs,
which is viable even for a large number of objectives. More-
over, to minimize the expensive simulations, metamodels—
regressor and classifier models—are used in an evolutionary
optimization process to predict the weight-vectors needed by
w-MTO to generate the new solutions in the preferred region.

In this paper, we demonstrate the usefulness of our method
in design optimization using two test cases: a cantilever multi-
load-case and a crashworthiness optimization problem. We
use SEW-HCA (scaled energy weighting - hybrid cellular
automata) [11] since it is fast and can handle crash-related
objectives. However, any other MTO using the weighted-
sum approach can be integrated with our proposed approach.
For each test problem, we group solutions by similarity in
performance or geometry and then generate more solutions
in each cluster. We could evaluate our approach successfully
by measuring the accuracy of metamodels and the cluster
belongingness of the new solutions.

In the following, we describe an interactive MTO based on
clustering along with an illustration in Section II. An evalua-
tion method to measure the similarity of new solutions to the
preferred cluster is presented in Section III. We then present
the test problems in Section IV, followed by a conclusion in
Section V.

II. INTERACTIVE SET-BASED MULTI-OBJECTIVE
OPTIMIZATION (ISMO)

Real-world multi-objective topology optimization (MTO)
requires expensive computations. For such problems, re-
searchers recommend the so-called interactive approach to
generate solutions only in the preferred region [7]. While
data analysis methods such as clustering can identify preferred
solutions (Section II-A), it is challenging to generate only the
desired solutions with a minimal number of expensive com-
putations. In this section, we present an interactive framework
using set-based multi-objective optimization (iISMO), which
identifies a preferred set of solutions using cluster analysis and
generates more such solutions using an evolutionary algorithm
(EA) with a metamodel of the MTO.

Given a vector w of weights for objectives, w-MTO methods
such as SEW-HCA can efficiently compute Pareto-optimal
solutions. SEW-HCA discretizes the design domain into n
elements whose normalized density p € [0,1] needs to be
determined by the the optimization process. Each design d;
can be then represented by a vector of relative densities of
the elements, [p]7_,. An interactive w-MTO method needs to
find the set of weight-vectors W = {w;},, which results in
a diverse set of solutions D = {d;(w;)}}Y, in the preferred
region.

Inspired by MOEAs, we propose to find W using EAs
to ensure diversity of solutions while constraining them to
the preferred set S. The constraint function evaluates if a
given w results in a solution d € S. To avoid expensive
TO runs in iISMO, we propose a novel approach using meta-
models to predict the objectives (Section II-B) as well as
the cluster labels of the TO results (Section II-C) from w.

Given the metamodels, an evolutionary optimization method
can be inexpensively used to find the desired weight-vectors
(Section II-D). We illustrate the complete process using a
simple quadratic MOP (multi-objective optimization problem)
at the end of this section (Section II-E).

A. Identification of Preferred Regions using Clustering

Several data mining approaches exist to aid the designer
in this process of identifying interesting solutions: descriptive
statistics, manifold learning techniques, box plots, parallel
coordinate plots, and clustering methods can help to analyze
the Pareto optima [12]. Clustering methods are particularly
useful since they summarize datasets without supervision and
can identify a cluster of interesting designs.

In the literature, clustering is used to analyze TO results
and identify design groups with similar performance [8] or
geometrical structure [9]. By analyzing the cluster properties,
one or more clusters can be chosen as the preferred set of
designs. This considerably reduces the effort of analyzing
the dataset of usually very complex, topologically-optimized
designs. For example, we can select a cluster by analyzing
a representative solution in it, e.g, the medoid of a cluster
[10], [13], which is defined as the design with the least
average distance to the other designs within the cluster. A
metric, chosen according to the application, measures the
distance/dissimilarity between any two designs.

Later in the results (Section IV), we analyze the effect of
different clusterings on our method iSMO. For this purpose,
we use preferred sets from performance and geometric cluster-
ing separately, which are explained below. More sophisticated
clusterings of design concepts are possible which consider
multiple metrics concurrently [14].

a) Performance clustering: Designs can be clustered
based on their objective values. This implicitly considers the
Euclidean distance in objective space as the performance
metric.

b) Geometrical clustering: 3D object classification, i.e.,
identifying objects that are geometrically or structurally sim-
ilar, is a challenging research field [15], [16]. In this paper,
we use the method outlined by Dommaraju et al. [13] with
the autoencoder (AE) neural-network proposed by Achlioptas
et al. [15] to extract geometric features (g) that are useful
in clustering similar structures. Each TO design is converted
to a surface mesh and then points are sampled uniformly on
the mesh to obtain a point cloud representation of the design.
Given a metric called chamfer distance (CD) [15] which
measures the dissimilarity between any two point clouds, AE
learns to extract from each design a so-called latent code (g),
which can then be used to group similar geometries with ease
using a clustering algorithm such as k-means [17].

In the datasets used in Section IV, the resultant TO designs
comprise a set of elements whose relative densities range from
0 to 1. So, we use the marching cubes algorithm [18] with a
density threshold of 0.1 to convert each TO design to a surface
mesh which is then converted to a 2048-dimensional point
cloud. An AE model is trained with the initial set of designs



to extract a 128-dimensional vector of geometric features (g),
which is used by k-means to find the geometrical clusters in
the design set.

Although we use clustering in this paper, any other method
that yields a set of preferred designs can be coupled with our
proposed approach to generate more of such designs. Next, we
show how metamodels can be used to predict the objectives
and cluster labels.

B. Prediction of Objectives Using a Regressor

To offset the high cost of MTO, we build a regressor model
(Px(w)) to predict the objective values (f) for a given weight
vector (w) instead of performing the w-MTO with w as input.
While the regression model needs to be tailored to a given
problem [19], the following issues are important while training
a metamodel for MTO:

o Dimension of output: If the dimension m of f is greater
than 1, we need a multi-output regression model.

o Redundant weights: The weights for objectives can be
scaled by the same number and the resultant design
will not change. So, we normalize the weights such that
Z;r;l w; = 1 and remove a weight to yield the input,
[w;]71", for training the metamodel.

o Limited data: Since MTO is expensive, it is common
to have a small number of designs. So, simpler models
might cause less overfitting than the complex models such
as neural-network regression models [20].

o Opverfitting: A good metamodel should predict correct
outputs for weights other than the training weights, i.e.,
avoid overfitting the data. For our datasets, Gaussian
process regressor [21] overfits the least without any
hyperparameter tuning unlike random forests, linear re-
gressors, and support vector regressors [20].

C. Prediction of Clusters using a Classifier

Our approach requires a constraint function C' to check if
a new design d obtained using a weight vector w belongs to
the preferred set S, i.e.,

C(w)=0iff d(w) €S. (1)

As discussed in Section II-A, we select a preferred cluster
whose solutions are representative of the preferred set S. We
then evaluate C' using a classifier model to predict the cluster
label p from w:

C(W) = |p(W) _pref|a (2)

where por is the preferred cluster label and p(w) is the
predicted cluster label. In our experiments, we use the k-
nearest neighbor classifier with £ = 1, i.e., the cluster label
for a given w is the label of the nearest cluster in the training
data. For noisy datasets, better classifiers may be needed.

A

Find the preferred
set of solutions S

Initial set of designs:

{wihily = {di}}Y,

B C '

Build constraint function:
C(w)=0 < d(w)eS

Build objective predictor:
Pf(w) = Ipred =~ f

D A

Find new weight vectors
s.t. C(w)=0

4

Use weights to generate
new designs.

Fig. 1. An iteration of iSMO. Given a preferred cluster (A), we use a
metamodel to predict objectives from weight vectors (B) and a constraint
function determines if a weight vector yields a preferred solution (C). Using
EA, we find the weight vectors that will result in the desired designs (D).

D. Identification of Desired Weight-vectors

As discussed previously, the Pr(w) can estimate the objec-
tives without requiring expensive simulations and C(w) can
be used to restrict solutions to a selected cluster. We now
describe our iSMO framework to find the new weights that
result in new solutions in the preferred set S.

iSMO follows the general EA framework [2] and uses
selection, crossover, and mutation operators to obtain a new
generation of solutions that satisfy the cluster constraint C.
iSMO uses simulated binary crossover and polynomial mu-
tation [22] but other variations are possible [2]. The input
variables for iSMO are w and the objectives are predicted
using a metamodel Py of SEW-HCA. Since SEW-HCA is
heuristic, the data used to train the Pt may have dominated
solutions. Furthermore, since % is not perfect, it may generate
dominated solutions. If SEW-HCA as well as its metamodel
are reasonably accurate, FP; predicts objectives that are still
close to the Pareto front. So, we chose not to use the
dominance ranking proposed in NSGA-II and only use the
crowding distance in the selection operator to ensure diversity
of solutions [22]. Otherwise, many useful solutions close to the
Pareto front may be ignored, which deteriorates the diversity of
new solutions. The overall time and space complexity of iSMO
are the same as NSGA-II without the dominance ranking step
[22].

Figure 1 outlines the complete method. Since the metamod-
els are used to predict the objectives as well as the cluster
labels, no additional TO runs with simulations are required
to find the desired weight-vectors, which are then used in the
final step to generate actual designs. In the next section, we
illustrate our method using a simple quadratic MOP.
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(a) Initial Pareto front with clusters based on objective
values. Each solution is colored as per its cluster and
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(c) Partial Pareto front with only the new solutions
from subfigure b. The solutions are clustered again
and a new preferred cluster is chosen (dotted ellipse).

10!

51 /
4_
¢ 2
+31 /
2
2 1 Xx&/3
14 x>§( /0 4
o 4
0.00 025 050 0.75 1.00 1.25
f %102

(b) New solutions (cross-marked) are generated in the
preferred cluster.
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(d) New solutions (cross-marked) are again created in
the preferred cluster from subfigure c.

Fig. 2. Illustration of iSMO. The axes labels f1, f2 represent the two objectives of BNH problem. In each row, Pareto optima are clustered and new solutions

are generated in a selected cluster using iSMO.

E. lllustration of iSMO

To illustrate our method, we consider the BNH [23] function
with two decision variables, two objectives [f1, f2] and no
constraints. To mimic a w-MTO, we use the weighted-sum
method to aggregate the objectives of BNH.

For a set of weights w = [wy, ws], the resultant objective
f=w-f=wf) +wyfs is minimized using the differential
evolution algorithm [24], where w; > 0 and we = 1—w; > 0.
To generate an initial set of solutions, W = {w;}}¥, are
uniformly sampled using the Das-Dennis approach [25] to
obtain the corresponding set of objectives F = {f;}¥.| (Figure
2a). Since the objectives are of different scales, uniform
sampling of weight vectors gives a slightly non-uniform Pareto
front. A Gaussian regressor model for the MOO is built using
wj as input. Using iSMO, new solutions are progressively
found in the preferred clusters. Figure 2 shows two iterations
of (1) choosing a preferred cluster, and (2) generating a dense
set of solutions for each of the clusters.

III. EVALUATION METHOD

The new solutions generated by iSMO should belong to
the preferred set of designs S compared to other designs in
the initial Pareto-optimal solutions I. The constraint function

ensures that the new solutions belong to the preferred cluster.
But this can be verified objectively using the silhouette score
[26] to measure the cluster belongingness.

Silhouette sample score s; measures the belongingness of
i-th solution to a given set S relative to other solutions and is
defined as follows:

P el B 3)
max(b;, a;)

where a; is the closest distance to other solutions in S, b; is
the closest distance to the other solutions in I excluding S, i.e.,
I—S. The sample score ranges from [—1, 1]. In this calculation,
the metric used for clustering should be used to measure the
distances (Section II-A). The average silhouette score for a
set of new solutions indicates the quality of belongingness to
the preferred set S. While a high score (s ~ 1) is preferred,
the silhouette score is expected to be low for contiguous data,
where the clusters are not well separated. In particular, the
score is low for samples on the boundary of clusters.

IV. TOPOLOGY OPTIMIZATION USING ISMO

In this section, we provide results using exemplary MTO
problems. For each example, we generate an initial set of
solutions which are then clustered based on geometry and



performance separately. We then use our proposed approach,
iSMO, to find new solutions in each of the clusters. Although
our method is supposed to generate solutions for a single
chosen cluster, we show here solutions in all the clusters to
evaluate iISMO with different preferred sets.

A. Test Case 1: Cantilever Beam with Two Static Loads

Load case 2

Fixed
Nodes

Y

L5

Load case 1

Fig. 3. A cantilever beam is optimized to support two static loads acting
independently.

A cantilever beam is optimized to support two static loads,
each with a magnitude of 0.2 N (Figure 3). For each static load
1 € {1,2}, we minimize the structural compliance f;—the
inverse of stiffness—which is measured by the total internal
strain energy stored. Lower stored energy indicates lower
compliance of the structure for the applied load. Each static
load case is simulated separately using the implicit solver of
the commercial software LS-DYNA.

The design space of dimensions, 400 mm X 200 mm X
10 mm, is discretized into 40 x 20 x 1 = 800 elements.
Bilinear elasto-plastic model (MAT_024 in LS-DYNA) of an
aluminium material is used with the following properties:
maximum mass density ppax = 2.7 x 103 kg/m3, Young’s
modulus £ = 70 GPa, Poisson’s ratio v = 0.33, yield strength
oy = 117 MPa, and hardening modulus Ei,, = 49 GPa. For
a given w, we use an SEW-HCA run with a maximum of 25
iterations, an allowed volume fraction of 0.4, a move limit of
0.1, and a penalization factor of 3.

A Gaussian process regressor was trained using initial
solutions to predict the objectives from the weight-vector. The
k-fold cross-validation method [20] with k£ = 5 yields a score
R? = 0.77 £ 0.08. Since the size of data is small, the scores
can be quite low depending on the test split. However, test
accuracy measured on the new solutions generated by iSMO
is high: R? = 0.97 4 0.02. A k-nearest neighbor classifier
with £k = 1 is built to define the constraint function, i.e., a
new solution is labeled according to the cluster label of its
closest solution in the initial dataset.

a) Performance clusters: Using k-means method, solu-
tions are grouped based on performance by using objective val-
ues as the features for clustering (Figure 4a). Using iSMO, we
generated new solutions in each of the performance clusters.
Figure 4b shows that the new solutions belong to their selected
clusters. The average silhouette score of the new solutions is
0.61, which is reasonable since the clusters are contiguous.
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(b) Pareto front containing exclusively the new
solutions in each cluster of (a).

Fig. 4. Using iSMO, new solutions are generated for each performance cluster
in test case 1 (Figure 3).

b) Geometric clusters: The Pareto-optimal designs are
clustered based on the geometric features (dim=128) obtained
using an autoencoder (Section II-A). Using iSMO, we gen-
erated new solutions in each of the clusters (Figure 5b) with
an average silhouette score of 0.53. Figure 6 compares the
structure of new solutions in the geometric clusters with the
initial solutions.

Comparing the new solutions to the corresponding clusters,
one can see that the new designs are reasonably spread even for
clusters with 1 or 2 initial designs. Furthermore, the solutions
spread up to the cluster boundaries.

B. Test Case 2: Simply Supported Beam with a Crash and a
Static load

A simply supported beam is optimized using MTO with
two objectives: minimizing compliance f; for a static load and
maximizing energy absorbed fy for a crash load (Figure 7).
The static and crash load cases are simulated using the implicit
and explicit solvers in LS-DYNA respectively. The beam is
fixed at two locations at the bottom, as shown in Figure 7.
The crash load is applied using a rigid hollow cylinder with a
prescribed displacement of 100 mm in 0.1 s. The static load
of 10* N is used.

The design space of dimensions, 600 mm x50 mm x50 mm,
is discretized into 120 x 10 x 10 = 12000 elements. The
material properties are as in the test case 1 (Section IV-A).
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(b) Pareto front containing exclusively the new
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Fig. 5. Using iSMO, new solutions are generated for each geometric cluster
in test case 1 (Figure 3).

For a given w, we use SEW-HCA with a maximum of 25
iterations, an allowed volume fraction of 0.4, a move limit of
0.05, and a penalization factor of 3.

A Gaussian process regressor was trained using initial
solutions. The k-fold cross validation method with £k = 5
yields a score R? = 0.86 & 0.04. Test accuracy measured on
the new solutions is also high: R? = 0.844-0.05. A k-nearest
neighbor classifier with k£ = 1 is once again built to define the
constraint function.

a) Performance clusters: Using the k-means method,
initial solutions are clustered based on performance by using
objective values as the features (Figure 8a). Due to the
heuristic nature of SEW-HCA, some of the solutions are not
Pareto-optimal but are near the Pareto front. Using iSMO, we
generated new solutions in each of the clusters. Figure 8b
shows the new solutions which belong to their selected clusters
in the objective space. The average silhouette score of the new
solutions is 0.69.

b) Geometric clusters: The initial solutions are clustered
based on the geometric features (dim=128) obtained using
an autoencoder (Figure 9a). Using iSMO, we generated new
solutions (Figure 9b) in each of geometric clusters. Figure 9b
shows that the new solutions seem to belong to their selected
clusters as seen in the objective space, which is expected for
this dataset where similar geometries tend to have similar
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Fig. 6. A comparison of initial and new solutions in geometric clusters. Each
design comprises of elements which are classified into high density elements
(brown) if p > 0.1 pmax or low density elements (light-blue), otherwise. In
each row, we show the representative design in a cluster ¢ of initial Pareto
front (Figure 5a), followed by the most dissimilar new solution for cluster %
(Figure 5b). CD between the designs is shown above the new design.

Crash load

Static load

Fixed
nodes

Fig. 7. A simply supported beam is optimized for a crash load from a cylinder
(top) and a static load (right face).

performance. The average silhouette score of the new solutions
is 0.61, which is measured using CD as the metric. Figure 10
compares the structure of initial and final solutions.

Discussion

Since the two test cases discussed in this section consider
only two objectives, our proposed method can be qualitatively
analyzed in addition to evaluating quantitatively using silhou-
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(a) Initial set of solutions colored according to
the performance cluster.
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(b) Pareto front containing exclusively the new
solutions in each cluster of (a).

Fig. 8. Using iSMO, new solutions are generated for each performance cluster
in test case 2 (Figure 7).

ette scores. Since the Pareto front is two-dimensional, it is
easy to see that the new solutions belong to their preferred
performance clusters (Figures 4 and 8). Given that the clusters
are not separated well, the average silhouette scores, ranging
from 0.5 to 0.6, indicate that the new solutions are within
their target clusters. The same argument is true for geometric
clusters as well since the solutions along the Pareto front
gradually change in geometry for these datasets. The new
solutions should be closer to the preferred geometric cluster as
seen in the objective space as well, which is indeed the case
as seen in Figures 5 and 9.

V. CONCLUSION

In this paper, we addressed some of the challenges faced
in structural design optimization. We recommended the use of
a weighted-sum approach for multi-objective topology opti-
mization (w-MTO) as in SEW-HCA (scaled energy weighting
- hybrid cellular automata) since they can efficiently find the
solutions in the high-dimensional decision space. However,
such methods need to be rerun with different weight-vectors
(w) to yield multiple Pareto optima and each run needs expen-
sive simulations. So, we proposed an efficient approach called
iSMO (interactive set-based multi-objective optimization) that
iteratively generates the desired solutions.

In iSMO, first, we generate an initial set of solutions using
an appropriate weight sampling method for a given w-MTO.
Then, we analyze the solutions using clustering based on a

15 16 17 18 19
filmd] <101

(a) Initial set of solutions colored according to
the geometric cluster.

L5 1.6 L7 1.8 19
fi [mJ] x10"

(b) Pareto front containing exclusively the new
solutions in each cluster of (a).

Fig. 9. Using iSMO, new solutions are generated for each geometric cluster
in test case 2 (Figure 7).

metric to identify a preferred set of solutions (Section II-A).
Using the initial solutions and clustering data, iSMO predicts
the weights required to generate more solutions similar to
a preferred cluster (Sections II-B, II-C, II-D). Since iSMO
uses metamodels, it does not require expensive w-MTO runs.
Finally, we evaluate our method by measuring the cluster
belongingness of the new solutions using silhouette scores
(Section III). Although we use iSMO as an interactive method
for an MTO based on the weighted-sum approach, it can be
adapted to MTOs or other expensive MOPs that use other
scalarization functions or reference directions.

In our experiments with two test problems (Section 1V),
SEW-HCA generated reasonably diverse initial solutions from
uniformly sampled weights. The initial solutions are clustered
based on performance and geometry separately. For each clus-
ter, iSMO could successfully generate new, diverse solutions.
The cluster belongingness of the new solutions, measured
using the silhouette score, is reasonably high, given that the
input clusters are close to each other. While the new solutions
seem to be well-spread within their cluster, we would like to
evaluate this more quantitatively in the future. In this paper,
we used two-objective MTO problems since they are more
intuitive to understand. We believe that the underlying methods
of iSMO are general enough to handle many-objective TO
problems. It would be interesting to use iSMO with other TO
algorithms and with large-scale industrial problems, e.g., for
generating specific geometrical concepts in open datasets such
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Fig. 10. A comparison of initial and new solutions in geometric clusters. Each
design is represented by the surface mesh enclosing only the high density
elements p > 0.1 pmax. In each row, we show the representative design in a
cluster ¢ of initial solutions (Figure 9a), followed by the most dissimilar new
solution for cluster ¢ (Figure 9b). CD between the designs is shown above
the new design.

as the CarHoods10k dataset [27].

Multi-objective optimization in the context of topology
optimization is a challenging field of research. New methods
are needed to effectively generate new designs while mini-
mizing the expensive simulations. In this paper, we leveraged
machine learning methods to support the optimization process.
At the core, we generated new solutions similar to a set of
initial solutions. We believe this approach of progressively
recommending new solutions to the designers will enhance
the use of topology optimization in the industry and product
design process.
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