
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Shared Autonomy for Intuitive Teleoperation

Simon Manschitz, Dirk Ruiken

2022

Preprint:

This is an accepted article published in ICRA Workshop: Shared Autonomy in
Physical Human-Robot Interaction: Adaptability and Trust. The final
authenticated version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Shared Autonomy for Intuitive Teleoperation

Simon Manschitz1 and Dirk Ruiken1

Abstract— Shared autonomy can be a means for combining
the strengths and alleviating the weaknesses of two heteroge-
neous agents. In a teleoperation system with shared autonomy,
a robotic system can take over the control from the human
operator in certain situations, for instance when the operator
has issues controlling the robot due to diminished depth
perception. However, it is often difficult to decide when and how
to take over control. In this paper, we introduce a virtual reality
based shared autonomy teleoperation framework that provides
support for the human operator during object interactions, e.g.,
for pick and place tasks. The framework allows for a better
understanding of the current situation by providing visual
and haptic cues to the operator. Additionally, based on the
estimated intention of the operator, the system can autocorrect
the operator’s commands to semi-autonomously guide the robot
towards the current goal when appropriate. By retaining the
operator’s sense of agency, the system increases the operator’s
trust in the system.

I. INTRODUCTION

Teleoperation can be utilized for remotely controlling a
robot, for instance in environments that are too dangerous for
a human. The main downside is that teleoperating a robotic
arm is difficult due to the difference in the embodiment
of the robot and that of the human operator. The degrees
of freedom, the limb lengths, the work range and physical
limits of the robotic arm are usually different from that of the
human operator and therefore controlling the robot requires
extensive training of the operator and often knowledge about
robotics in general and/or knowledge about the internal
structure of the robotic arm. An alternative to teleoperation
is the autonomous execution of a task by a robot, which
requires little to no effort by an operator. However, due to the
unpredictability of the real world, autonomous task execution
is usually restricted to a very limited set of simple tasks
and requires a lot of programming. Shared autonomy is a
teleoperation paradigm which aims at finding a compromise
between the two extremes of autonomous execution and
pure teleoperation [1]. The idea is that in phases of a task
which can be easily automatized the robot takes over the
control, while in other phases the human operator fully or
partially controls the robot. Taking over the control can
be done automatically or based on human input. In this
paper, we present a framework for such a shared autonomy
teleoperation scenario. The human operator is wearing a
head mounted display (HMD). The operator’s hand is tracked
with a Valve Index controller. The state of the fingers is
tracked with a continuous button of the Index controller.
Hence, a continuous value [0, 1] indicates the finger state.

1Simon Manschitz and Dirk Ruiken are with Honda Research Institute
Europe GmbH, Carl-Legien-Straße 30, 63073 Offenbach/Main, Germany
simon.manschitz@honda-ri.de

Shared 
Autonomy

Operator
State

Rendered
Scene

Command

Robot State

RGB-D Images

Gaze

Fig. 1: The system extracts a scene from raw RGB-D images
and displays it to the operator. It processes the scene together
with the remaining input (operator hand state, gaze and
the robot state) and generates a command for the robot. In
contrast to a pure teleoperation setup, the system estimates
the operator’s intention and may correct the operator’s input
commands in certain situations.

A rendered scene is shown to the operator, who can freely
walk around the scene in VR. Instead of sending the current
hand state of the operator as a target to the robot as in normal
teleoperation, the hand state might be processed first by an
internal logic. Based on the current behavioral state (e.g.,
grasping or approaching an object), the hand state is altered
in different ways with the aim of supporting the human
operator in achieving his or her goal. An overview of our
system is depicted in Figure 1 while the system itself is
presented in Section III.

II. RELATED WORK

The presented framework is comprised of different mod-
ules that are responsible for inferring the operator’s intention,
generating target commands for the robot based on the
current behavioral state as well as providing feedback for
the operator. In the following, we will discuss the related
work in those areas.

Intention estimation: The aim of intention estimation is
to infer the operator’s intention by tracking his or her hand
pose(s) and/or the gaze [1], [2], [3]. One can either infer the
expected trajectory the operators wants the robot to track [4]
or the intention is only estimated on a more abstract level
where for instance only the object of interest or the intended
action (e.g., grasp, push, etc.) is estimated. The intention
estimation module we use has recently been presented in [5].
In this approach, the authors train a Hidden Markov Model
to learn to infer the most likely object of interest from the
gaze pattern and hand motion trajectory of an operator in
a VR setup.

Haptic and Visual Feedback: In a teleoperation setting,
a feedback connection of any modality establishes a bi-
directional communication channel between the operator and



the robotic system. The feedback connection allows the
operator to not only send commands to the system but
rather to interact with it. In [6], the authors showed that
haptic feedback can improve the Human-Robot agreement
and user satisfaction in a shared-autonomy teleoperation
setting. In [4], models are proposed for hand movement
prediction to estimate future events (e.g., collisions) in virtual
environments and enable real-time multi-modal feedback.
Such feedback could include vibrotactile and pneumatic
feedback, which can increase the accuracy of sketching in
VR [7]. Similar principles could be included in teleoperation
scenarios in the future. A review of haptic wearable haptics
can be found in [8].

Supported Teleoperation: In [9] an approach is presented
where the operator’s intention is utilized for autocorrecting
the commands that are send to the robot. A similar approach
is presented in [10]. The approach presented in [11] is
similar, but the approach is applied to a drone setting.

III. SUPPORTED TELEOPERATION FRAMEWORK

The aim of our framework is to support the human
operator in achieving his/her manipulation target. In this
paper, we concentrate on pick and place tasks. One design
target was that the human operator should always have the
feeling of being in control of the system—retain the sense of
agency. Ideally, the operator is not even aware that a support
system is active. Hence, the support should always be very
subtle and the system should not take over control for larger
phases of a task. In the following section, we discuss the
overall framework, its individual modules and some details
which we think are important aspects of the system. An
overview of the system is depicted in Figure 2.

A. Scene Understanding & Intention Estimation

Since manipulation tasks require physical interaction with
objects in the environment, we first have to be able to detect
those objects in the scene. In addition, we must guess the
operator’s intention for providing support for those objects.
In this paper, we assume to have a database of known object
models. Understanding the scene therefore reduces to detect-
ing known objects in the scene and matching their shapes
with the ones known from the database. Please note that a
single object model (e.g., a coffee mug) can appear multiple
times in a scene. Currently, we use the object models from
the YCB-video dataset [12]. Each object is accompanied with
its mesh and a primitive geometry representation (cylinder,
sphere, box, or frustum). The primitive geometries are used
for collision detection, since collision checks with the meshes
are too costly.

For object detection and pose estimation, the scene is
recorded with two static, calibrated Intel RealSense RGB-D
cameras. Images are segmented with one instance of MASK
R-CNN [13] per camera. Point clouds are generated for each
segment and fused across cameras. Feature are extracted [14]
followed by global registration [15] and fine registration [16].
Finally, pose confidence estimation (similar to visible surface
discrepancy in [17]) is used to filter the results.

For detecting the operator’s intention, we use the approach
presented in [5]. By tracking the hand motion of the operator
and his or her gaze, the system infers which action (pick,
place, or moving) the operator wants to perform with which
object. For picking, the system will infer the object to be
grasped as well as the most likely grasp on this object the
operator wants to perform. For placing, the system infers
the most likely placing location as well as some parameters
required for placing the object. Parameters can be an exact
placing location, a placement area and/or some details about
how the operator wants to place the object (e.g., upside down,
on the side, etc.).

B. Grasp- & Placement Pose Estimation

A grasp pose determines how an object is grasped by the
robot, while a placement pose determines how a given object
is placed onto another object. For computing such poses,
we decompose the given objects into sets of manifolds. For
instance, a cylindrical object can be decomposed into two
circular manifolds which represent the bottom and top of
the object as well as a cylindrical manifold which represents
the side of the object. We derived functions for mapping the
different manifold types onto each other. Those functions
can be utilized for computing grasp- and placement poses.
For instance, by mapping the bottom circular manifold of a
cylindrical object onto a rectangular manifold representing
the top of a table, one can generate a placement pose which
determines how the cylindrical object would be placed on the
table. We model the palm and tool center point of the robot’s
hand with a manifold as well. Therefore, the same approach
can be used for computing grasp poses and placement poses.
In the context of shared autonomy teleoperation the current
grasp pose is determined by the current (virtual) position of
the operator’s hand and the object of interest as indicated
by the intention estimator. The placement pose is computed
if an object has been grasped and depends on the relative
pose between the grasped object and the placement location
as indicated by the intention estimator.

Even if the system has already committed to a grasp or
placement pose, the operator’s hand movement are used to
find suitable new poses on the corresponding manifolds.
Hence, the operator has fine control to adjust the grasp
and placement poses without needing to worry about their
integrity. This strategy provides sense of agency even when
the system controls part of the robot movement.

C. Behaviors

We decompose the overall task of picking and placing
an object into different (sub-)tasks. The support the system
provides for the operator depends and varies on the current
sub-task. We switch between the different sub-tasks based
on the operator’s intention and the distance of the robot’s
hand to the objects of interest, as well as the feasibility of
the current motions of the operator.

1) Approach Object: When at least one object has been
detected in the scene and a pick intention for this object has
been received by the system, the “approach object” behavior



Intention 

Estimation

Scene 

Understanding

Feedback Device

Robot

Human Operator OPERATOR

STATE

ROBOT

STATE

INTENTION

SCENE

Situation Understanding

Behavior State Machine

Simulator

Controller
UPDATE TARGET

STATE

Virtual Environment

SIMULATE

Controller

Robot

TARGET

STATE

ROBOT CONTROL

COMMAND

FEEDBACK

SIGNAL(S)

Fig. 2: Overview of our system. Based on the current input, a behavior is activated which determines how the operator’s
input is converted into a target hand state for the robot. Subsequently, a simple simulator uses a virtual copy of the robot
controller to check if the target can be safely reached by the robot. If the target is considered safe, it is sent to the actual robot
controller which then moves to the target pose. Additionally, feedback signals are generated for the operator, for instance
when the robot is in a collision or the target can’t be reached by the robot.

is activated. Here, the operator can freely move the robot’s
hand in any direction. Only in cases where the robot is about
to reach its joint or speed limits the system may override
those commands. In that case, the system may either stop the
robot or may slightly adapt the robot’s trajectory to prevent
it from reaching those limits. In the background, the system
computes a grasp pose for the given object, given the current
robot’s hand pose. The grasp pose is updated at roughly
40Hz.

2) Snap to Object: When the distance between the robot’s
hand and the computed grasp pose falls below a predefined
threshold, the system will take over control and automatically
moves the robot’s end-effector to the grasp pose. During
that small period of time (usually less than a second), the
operator’s hand motion does not influence the robot’s motion.
The reason for this behavior is that we have observed that for
an operator it is difficult to accurately judge relative distances
between hand and objects due to the lack of depth perception.

3) Align with Object: Once the end-effector has reached
the grasp pose, the operator can still move the end-effector
around the object in the nullspace of stable grasp poses
provided by the manifolds used for calculating the grasp
poses. For instance when being snapped onto the side of a
cylinder, the end-effector can move up and down the vertical
axis. It can also move around the cylinder, but motions
around the roll angle are blocked in order to avoid collisions
with the object. Thus, the operator can move the end-effector
to finely adjust the desired grasp pose and retains the sense
of agency despite being helped with positioning. Moving
around the object works by continuing to update the grasp
pose in every step. The robot will then move to the computed
grasp pose without colliding with the object. Please note that
a grasp pose also contains a desired finger joint configuration.
However, until the operator actually initiates grasping the

object, this finger configuration is ignored.
4) Grasp Object: Once the operator is satisfied with the

pose of the end-effector and presses a button on the VR
controller, the fingers of the robot are closed. In this behavior,
the end-effector is not allowed to move. Since we use a
feed forward controller, we can simply assume the object
is grasped when the fingers are virtually fully closed.

5) Align with Surface: After grasping the object, the
operator can move the object around on its current support
plane (e.g., table). Small movements in normal direction
of the surface and rotations other than around the surface
normal are ignored to keep the object in contact with the
surface. Like for Align with Object, the system helps keeping
the object in contact with the surface while offering all
freedom to refine the pose on the surface. Once the operator
moves the controller further away from the surface, the
system will lift the object up and switch to a different
behavior.

6) Unsnap from Surface: When the operator moves the
hand virtually away from the support surface, the robot’s
hand will autonomously lift the object without colliding with
other objects.

7) Approach Surface: After lifting the object, the system
is in a state where the operator can again freely move around
the object in the scene. Hence, this mode is similar to
Approach Object with the only difference that the robot now
holds an object in its hand.

8) Snap to Surface: When being close to the inferred
placing location of an object, the system will again take
over control and will automatically place down the held
object such that it is positioned stably on the surface. After
snapping, the system switches again to Align with Surface
and the operator can either move the object around on the
support plane to fine-adjust the placement pose or can open



the robot’s fingers and move away from the object (or align
the hand with it).

9) Release Object: In this state, the robot will simply
open its fingers and the end-effector is not allowed to move.

D. Forward Simulator

Before sending a target pose to the real robot, we first
simulate if the robot is actually able to reach that pose.
Internally, we use the resolved motion rate controller to
compute joint velocities, multiply them with a step size
and add them to the current robot joint angles. For the
newly computed robot pose, we check if it is in collision
or in joint limits and if the desired target pose has already
been reached. We keep on performing those steps until the
motion is considered successful, infeasible, or a time limit
has been reached (e.g., 500ms). The advantage of this simple
simulation is that it is fast enough to be computed in real-
time. We also observed that it is accurate enough since the
simulation is continuously executed. For the simulation we
use the same controller that is used for computing the real
robot’s control commands.

E. Feedback Signals

In the presented framework, visual feedback is used in the
form of rendering the scene and the robot in VR, while haptic
feedback is utilized to signal warnings to the operator when
the robot movement is altered to avoid physical limits (e.g.,
joint limits) and collisions of the robot, such as self-collisions
or collisions with objects in the scene.

IV. CONCLUSION AND FUTURE WORK

We presented a framework for teleoperation with shared
autonomy that aims at retaining the operator’s sense of
agency while helping with task execution. Our framework
has been used with two different robot setups: a Franka
Emika Panda robot with a ReFlex gripper (see Figure 1)
and with the new bi-manual Honda Avatar robot, as shown
in Figure 3. Initial tests indicate improved task execution
because of the assistance while sense of agency remained
high. We are currently designing experiments to show the
benefits of shared autonomy interaction as it combines the
strengths of the robot (sensing and accurate control) with
that of the human operator (logical reasoning). The aim of
the experiments is to evaluate in a user study whether the
presented framework improves task success and/or execution
speed. At the same time, we want to investigate how the
framework affects the trust of the operator into the system.

Since the system relies on object detection and the pre-
dicted user intent, it is likely that in some situations the
system’s support will prevent the operator from achieving the
task goal. Even though the operator can turn off the support
system in this situation and can try to perform the task with
a purely teleoperated robot arm, the trust of the operator
into the system might be reduced by this experience. It is
therefore crucial to provide the right amount of support to
the operator in the right situations without affecting his or
her sense of agency. In future work, we want to investigate

Fig. 3: The bimanual Honda Avatar Robot.

this further. Furthermore, we think it might be a good idea
to control the amount of support the system provides based
on the estimated trust of the operator into the system.

REFERENCES

[1] P. Aigner and B. McCarragher, “Human integration into robot con-
trol utilising potential fields,” in IEEE International Conference on
Robotics and Automation, 1997.

[2] A. Borji and L. Itti, “Defending yarbus: Eye movements reveal
observers’ task,” Journal of vision, vol. 14, no. 3, pp. 29–29, 2014.

[3] A. Haji-Abolhassani and J. J. Clark, “An inverse yarbus process: Pre-
dicting observers’ task from eye movement patterns,” Vision research,
vol. 103, pp. 127–142, 2014.

[4] N. M. Gamage, D. Ishtaweera, M. Weigel, and A. Withana, “So
predictable! continuous 3d hand trajectory prediction in virtual reality,”
in In Proceedings of the 34th Annual ACM Symposium on User
Interface Software and Technology (UIST), 2021.

[5] S. Fuchs and A. Belardinelli, “Gaze-based intention estimation for
shared autonomy in pick-and-place tasks,” Frontiers in Neurorobotics,
vol. 15, p. 33, 2021.

[6] D. Zhang, R. Tron, and R. P. Khurshid, “Haptic feedback improves
human-robot agreement and user satisfaction in shared-autonomy
teleoperation,” in IEEE International Conference on Robotics and
Automation, 2021.

[7] H. Elsayed, M. D. Barrera Machuca, C. Schaarschmidt, K. Marky,
F. Müller, J. Riemann, A. Matviienko, M. Schmitz, M. Weigel, and
M. Mühlhäuser, “Vrsketchpen: Unconstrained haptic assistance for
sketching in virtual 3d environments,” in 26th ACM Symposium on
Virtual Reality Software and Technology, 2020.

[8] C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and
D. Prattichizzo, “Wearable haptic systems for the fingertip and the
hand: taxonomy, review, and perspectives,” IEEE Transactions on
Haptics, vol. 10, no. 4, pp. 580–600, 2017.

[9] C. Wang, S. Huber, S. Coros, and R. Poranne, “Task autocorrection
for immersive teleoperation,” in IEEE International Conference on
Robotics and Automation, 2021.

[10] C. González, J. E. Solanes, A. Muñoza, L. Gracia, V. Girbés-Juan, and
J. Tornero, “Advanced teleoperation and control system for industrial
robots based on augmented virtuality and haptic feedback,” Journal
of Manufacturing Systems, vol. 59, pp. 283–298, 2021.

[11] M. K. Zein, M. Al Aawar, D. Asmar, and I. H. Elhajj, “Deep
learning and mixed reality to autocomplete teleoperation,” in IEEE
International Conference on Robotics and Automation, 2021.

[12] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in Robotics: Science and Systems (RSS), 2018.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in IEEE
international Conference on Computer Vision, 2017.

[14] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in IEEE International Conference on
Robotics and Automation (ICRA), 2009.

[15] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in
European Conference on Computer Vision, 2016.

[16] Y. Chen and G. Medioni, “Object modelling by registration of multiple
range images,” Image and Vision Computing, vol. 10, no. 3, pp. 145–
155, 1992.

[17] T. Hodaň, J. Matas, and Š. Obdržálek, “On evaluation of 6d object
pose estimation,” in European Conference on Computer Vision, 2016.


