
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

  Learning Visual Landmarks for Localization with
Minimal Supervision

Muhammad Haris, Mathias Franzius, Ute Bauer-Wersing

2022

Preprint:

This is a post-peer-review, pre-copyedit version of an article published in
International Conference on IMAGE ANALYSIS AND PROCESSING. The final
authenticated version is available online at:
https://doi.org/10.1007/978-3-031-06427-2_64

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Learning Visual Landmarks for Localization with
Minimal Supervision

Muhammad Haris1, Mathias Franzius2, and Ute Bauer-Wersing1

1 Frankfurt University of Applied Sciences, 60318 Frankfurt, Germany
2 Honda Research Institute Europe GmbH, 63073 Offenbach, Germany

Abstract. Camera localization is one of the fundamental requirements for vision-
based mobile robots, self-driving cars, and augmented reality applications. In this
context, learning spatial representations relative to unique regions in a scene with
Slow Feature Analysis (SFA) has demonstrated large-scale localization. However,
it relies on hand-labeled data to train a CNN for recognizing unique regions. We
propose a new approach that uses pre-trained CNN-detectable objects as anchors
to label and learn new landmark objects or regions in a scene using minimal
supervision. The method bootstraps the landmark learning process and removes
the need to manually label large amounts of data. The anchor objects are only
required to learn the new landmarks and become obsolete for the unsupervised
mapping and localization phases. We present localization results with the learned
landmarks in simulated and real-world outdoor environments and compare the
results to SFA on complete images and PoseNet. The landmark-based localiza-
tion shows similar or better accuracy than the baseline methods in challenging
scenarios. Our results further suggest that the approach scales well and achieves
even higher localization accuracy by increasing the number of learned landmarks
without increasing the number of anchors.

Keywords: Localization · Mapping · Landmarks · Service Robots.

1 INTRODUCTION

Visual mapping and localization refer to creating a consistent scene representation and
localizing a robot using a camera as the only exteroceptive sensor. A mobile robot’s
ability to localize itself in an environment is fundamental to achieve intelligent behav-
ior. It enables a range of indoor and outdoor applications ranging from household robots
(i.e., lawnmowers, vacuum cleaners) to self-driving cars.
The research in this area encompasses a broad range of methods that address this
challenging task. State-of-the-art simultaneous localization and mapping (SLAM) al-
gorithms exploit image features [22] or complete image information [4] to create sparse
or semi-dense scene representation. Convolutional neural networks (CNNs) for visual
localization have become an appealing alternative to the traditional methods based on
hand-crafted features. In [14, 13], the authors have trained PoseNet in an end-to-end
way to regress pose from single images. In contrast, there are methods [21, 5, 20] for
mapping and localization that are inspired by neurobiological systems. Earlier learning
approaches [5] reproduce the firing characteristics of Place- and Head-Direction Cells
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[24, 28] using a hierarchical model. The model uses the concept of slow feature analy-
sis (SFA) [30], and the intuition behind it is that behaviorally meaningful information
changes on a slower timescale than the primary sensory input (e.g., pixel values in a
video). Previous work [17] implemented SFA-based localization on a mobile robot. It
achieved similar localization accuracy [19] to state-of-the-art visual SLAM methods,
i.e., ORB and LSD-SLAM [22, 4] in small- to medium-scale environments and demon-
strated robustness against changing conditions in outdoor scenarios [18, 9].
While the methods mentioned above are sufficient for the localization task, the recent
trend has shifted to create semantic maps that will enable the robots to better interact
with the world around them. One way to obtain such maps is to incorporate objects into
the localization pipeline using deep-learning-based object detection algorithms. Recent
work in this direction, i.e., Hybrid-SFA [11], uses a CNN to detect unique objects or
regions in a scene and performs localization relative to them. The approach leads to rep-
resentations similar to those of Spatial View Cells in the hippocampus [5]. The results
show a significant improvement in localization accuracy, especially in a large-scale en-
vironment. However, it relies on hand-labeled training data to learn unique objects or
regions in a scene, which is infeasible for many real-world applications.
This paper’s main contribution is a novel approach that uses object instances with pre-
trained visual detectors (e.g., MS-COCO objects [16]) as a labeling tool to learn new
landmarks for localization. For the sake of simplicity, we will refer to objects or regions
with pre-trained detectors as anchors and the derived objects or regions to be learned
as landmarks. The idea is to place an anchor in spatial relation to a landmark and gen-
erate labeled training data relative to it. If the scene already contains suitable anchors,
they can be used directly. Please note that it is possible to learn spatial representations
directly w.r.t anchors. However, these anchors (i.e., pre-learned CNN-object categories)
are typically dynamic objects in the scene (e.g., a bicycle, a chair). They thus cannot
be used reliably for both indoor and outdoor localization in the long term. Hence, the
proposed approach enables selecting long-term stable landmarks for localization with
minimal supervision and a faster generation of labeled training data for learning them.
Moreover, localization accuracy scales with the number of selected landmarks but with-
out increasing the number of anchors and the amount of supervision.
After landmark learning, the system uses the views of the learned landmarks for map-
ping and localization phases. This paper presents localization results from simulated
and real-world outdoor environments. Most of the available localization methods work
online, but only a subset of these are trained in an offline learning phase. To provide fair
and straightforward comparisons, we use PoseNet [13] and basic SFA-localization [9].

2 Related Work

The recent performance increase of deep-learning-based object detection algorithms
[15] have led the way to incorporate object detection into the traditional SLAM pipeline
for creating semantic maps. Earlier work [1] in this field has extended the structure-
from-motion (SfM) pipeline for joint estimation of camera parameters, scene points,
and object labels. However, its computational complexity limits the method’s ability to
operate in real-time. Other object-level SLAM methods [6, 27] use object detection in
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a scene to solve the problem of scale uncertainty and drift of monocular SLAM. In [7],
the authors used an extensive database of known objects and proposed an algorithm
based on bags of binary words [8]. The combined usage of monocular SLAM and ob-
ject recognition algorithms improves the map and finds its real scale. However, the main
limitation of the approach is its dependence on known objects. QuadricSLAM [23] is
an object-oriented SLAM that does not rely on prior object models. Rather it represents
the objects as quadrics, i.e., sphere and ellipsoids. It jointly estimates a 3D quadric sur-
face for each object and camera position using 2D object detections from images. In
[2], the authors were the first to include the inertial, geometric, and semantic informa-
tion into a single optimization framework. The proposed system performs continuous
optimization over the poses while it discretely optimizes the semantic data association.
In [12], the authors represented generic objects as landmarks by including an object de-
tector in a monocular SLAM framework. The method exploits the CNN-based objects
and plane detectors for constructing a sparse scene representation. The SLAM bun-
dle adjustment includes semantic objects, plane structures, and their completed point
clouds. In [29, 32], the authors use machine learning-based approaches to perform lo-
calization in indoor environments relative to landmarks. CubeSLAM [31] combines
2D and 3D object detection with SLAM pose estimation by generating cuboid propos-
als from single view detections and optimizing them with points and cameras using a
multi-view bundle adjustment. In [25] authors create category-level models with CAD
collections for real-time object-oriented monocular SLAM. Their rendering pipeline
generates large amounts of datasets with limited hand-labeled data. The proposed sys-
tem first learns 2D features from category-specific objects (i.e., chairs, doors) and then
matches the features to a CAD model to estimate the semantic objects’ pose. For ob-
taining a metrically correct robot pose, the system then combines semantic objects and
the estimated robot’s pose from VO into an optimizing graph framework. Most of the
existing literature on object-SLAM considers indoor scenes or outdoor autonomous
driving scenarios. In both cases, it is possible to directly use a pre-trained CNN to iden-
tify enough objects in a scene without training a detector on custom objects. However,
the problem arises when a scene lacks pre-trained objects. In this scenario, training a
detector on custom landmarks would automatically become a necessary pre-condition
for most object-based localization approaches. While generating labeled training data
for learning new landmarks by hand is cumbersome, the method described in section 3
only requires minimal human supervision for the learning task.

3 METHODS

This section introduces our proposed approach for learning new landmarks with min-
imal human intervention. It further presents Slow Feature Analysis (SFA), the core
algorithm we use to extract spatial representation. Finally, it describes the procedure to
perform localization using landmarks views.

3.1 Minimal Supervision for Landmark Learning

In this work, we propose to use readily detectable object categories from pre-trained
CNNs as anchors to generate labeled data for learning new landmarks. Figure 1 shows
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Fig. 1: Label Generation for Learning Landmarks: The input to the pipeline are images col-
lected from a robot recording session. The first step applies a pre-trained visual object detector
to these images to identify a pre-learned object’s instances, such as a bicycle. The next step is to
select new landmarks in a single image (i.e., specification of the new landmarks’ spatial relation-
ship w.r.t to the detected anchor). This selection can be made using a human input, setting a fixed
offset w.r.t an anchor, or taking a random region around an anchor as a new landmark. Based on
the specified relationship, the system then automatically generates labeled data from all available
training images. The final step uses the generated data to train a detector for the new landmarks.

the steps of label generation and consequently using the annotated image data for land-
mark learning. A mobile agent explores an environment and records camera images.
Here we assume that the CNN-detectable objects (e.g., a bicycle) are already present
in the scene, and their location remains fixed during the recording phase. The system
then runs the YOLOv3 [26] object detection algorithm on the recorded images to de-
tect the instances of anchors. The next step is to specify the spatial relationship of new
landmarks w.r.t anchors. At this step in the learning phase, minimal human supervision
is necessary, i.e., the human has to specify the landmark’s spatial relation. There are
several possible ways to perform this step. a) A human can cooperatively indicate the
location of a new landmark relative to an anchor as a 2D offset in one or a few images.
This approach can generate semantic object categories (e.g., a specific tree, a fountain).
b) The system autonomously analyzes the regions around the anchor and chooses a vi-
sually unique region (e.g., not a section of brick wall from a larger brick wall). c) The
system takes a fixed 2D offset w.r.t to an anchor (e.g., above, bottom, besides) to learn
new landmarks. We use the fixed 2D offset approach to derive a landmark relative to an
anchor in this work. This offset is set only once (i.e., minimal supervision) in a single
image for each landmark compared to manually annotating thousands of images. The
system then uses the instances of detected anchors and a specified offset to automat-
ically annotate the landmarks in the rest of the recorded images. If YOLOv3 fails to
recognize the anchors in some images, we run an object tracker to obtain the bounding
boxes of anchors in the missing frames. The final step uses the generated labeled data
and trains a detector to recognize new landmarks. This step’s output is a custom land-
mark detector, which we use as an independent module in the mapping and localization
phases. Please note that the anchor objects in a scene are only temporarily required for
landmark learning and can be removed afterwards. The basic implementation of this ap-
proach learns one landmark per detected anchor. As an extension, it is possible to scale
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the system to learn multiple landmarks per anchor, which will improve both robustness
against local occlusions and localization accuracy.

3.2 Slow Feature Analysis

To learn the robot’s position in 2D space, we use Slow Feature Analysis (SFA) as in-
troduced in [30]. It transforms a multidimensional time series x(t), in our case images
along a trajectory, to slowly varying output signals. The objective is to find instanta-
neous scalar input-output functions g j(x) such that the output signals

s j(t) : = g j(x(t))

minimize

∆(s j) : = 〈ṡ2
j〉t

with 〈·〉t and ṡ indicating temporal averaging and the derivative of s, respectively. The
∆ -value defines the temporal variation of the output signal, and its minimization is the
optimization objective. Thus small ∆ -values indicate slowly varying signals over time.
There are three optimization constraints: the output signals should have zero mean, unit
variance, and are decorrelated. These constraints avoid the trivial constant solution and
ensure that different functions g j code for different aspects of the input.

3.3 Learning of Spatial Representation using Landmark Views

Acquiring Landmark Views: Figure 2 shows the steps to detect and extract landmark
views. The input to the system are images recorded for the mapping and localization
phases. The next step applies the trained detector to recognize the instances of the land-
marks in images. Afterwards, we resize each landmark’s bounding box to have the same
size as the biggest bounding box in its category and rescale the extracted image patch to
120×120 pixels. The output of this step generates an image stream for each landmark.
Mapping Phase: We use landmark views to learn camera position regression. We
choose SFA to get a compact place representation relative to each landmark and perform
light-weight position regression on top. The approach employs a four-layer hierarchi-
cal SFA network and has been described recently in [11]. The network learns spatial
representations relative to each landmark in an unsupervised learning process. After-
wards, we obtain metric space representation by computing a regression function from
the learned spatial representations and odometry data, i.e., the robot’s ground truth po-
sition (x,y). This step outputs an individual position estimator (x,y) for each landmark.
Localization Phase: The localization phase uses the learned position estimators to ob-
tain the robot’s 2D position (x,y) relative to each landmark. Afterwards, it estimates
the robot’s global 2D position (x,y) by combining each landmarks’ position estimation
using weighted averaging. We determine the weight of each landmark by taking the
inverse of its localization error.
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Fig. 2: Landmark-based Learning of Spatial Representation: We use the trained detector
from the previous step for recognizing the learned landmarks in the recorded images for the
mapping phase. The next step extracts the detected landmarks and rescales the image patches to
120×120 pixels. Afterwards, we train an independent SFA network to learn spatial representation
relative to each landmark. The procedure is the same for the test phase (localization), where we
pass each test view through its learned network for obtaining the output in the SFA space.

4 EXPERIMENTS

This section presents the localization results using simulated and real-world data. We
have a two-stage system, and the first stage learns new landmarks in a scene using the
proposed approach in this work. We derive one landmark per anchor by setting a fixed
2D offset. The system then uses 500 labeled images for each landmark based on the
specified relationship and trains a detector to learn these landmarks. The second stage
uses the learned landmarks to perform localization relative to them. This stage proves
that the learned landmarks in the first stage are well suited for the localization task.
To obtain baseline PoseNet [13] results, we use 25% of the data (subsampled from the
training set, i.e., every 4th image) for validation and the remaining to train the network.
We extract Fourier features to obtain the localization results for SFA localization on
complete images, as in [9].

4.1 Simulated Experiments

We perform the experiments in a simulated garden with an area of 18× 18 meters. A
virtual robot randomly traverses in the environment to record images for the training
set and then along a regular grid to collect the test set. We project images from the
simulated omnidirectional camera to panoramic views of size 3600× 600 pixels. The
training and test trajectory consist of 15,000 and 1,250 images, respectively. Here, we
have used three anchors to learn new landmarks. The anchors include a bicycle (Id 0), a
car (Id 1), and an umbrella (Id 2). Table 1 shows the experimental results of localization
w.r.t learned landmarks and the baseline methods. All the methods produce localization
results in a similar range. However, PoseNet outperforms the SFA-based approaches in
this experiment. It achieved good localization accuracy with a large amount of labeled
training data, as expected in this case. However, it is infeasible to generate a massive
amount of labeled training data in real-world scenarios. On the other hand, we can
further improve the accuracy of landmark-based localization by incorporating more
landmarks (c.f. section 4.3 on scaling experiments).
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Table 1: Localization Results on Simulated Data: Table shows median Euclidean localization
accuracy on learned landmarks views, their combination, and the baseline methods. It further re-
ports the detection rates of the learned landmarks. The combined detection rate of 100% indicates
that each test image at least contains a single landmark. PoseNet outperforms both Landmark-
based and Fourier-SFA localization in this experiment.

Landmark-based Localization Fourier-SFA PoseNetId 1 Id 2 Id 3 Combined %
0.53m [99 %] 0.37m [99 %] 0.35m [97 %] 0.33m 100 0.26m 0.21m

4.2 Real-World Experiments

We perform the experiments in two garden-like outdoor environments of size 88m2 and
494m2, respectively. The autonomous lawn mower robot (fig. 3a) equipped with a fish-
eye lens traverses in a scene to record images of size 2880×2880 pixels. Each recording
session has two operational phases. In the first phase, the robot traverses the border of
an area by using the standard wire guidance technology, while in the second phase, it
moves freely within the area defined by the border wire. Fig. 3b and 3c show the robot’s
trajectories in one of the recording sessions from each garden, respectively. During a
recording, the robot stores images and the associated odometry information. For the
first working phase, we estimate the robot’s ground truth metric position (x,y) using
a method described by Einecke et al. [3]. The authors used wheel odometry and addi-
tional weighted loop closure to get high-quality localization. However, the technique
only estimates the metric shape of the boundary. For the second working phase, we
estimate the ground truth data (x,y) using commercial photogrammetry software, i.e.,
Metashape3. The obtained ground truth position (x,y) estimates are used to evaluate the
metric performance of the localization methods. Instead of using MS-COCO objects
[16], we reuse pre-trained manually labeled region detectors (fig. 3d) from [11] as an-
chors to learn new landmarks for localization. We show the experimental results using
ten recordings collected from both gardens under varying lighting, weather conditions,
and dynamic obstacles.

Temporal Generalization This experiment aims at testing the re-localization ability
of the methods in changing conditions over time. Here, we have chosen that the robot
traverses on a similar path (border run) and collected three recordings from each gar-
den. We use one dataset to learn the spatial representations and the other two sets to
test the localization accuracy. The datasets differ w.r.t dynamic scene variations and
changes in lighting conditions. The number of training set images for the small garden
is 1138, while the two test sets consist of 1091 and 1109 images. Similarly, the big
garden datasets consist of 4336 training images, while the test sets have 4032 and 4050
images. After training PoseNet, its localization accuracy on the validation data from
the small and big garden is 0.07m and 0.41m, respectively. Table 2 reports median
localization accuracy of landmark-based localization and the baseline methods. The re-
sults obtained with individual landmarks enable coarse localization in an environment.

3 https://www.agisoft.com/
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Fig. 3: Experimental Setup: (a) An autonomous lawn mower robot with a fisheye camera used
for the experiments. (b) and (c) show the robot’s traversed trajectories in one of the recording
sessions from both gardens, respectively. The solid line (red) shows the robot’s traversal in the
first working phase (border run), while the dashed line (blue) shows its traversal in the second
phase (infield run). (d) We used previously trained custom objects (e.g., hut) or regions (e.g.,
building corner) as anchors to learn new relative landmarks for the real-world experiments.

Nevertheless, their combination achieves similar or better localization accuracy than the
baseline methods. This effect, however, is more pronounced for the big garden. Fourier-
SFA does well on the datasets from the small garden. However, it does not scale to the
large environment with the configurations used in [9]. PoseNet produces good local-
ization results when the environmental condition between the training and the test sets
is almost identical (e.g., the first dataset from the small garden). However, it degrades
otherwise (e.g., the last dataset from the big garden).

Table 2: Real-World Experiments for Temporal Generalization: Median Euclidean errors of
individual landmarks, their combination, and the baseline methods for generalization over time.
The drop in detection rates of the landmarks present in the big garden is due to their visibility only
in specific parts of the scene. Please note we only use test images for the baseline methods, where
at least a single landmark view was available in the corresponding image. Landmarks enable
coarse localization in both environments while their combination performs similar or better than
the baseline methods, especially in the big garden.

Garden Test Set Landmark-based Localization Fourier-SFA PoseNet
Id 1 Id 2 Id 3 Id 4 Combined %

Small 1 0.26m [99 %] 0.31m [99 %] 0.60m [99 %] - 0.20m 100 0.19m 0.18m
2 0.73m [99 %] 0.93m [97 %] 1.33m [99 %] - 0.75m 100 1.01m 0.83m

Big 1 1.46m [13 %] 3.54m [25 %] 1.74m [32 %] 2.44m [16 %] 2.22m 78 7.50m 2.99m
2 1.83m [13 %] 3.80m [28 %] 2.06m [32 %] 2.97m [17 %] 2.57m 80 8.22m 6.57m

Spatial Generalization This experiment aims at testing the re-localization ability of
the methods when the train and test set contain sufficiently different robot trajectories.
As described earlier, each robot recording session has two operational phases. Hence,
we use the images from the first phase (border run) to learn the spatial representa-
tions and the second phase (infield run) to test the localization method. We collected
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two recordings from both gardens for the experiments. The small garden training sets
consist of 1141 and 1131 images, while the test images from infield positions are 158
and 269, respectively. Similarly, the big garden training sets have 4336 and 4011 im-
ages, while 234 and 180 test set images. The localization accuracy of PoseNet on the
validation set for both sets from the small garden is 0.06m, while the corresponding
accuracy on the sets of the big garden is 0.41m and 0.30m, respectively. Table 3 reports
median localization accuracy of each method. The individual landmarks again show
coarse localization accuracy. However, it is slightly worse for landmarks of the big gar-
den. Extreme perspective changes between the train and test images mainly influence
this performance drop. Moreover, there is a noticeable change in the lighting conditions
between the first and second robot recording phases. Despite that, their combination
achieves similar or better accuracy than localization using the baseline methods. There
are several ways to improve the current results of landmark-based localization. Firstly,
the incorporation of more landmarks leads to a higher localization accuracy (c.f. sec-
tion 4.3). Secondly, it is possible to filter out the landmarks with the worst performance
as a post-processing step and only localize relative to those with mean accuracy better
than a specified threshold. Thirdly, the addition of sparse images from infield run during
learning can further improve the localization accuracy. Please note that, here, we only
need landmark views from the infield that are relatively easy to obtain with a single pass
through the pre-trained detector. It contrasts to PoseNet, which requires a computation-
ally expensive structure-from-motion (SfM) step to generate robot poses as labeled data
for learning.

Table 3: Real-World Experiments for Spatial Generalization: Table reports localization ac-
curacy when the train and test sets consist of images from different robot trajectories. Similar
to temporal generalization experiments, the combination of landmarks achieves similar or better
accuracy than the baseline methods.

Garden Test Set Landmark-based Localization Fourier-SFA PoseNet
Id 1 Id 2 Id 3 Id 4 Combined %

Small 1 1.41m [96 %] 0.95m [99 %] 1.01m [96 %] - 0.74m 100 0.66m 0.85m
2 0.82m [95 %] 1.05m [97 %] 1.35m [95 %] - 0.84m 100 0.65m 0.82m

Big 1 4.37m [12 %] 3.95m [57 %] 1.50m [27 %] 5.51m [44 %] 3.21m 95 7.10m 5.31m
2 5.88m [17 %] 4.64m [61 %] 1.82m [31 %] 6.12m [28 %] 3.96m 96 7.60m 3.49m

4.3 Scaling Experiments

This experiment aims to analyze the effect of increasing the number of landmarks on
localization using simulated and real-world data from the small garden. We use ten
different landmarks from each environment by randomly selecting them around a sin-
gle anchor. The first step learns an independent position estimator for each landmark.
The second step processes landmark images from the test set using the estimators and
predict the robot’s 2D position (x,y). Afterwards, we calculate the test set’s median
localization error by systematically increasing the number of landmarks. Fig. 4 shows
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the results of 50 random permutations of the ten landmarks for both simulated and real-
world data. Both plots initially show improved localization accuracy by increasing the
number to three, and adding more landmarks continues to improve the overall local-
ization accuracy until it almost saturates as expected. From an application perspective,
a robot could increase the number of landmarks to achieve a certain accuracy level at
runtime, depending on the area where high accuracy is required. As we train an in-
dependent SFA network for each landmark, the processing time will linearly increase
(i.e., O(n)) with the number of landmarks. However, SFA-based mapping and local-
ization are drastically faster than one of the fastest state-of-the-art visual localization
methods [10].

Fig. 4: Effect of Increasing Landmarks on Localization: Simulated data (Top). Real-world
data (Bottom). The plot shows the median and variance localization accuracy for 50 random
permutations of the ten landmarks. The usage of more landmarks for localization significantly
improves the accuracy initially, and eventually, it saturates for a higher number of landmarks.

5 Conclusion

This work proposed an approach to speed up the label generation process for learning
new long-term visual landmarks for localization. The method uses instances of readily
available CNN objects as anchors to generate labeled data for the unseen imagery based
on minimal human supervision. We used a fixed 2D offset to derive new landmarks rel-
ative to anchors. When anchor and landmark are within the same plane, perspective
changes during recording result in labeling the identical scene part as a landmark in
our training paradigm with a fixed 2D offset between anchor and landmark. In the most
extreme case, if an anchor is placed such that the robot can go around it, a simple 2D
approach may fail and does not capture a semantically meaningful region but a subset
of the scene’s viewing space. Geometry-based localization methods may fail in such a
case. However, unintuitively, these views are classified very well as a landmark with a
CNN, and we see no reduction in localization accuracy with pose regression learning (as
shown here with SFA). After landmark learning, we used the learned landmarks and per-
formed localization relative to them. The landmark-based localization performed better
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than the baseline methods, especially in a challenging large-scale outdoor environment.
The accuracy can be significantly improved by integrating more landmarks and obtain-
ing a global position estimation relative to them. From an application perspective, our
system is suitable for service robots (e.g., lawnmowers and vacuum cleaners), employ-
ing a pre-trained visual detector to learn new landmarks in a scene. Thus, the approach
enables reliable localization in the long-term even if the anchor objects are no longer
present in the scene.
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