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Abstract
Automated vehicles (AVs) are expected to operate on public roads, together with non-automated vehicles and other road 
users such as pedestrians or bicycles. Recent ethical reports and guidelines raise worries that AVs will introduce injustice 
or reinforce existing social inequalities in road traffic. One major injustice concern in today’s traffic is that different types 
of road users are exposed differently to risks of corporal harm. In the first part of the paper, we discuss the responsibility 
of AV developers to address existing injustice concerns regarding risk exposure as well as approaches on how to fulfill the 
responsibility for a fairer distribution of risk. In contrast to popular approaches on the ethics of risk distribution in unavoidable 
accident cases, we focus on low and moderate risk situations, referred to as routine driving. For routine driving, the obliga-
tion to distribute risks fairly must be discussed in the context of risk-taking and risk-acceptance, balancing safety objectives 
of occupants and other road users with driving utility. In the second part of the paper, we present a typical architecture for 
decentralized automated driving which contains a dedicated module for real-time risk estimation and management. We 
examine how risk estimation modules can be adjusted and parameterized to redress some inequalities.

Keywords  Automated vehicles · Distributive justice · Responsibility · Road traffic injustice · Fairness · Ethics · John 
Rawls · Risk

Introduction

Automated vehicles (AVs) are  an emerging technology 
which has raised intense ethical questions, both in the aca-
demic world and the general public. Most attention has 
been directed to on the decision-making dilemmas AVs 
might face when confronted with situations where they have 
to decide between different very negative outcomes within 
split-seconds, the so-called trolley case situations (Bonne-
fon, Shariff, & Rahwan, 2016; Lin, 2015).

In recent years, potential ethical challenges connected 
to AVs have been explored systematically from different 
disciplinary perspectives. Reports and guidelines by the 
European Union, the German Ministry of Transport and 
Digital Infrastructure, the professional organization IEEE 
as well as other institutions have discussed the ethical and 

legal challenges of this future technology.1 The most severe 
concerns are that AVs will reinforce existing inequalities and 
introduce new injustice aspects in the context of road traf-
fic. An existing inequality is the unequal exposure to risks 
of bodily harm induced by a traffic accident between dif-
ferent types of road users.2 Differences in the exposure to 
accident risks are reflected in the statistics of actual injuries 
and fatalities. Studies have shown that non-motorized road 
users suffer from a disproportionately higher share of seri-
ous injuries and fatalities (e.g., Mullen et al., 2014; for more 
see: Sect. “Inequal risk exposure as injustice concern”). That 
means there is a disparity between the ratio of harm and the 
share of actual road usage. Another, less researched, concern 
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1  For example, German Ethics Commission report (Di Fabio, Broy, 
& Brüngger, 2017), EU experts group’s Guidelines for a Trustworthy 
AI (AI High Level Expert Group, 2019), EU experts group’s report 
on Ethics of Connected and Automated Vehicles (Horizon 2020 
Commission Expert Group, 2020), IEEE Global Initiative’s report 
“Ethically Aligned Design” (2019).
2  Risk refers to an unwanted event which might appear in the future. It is 
formalized as “the product of its probability and some measure of its sever-
ity” (Hansson, 2018), both regarding the unwanted event. In this paper, we 
are referring to physical harm caused by accidents as the unwanted event.
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is about differences in the general risk exposure among vehi-
cle categories. Categories are defined for example by vehicle 
size and weight as well as its equipment, in particular with 
respect to safety systems.

In line with the recent Ethics of Connected and Auto-
mated Vehicles report (Horizon 2020 Commission Expert 
Group, 2020), addressing such concerns is the responsi-
bility of developers and deployers. They “should be held 
responsible for designing and operating CAVs [connected 
and automated vehicles] in ways that neither discriminate 
against individuals or groups of users, nor create or reinforce 
large-scale social inequalities” (Horizon 2020 Commission 
Expert Group, 2020, p. 43).

In this paper, we elaborate on the developer/deployer 
perspective and first discuss their responsibility in address-
ing risk exposure injustice by considering risk ethics and 
institutional justice.3

In contrast to many previous approaches, which look at 
risk distribution and its ethical justification in accident sce-
narios (Di Fabio, Broy, & Brüngger, 2017; Goodall, 2017; 
Schäffner, 2020), we focus on how AVs ought to decide 
in situations of low and moderate risk, considered as routine 
or general driving. To also look at routine driving is impor-
tant as the related decisions impact AVs and other traffic par-
ticipants chances to enter dangerous situations. Even though 
we can find other authors emphasizing the importance of an 
ethically aligned risk allocation before accidents (for gen-
eral or routine driving), there has been little ethical analy-
sis addressing it specifically (Goodall, 2017; Himmelreich, 
2018; Keeling, 2020). For routine driving the obligation to 
distribute risks ethically must be viewed in the context of 
risk-taking and risk-acceptance, balancing safety objectives 
of occupants and other road users with driving utility. This 
will be covered in the first part of the paper (Sect. “Risk 
exposure and automated driving ethics”).

A second important aspect to be addressed is to strongly 
relate the ethical considerations to current technical research 
on risk estimation and management for automated driving 
applications (Sects.  “Decentralized modular automated 
driving” and “Addressing unequal exposure in AV develop-
ment”). We refer to a decentralized architecture for auto-
mated driving which is typical in research and the indus-
try. A decentralized AV’s decision only has an immediate, 
local impact on how its occupants and other road users 
are exposed to risk. However, since AVs will likely enter 
the roads as one entity of a fleet of vehicles of the same 

brand which share the same decision-making architecture 
– individual effects multiply and therefore AV’s impact on 
risk distribution has broader relevance. Based on a practi-
cal example, we sketch how claims for a fair distribution of 
risk translate into design requirements, meaning how they 
could be addressed technically in the behavior planning and 
execution of AVs.

Inequal risk exposure as injustice concern

In this section, we look at literature which examines injustice 
concerns in road traffic to gain a more general understand-
ing about what is considered as unequal or unfair regarding 
risk exposure.

One major concern is the road infrastructure in contem-
porary urban societies, as it tends to prioritize one mode 
of transportation, namely motorized traffic (Martens, 2017; 
Nello-Deakin, 2019). Users of motorized traffic suppress 
other means of transportation as they occupy more space 
than other road users and are privileged with regard to 
safety: “Pedestrians and cyclists face disproportionate 
risks, particularly as compared to drivers and passengers of 
motor vehicles” (Mullen et al., 2014, p. 238). Quantitatively, 
“pedestrians make up 11 percent of traffic fatalities in the 
United States, far out of proportion to the amount of walk-
ing” (Ewing & Dumbaugh, 2009, p. 348). Furthermore, the 
choice of the mode of transportation often correlates with 
the social background. An article in the magazine Dissent 
argues that “America’s suburbs are engineered against the 
walking poor” (Ross, 2014).

Encounters between cars and others can be more dan-
gerous for the non-car users due to the difference in physi-
cal properties, velocity and in the capability of protective 
measures. Furthermore, even within the category of motor-
ized vehicles, differences in mass and protection capabili-
ties can have a significant impact on risk exposure. Pad-
manaban states that “of all vehicle parameters, mass is the 
most important factor influencing odds of driver fatality” 
(Padmanaban, 2003, p. 523). Another concern is the velocity 
which has a large impact on the severity of collisions, espe-
cially between cars and so-called vulnerable road users (e.g., 
pedestrians, cyclists). Zegeer et al. (2002) show that the 
fatality rate for pedestrians reaches 80% at a speed of 40 mph 
(ca. 64 km/h). To sum up, large and heavy vehicles operat-
ing with high speed on the street can enforce a particularly 
unequal exposure to risk.

In literature, the risk exposure of vulnerable road users is 
compared to the risk exposure of car occupants. However, 
finding an appropriate measurement for judging inequali-
ties in exposure to risk is not straightforward. Traditionally, 
injustice concerns refer to inequalities in the distribution of 
the benefits and burdens of social cooperation (Rawls, 1971, 

3  We will refer to responsibility in its forward-looking understanding: 
Responsibility as obligation which “shapes the development, intro-
duction, and use of CAVs in a way that promotes societal values and 
human well-being” (Horizon 2020 Commission Expert Group, 2020, 
p. 53; also see: Van de Poel & Sand, 2021).
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p. 4). Roads are a publicly shared good through which citi-
zens can fulfill their right of mobility having the free choice 
of the means of transportation.4 Given this, an imbalance 
in the exposure to risks classifies as a justice concern. The 
total number of deaths and serious injures however must be 
assessed in relation to the actual usage. Mullen et al. dis-
cuss different methods. They compare the ratio of death and 
serious injury to the time spent travelling and in another 
approach the ratio to the number of trips (2014). The con-
clusion for both calculations was that pedestrians suffer sub-
stantially more from traffic-induced harms.

In transport and infrastructure planning research, we see 
increased attention towards addressing such allocation ine-
qualities for future projects (Jones, 2014; Gössling, 2016). 
However, planning, authorization, and construction can take 
decades to complete and is often slowed down or even hin-
dered by the real and expected social resistance and cost of 
infrastructure changes (Gössling, 2016, p. 8).5

At a shorter timeframe, it is common to apply local meas-
ures directly addressing circumstances which are considered 
as unproportionally dangerous for certain or all road users 
or to react to special vulnerabilities for instance in areas 
with school children. It has been proofed highly efficient 
to deploy traffic calming measures of physical nature, for 
instance speed bumps. Ewing and Dumbaugh show that col-
lisions declined significantly after traffic was calmed in this 
way (2009, p. 356).

Risk exposure and automated driving ethics

In the previous section we have discussed that an unequal 
exposure to risk among different types of road partici-
pants can be seen as a social justice concern. In this section, 
we want to elaborate on the role automated vehicles could 
take in the risk landscape of future road traffic. We would 
like to answer if there is a responsibility for manufacturers to 
explicitly design AVs which target a fair distribution of risk 
in routine driving. Before we elaborate routine driving and 

risk from an ethical perspective, we first look at the literature 
on risk ethics for automated accident decisions.

Risk‑ethics and automated accident decisions

The ethical relevance of automated driving decisions became 
evident when it could be shown that such vehicles might 
get into situations where they must decide between driv-
ing paths which will all very likely lead to serious harm—
meaning human deaths as a not definite but very plausible 
consequence. These so-called dilemma situations or trolley 
cases have gained much attention in scientific research as 
well as public media.6 As part of the MIT moral machine 
experiment, multiple interactive online studies were con-
ducted, in which participants were asked how they would 
decide on behalf of an AV.7 People had to decide between 
different outcomes, for instance killing the occupants of the 
vehicle by driving into a wall or killing a group of people 
crossing the road. The researchers discovered that there are 
moral preferences or beliefs on how an AV should decide 
which are shared by a majority (Awad et al., 2018). Fram-
ing serious accident situations as trolley problems and 
approaching them from an experimental ethics perspec-
tive has evoked many concerns (e.g., Keeling, 2017, 2020; 
Nyholm & Smids, 2016). It has been mainly criticized in 
two ways. First, using experimental ethics results as a base 
for how automated systems should be programmed, a so 
called “empirically-informed policymaking”, has no ethical 
justification, and therefore no justification to be better than 
established normative theories (Keeling, 2020, p. 35). Also, 
such decision policies conflict with established justice theo-
ries of how burdens of risk and harm should be distributed 
as well as with human rights principles. Second, the experi-
mental setup is considered as unrealistic and naïve, since in 
real driving dilemmas the AV has many subtle choices which 
do not determine for a definite outcome, but rather influence 
the probability of events (Goodall, 2017, p. 496; Nyholm & 
Smids, 2016; Liu, 2018, p. 153). In other words, in accident 
situations the vehicle does not have to decide between actual 
harm, serious injuries, or death, but rather between options 
which all have a high probability to lead to an accident with 
a high severity. Due to the uncertainty of outcomes, it is 
suggested that it might be better to frame accident decisions 
from a risk-ethics perspective (Goodall, 2017, p. 496).4  It seems not to be reasonable to request from individuals to use 

other means of transportation or argue that they should be aware of 
the risks of road traffic and if they decide to participate, they implic-
itly accept these risks. At least western societies are built around road 
traffic, not participating would exclude them from social life.
5  Gössling observes that the awareness of transport injustice is grow-
ing but at the same time recognizes a lack of activity from “transport 
governance”, which he calls the “implementation gap” (2016, p. 8). 
One could say there is also an unfulfilled responsibility of actors in 
transport governance to address this. However, it is not the interest of 
this paper to compare responsibilities rather focus on the designer’s 
obligation regarding AVs.

6  When we talk about the trolley problem, we are not referring to the 
original thought experiment, much debated in moral philosophy (e.g., 
Thomson, 1976), but rather to the experimental ethics approach from 
the MIT moral machines experiment (Awad et  al., 2018; Bonnefon, 
Shariff, & Rahwan, 2016).
7  Through their experiments, they gathered 40 million decisions 
(Awad et al., 2018, p. 59).
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According to that, it is discussed if it is ethically accept-
able that AVs are programmed to choose the driving option 
with the expected minimal risk of corporal harm. The most 
severe concern is that such a programming conflicts with 
the fundamental rights of individuals (in the deontological 
ethics tradition) who are severely affected by the minimal 
risk decision. According to deontological ethics, it is prohib-
ited, that individuals are sacrificed for the benefits of others. 
Choosing the minimal risk options in a dilemma-type situa-
tion does mean that the chance of very serious harm is also 
high for the chosen option, a potential loss of human life is 
intentionally accepted. At the same time, this means that the 
other options are not selected, and lives are definitely saved.

One possible ethical assessment is outlined by the Ger-
man Ethics Commission (Di Fabio, Broy, & Brüngger, 
2017). The Commission argues that programming an AV for 
risk minimization is ethically acceptable if the mechanism 
of calculating the risk is the same for all involved parties, 
meaning that it does not consider any personal characteris-
tics except of being human (no distinction based on personal 
features), especially ignoring if a person is an occupant of 
the automated vehicle. Since everybody has an equal chance, 
that the risk minimization algorithm is deciding to her dis-
advantage or her favor, minimizing is in the interest of eve-
ryone participating in traffic—the sacrificing concern does 
not hold anymore.

Risk‑ethics and automated routine driving

In this paper, we focus on the ethics of risk for routine driv-
ing. This entails situations with avoidable risks and deci-
sions involving low to medium risk options. In routine driv-
ing, most of the time choices do not have immediate tangible 
negative consequences, risk does not materialize in a nega-
tive outcome. A routine driving situation can be a simple 
overtaking maneuver that, even when performed safely is 
not without risks, since there is always a small probabil-
ity that unwanted events could happen. A car driver which 
overtakes a bicycle can take many different safe paths, with 
varying distances and velocities, and therefore differing in 
the scope of small risks. We can imagine another situation 
where car A refuses to break or change lane to let another 
car B enter the freeway easily. This might lead to a situation 
where the vehicle B reaches the end of the driveway and now 
has trouble to enter the freeway—vehicle B might have to 
take a higher risk to enter the freeway. Vehicle’s A decision 
contributed to a possible risky situation for vehicle B even 
when vehicle A might be long gone when the situation might 
actually become dangerous.

In all these examples, the vehicle’s driving behavior is 
transforming the space of moderate or low risk of itself and 
others. Very dangerous situations resulting from routine 
driving are rare relative to the absolute time on the road and 

the number of decisions made without negative effect. It is 
often not a single wrong decision leading to an accident. It is 
more likely a combination of unfortunate events, for instance 
environmental influences like weather or dirt on road, with 
a short lack of attention by one or more drivers.8 Keeping a 
larger distance to other road users, especially to vulnerable 
road users or low speed can make a difference in reducing 
chances for a situation to unluckily become hazardous. One 
can say, routine driving decisions often have an impact on 
the own and others’ chances to suffer from bad luck.9

However, it is not clear if there is an ethical obligation/
duty to address the risk exposure of others and to what extent 
this must be done, especially since the transformation of the 
risk space can be relatively small.

Emphasizing the ethical significance of automated 
behavior outside crashes is not new (Goodall, 2016, 2017; 
Himmelreich, 2018; Keeling, 2020). For instance, Goodall 
argues that the fair distribution of risk should be the leading 
ethical consideration not only during, but also “before forced 
choice situations” (2017, p. 496). However, these approaches 
do not differentiate well enough between decisions within 
and before unavoidable crashes. What is important during 
forced choices from a risk-ethics perspective was sketched 
above with reference to the deontological account—what is 
important for routine driving, we elaborate next.

Risk‑taking, risk‑imposing and responsibility 
in the routine driving context

Before we discuss what is ethically relevant from an auto-
mated driving perspective with regards to risk-taking, risk-
imposing and responsibility, we want to have a look at this 
from a human perspective.10

“In line with the liberal-democratic tradition, individuals 
are at liberty to take risks” (Ferretti, 2010, p. 505). Ferretti 
argues that justice/ethics becomes relevant when “negative 
consequences of risk-taking action [also] fall on third party” 
(2010, p. 506). Every driving, even a very passive driving 
style, can be considered as risk-taking and normally driving 
decisions also impose risks to others, whenever road users 
share a spatial area.

People’s driving decisions, whether they are adher-
ing to traffic regulations or not, are the result of their 

8  Even when accepting that AVs will reduce overall risk by eliminat-
ing human error in situ (not human error in the programming, design-
ing, testing, etc.), there will still be situations which were not or could 
not be anticipated before and therefore the appropriate behavior is not 
determined.
9  The role of luck, bad luck, and uncertainty in the ethical valuation 
of distributive practices has been discussed in the context of luck 
egalitarianism (see Ferretti, 2016; Nyholm, 2018).
10  For instance, Himmelreich identifies risk-imposition as key topic 
for accessing the morality of normal driving in the AV context 
(2018).



Addressing inequal risk exposure in the development of automated vehicles﻿	

1 3

individual explicit or implicit risk estimation, by weighing 
safety against some expected benefit (e.g., deciding to drive 
dangerously to be at the office in time).11 As stated before, 
if it is only the risk-taker who would suffer harm, this would 
not be an ethical matter, but since possible negative conse-
quences can also effect a third party it is an ethical question.

For what people are responsible is highly dependent on 
the circumstances and to what degree the person can antici-
pate the consequences of his decisions. For instance, in acci-
dent situations, humans decide intuitively and reflexively 
under strong time constraints (e.g., Lin, 2015; Nyholm & 
Smids, 2016). They may have to decide in split-seconds if 
they want to crash with the car in front of them or avoid the 
direct crash by steering into the oncoming traffic. Due to 
the time pressure and the limited possibilities to anticipate 
the consequences of their decisions, they cannot be held 
responsible for these decisions. However, for the antecedent 
behavior, which might have led to this situation, for instance 
if they were driving risky, they might be responsible.

Driving risky to serve one’s own objectives can be con-
sidered as intended action, even when the actual negative 
consequences are not explicitly intended (van de Poel & 
Fahlquist, 2013, p. 116). The liberty to take risks is accom-
panied by the burden to be held responsible for actions and 
live with consequences (blameworthiness), which is based 
on the perspective of humans as moral agents (van de Poel 
& Fahlquist, 2013, p. 114).

For most routine driving humans are limited in their 
responsibility to act in a specific way, because they can only 
to some degree anticipate consequences of their behavior, 
especially regarding follow-up risk-imposition and in the 
moderated and low risk realm. For instance, the actual con-
sequences of not doing a lane-change on another driver's’ 
opportunity to enter the freeway and the impact on the fol-
low-up risks can only be anticipated to some degree, given 
the time available.

In automated driving, the mechanisms for responsibility 
must be framed differently. How automated vehicles behave 
is partly predetermined by the choice of architecture and 
its underlying behavioral policies.12 The designers are not 
present in situ, and they cannot claim that their decisions 
on the architecture and policies have been taken under a 
time-constraint. Furthermore, state-of-the-art automated 
driving systems have the capability to anticipate how a 
scene evolves and can compare between low and moderate 
risk options (see Sect. “Decentralized modular automated 

driving”). In other words, AVs can predict the probability 
of events meaning how their routine behavior has an impact 
on the scene and how this influences the risk exposure of 
themselves and others. That is why we argue that designers 
are responsible for considering risk distribution in the devel-
opment of architectures and driving policies from a justice 
or ethics standpoint for all AV behavior. In the next section, 
we explain why (decentralized) automated driving should 
be seen as institutional activity. Seeing automated driving 
as institutional practice, further supports the argument that 
designers are responsible to address unequal risk exposure 
toward a fairer risk distribution for routine driving.

Decentralized automated driving as institutional 
activity

We consider AVs as entities which are organized in a decen-
tralized way. Decentralized means that the AV’s driving 
activity is primarily based on environmental sensing and 
its interpretation; vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) connectivity is not required. Conse-
quently, information about other road element’s locations, 
activities and driving intentions are only accessible when 
sensed and interpreted.

This can be distinguished from a centralized automated 
driving paradigm in which AVs are considered highly inter-
connected and mainly coordinated on a group control level 
(see for example Mladenovic & McPherson, 2016 for a dis-
cussion on justice aspects from an AV traffic control per-
spective). In the future, automated driving might advance 
toward a more centralized infrastructure. However, it is still 
uncertain if the cars will be controlled by a central system 
or if the links are mainly used for the exchange of informa-
tion. Given the number of competing car manufacturers it 
seems not very likely that there will be a single controller 
acting on all vehicles in a given scene. In today’s traffic, 
advanced or semi-automated driver assistant systems are in 
use which fit more in the decentralized paradigm and at least 
for the near future, traffic will usually be mixed with auto-
mated and manually controlled vehicles interacting. There-
fore, we argue that it is likely that decentralization continues 
to be a dominant concept—meaning that cars will be indi-
vidually sold and controlled.

However, we must keep in mind that decentralized auto-
mated vehicles are not individuals in a human sense, rather 
they will drive the roads as one of many of the same or 
similar kind due to mass production. It is likely that man-
ufacturers will apply the same optimized behavior selec-
tion algorithms as well as sensing and scene understanding 
technologies throughout all their vehicle line-up, or will 
be using third-party AV components which follow com-
mon logics and rules. Liu states, given such a constellation, 
that these “algorithmic policy preferences” (which might 

11  Any intended risk-taking or -acceptance must be viewed regarding 
some expected benefits or opportunity (Ferretti, 2010, p. 505).
12  This is true for modular AV architectures which follow explicit 
policies and often contain dedicated risk management mechanisms. 
These can be distinguished from AI-driven black-box architectures. 
See more in the introduction to Sect.  “Decentralized modular auto-
mated driving”.
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be implicitly or explicitly incorporated) have a collective 
impact since individuated outcomes are in this way “multi-
plied across fleets of vehicles” (Liu, 2018, p. 150). Accord-
ing to the above, individual outcomes are aggregated and 
so the collective effects can be considered as systematic. 
This illustrates that local driving decisions of decentralized 
AVs, which only impact the risk allocation in the immedi-
ate time–space have a systemic or “collective dimension” 
when broadly applied (Liu, 2018, p. 161). In reference to 
this thought Dietrich argues for framing automated driving 
as institutional activity (Dietrich, 2020). He emphasizes the 
similarity to the activity schema of (social) institutions as 
both are held together by explicit and implicit policies and 
individual entities (proxy agents) as executive bodies with a 
certain degree of freedom in applying the policies in a given 
situation (2020, p. 4).

According to that, automated vehicles’ risk-taking deci-
sions and how to balance risk with utility factors are of 
institutional quality. Since most driving decisions will also 
influence the exposure to risk of third parties, distributing 
risk among road users involved is an institutional justice 
matter. Following this line of thought, it is a manufacturer’s 
responsibility (as obligation) to actively shape the distribu-
tion of risk exposure among road users by integrating fair-
ness objectives.

In the following section, we show a possible direction 
of how to integrate fairness objectives for modular decen-
tralized automated driving. We will see that in future 
mixed-traffic situations, where vehicles share the road with 
non-motorized road users, AVs might be able to act more 
cautiously relative to the safety needs of other road users, 
reduce inequalities, but will be limited in creating full equal-
ity with regards to risk-exposure. The reason is that because 
of the strong asymmetry in protection there will be always 
risk-imposition towards non-motorized road users (and not 
vice versa), as long as we expect that AVs operate similar to 
human-driven cars. The follow-up question is, if low or mod-
erate risk-imposition, can be acceptable from a justice stand-
point. Ferretti argues from an institutional point of view that 
a certain risk-taking action affecting others might be accept-
able for a just society. But this risk-taking action requires 
justification “based on the countervailing expected good 
consequence of taking a risk” (Ferretti, 2010, p. 506). For 
instance, it is considered as acceptable if the risk-imposition 
belongs to a “social system of risk-taking” which also works 
to the advantage of the risk-bearer, e.g., when she also takes 
the role as risk-imposer in other situations (Hansson, 2003, 
p. 305). On a formal level, justification requires a considera-
tion of values and interests which should be explainable and 

communicable if requested.13 Such justification claims are 
also relevant from a design requirements standpoint, since 
architectures, for instance a modular compared to a deep 
learning architecture (see: introduction to the next section), 
differ in their capability to explicitly manage risks for behav-
ior planning and consequently their capability to give infor-
mation about how risk is taken.

Decentralized modular automated driving

In this section, we discuss features of one typical archi-
tecture of an AV operating system, which includes a dedi-
cated module for risk estimation and management (similar 
to e.g., Probst et al., 2021; Tas et al., 2017; Weisswange 
et al., 2019). We show how this can be adapted to addresses 
inequalities in risk exposure. This architecture represents a 
decentralized and modular approach; modularity is defined 
as containing different seperable components. A modular 
approach allows to make individual design decisions for 
every component. An alternative to a component-based 
architecture is a deep AI or End2End learning approach 
(for a survey on these techniques see e.g., Grigorescu et al., 
2020). The dominant concept is to utilize large amounts of 
real-world driving data which allows to directly map sensory 
information to steering commands. AI-based approaches 
usually require little domain knowledge. At the same time 
little direct control on outcomes is possible, which makes it 
inappropriate to explicitly incorporate justice principles and 
therefore, we are not considering it here.

The main contribution of this paper is to discuss oppor-
tunities as to how a decentralized, modular AV architecture 
and its parameterization can be setup to address the uneven 
exposure to risk among road users.

Key components

The architecture for decentralized automated driving typi-
cally contains five components (as shown in Fig. 1). The 
sensor system provides the vehicle with observations of its 
surrounding. This can be any combination of radar, lidar, 
camera and ultrasonic sensors. These measurements will be 
interpreted into an understanding of the current situation. AI 
or machine learning algorithms allow a detection and track-
ing of scene elements, like road participants, lane markings 
or traffic signs, to achieve a semantic scene understanding.

13  To get an idea, how a justification could look like, we can refer to 
the GDPR: in specific cases, data controllers must justify the process-
ing of personal data, i.e., when they have no consent. They must jus-
tify that the “processing is necessary for the purpose of the legitimate 

interests”; and balance it against the interests, rights and freedoms of 
persons affected [see: GDPR, Article 6(1)(f)].

Footnote 13 (continued)
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The information about static and dynamic traffic ele-
ments, including their locations and relation to each other 
as well as behavior profiles (velocities), are used to predict 
how the scene will most likely evolve in the near future. In 
many situations, multiple futures are equally possible. For 
instance, a car which is approaching a T-intersection can 
either turn left or right. A future scene prediction might also 
contain the other road users’ probable behaviors in response 
to the possible behaviors of the AV.

In the behavior planning stage, the optimal path of the 
AV will be selected. A risk evaluation module predicts the 
probabilities that the execution of a certain driving maneuver 
will evolve into an unwanted event. Unwanted events are 
in particular collisions between traffic participants or with 
objects in the surrounding. The risk evaluation has to be 
balanced with utility and comfort considerations. How risk 
is modelled, estimated, and balanced, also has an impact on 
other road users’ exposure to risk. We discuss that in more 
detail in the next section. Finally, for behavior execution, the 
optimal path is selected and translated into a control signal.

Risk modelling for behavior planning

Risk refers to an unwanted event which might appear in the 
future. Risk is formally defined as the product of the prob-
ability and severity of an unwanted event (e.g., see Hansson, 
2018). To model risk, future unwanted events must be pre-
dicted and their likelihood of occurrence has to be quanti-
fied. In the automated driving context, the evolution of the 
traffic scene is forecasted based on environmental sensing 
and scene interpretation. The objective of a risk estimation 
component is to predict hazard events in particular colli-
sions with other road users or static objects. Risk estima-
tion is used as a continuous measure that can represent the 
influence of AV behaviors on future event probabilities.14 

Continuous risk-measures can support the AV in finding the 
optimal path, given its estimation and modelling methods, 
and updating the path when the circumstances change. This 
is equally useful in high-risk crash situations as in rou-
tine driving, as any behavior will usually come with some, 
albeit small, risk and can therefore be optimized towards its 
minimum.

Event probability

The simplest way to predict collisions is to look for a geo-
metric overlap of two or more road objects any time in the 
future given the current situation and the likely motions of 
participants in the scene. However, there is a high number 
of possibilities how a scene might evolve since AVs can-
not know with certainty about other road users’ intentions. 
The observed vehicles can, for instance, change their cur-
rent velocity and take multiple routes when approaching an 
intersection. Furthermore, even actual positions and veloc-
ity profiles can only be estimated with some uncertainty, 
because of inaccuracies due to sensory noise and detection 
errors. An adequate risk estimation has to account for these 
variances. Figure 2 shows an example situation, where an 
AV (red car) is overtaking the white vehicle. The future posi-
tion of the other car is predicted based on its current position 
and a constant velocity profile. The ellipses illustrate the 
uncertainties about the AVs and other vehicle’s position. 
Modelling uncertainty for instance with a Gaussian function 
means that the car can be at any position within the ellipse 
whereby the center position is more probable than towards 
the borders of the ellipse (e.g., Schreier, Willert, & Adamy, 
2016; Puphal, Probst, & Eggert, 2019). The probability of 
a collision increases, the more the position distributions 
overlap.

Fig. 1   Schematic architecture  of a decentralized, modular automated driving approach. Adapted from Eggert, Klingelschmitt and Dame-
row (2015)

14  Such risk modelling for AV behavior planning is e.g., done by 
Eggert (2014) and Eggert, Klingelschmitt & Damerow (2015).
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Severity

Modeling the severity of an unwanted event is a challenging 
task. That is also why many approaches in the context of 
automated driving incorporate abstracted policies to avoid 
any collision, independent of object type or velocity.15

So, what does it take to make use of severity as one com-
ponent to estimate collision risks? First, the harm to humans 
and property damage of a potential collision has to be mod-
elled. Second, the different types of potential harm have to 
be mapped to a common scale to make them comparable.

To figure out what harm, e.g., injuries, fatalities, or prop-
erty damage, is expected by a predicted crash, data from 
real crash data could be used. For instance, in the US (e.g., 
Michigan Traffic Crash Facts) and Germany (German In-
Depth Accident Study) organizations document crash cases. 
This includes, among other things, information about injury 
level and the road users involved. However, a data-driven 
approach is limited in informative value due to the fact that 
crashes are rare and even fewer are well documented (see: 
Eggert, 2018, p. 121).

When severity is modelled in the context of automated 
driving, most of the work follows a theory-driven approach. 
One possibility is to assume that a crash can be described as 
a two-dimensional encounter between masses whereby the 
kinetic energy involved acts on the human body and corre-
lates with the harm (Chen, Yang, & Otte, 2010; Probst et al., 
2021; Puphal et al., 2018). The kinetic energy is proportional 
to the operating masses and velocities. The intensity of the 
impact is also dependent on the angle with which the masses 
collide (relative direction of the movement). Rear-end, front 
or side impact crashes have different angles and so might 
differ in severity. When looking to the literature, we can 
describe the relation between human injury and the kinetic 
energy in an accident, as logistic function (Puphal et al., 

2018, p. 1708). This is still a simplified model of severity as, 
among other things, it is only two-dimensional. For instance, 
it has been found that cyclists suffer a lower injury outcome 
compared to pedestrians for the same accident due to their 
higher position (Chen, Yang, & Otte, 2010).

That brings us to the second question how to rate the dif-
ferent types of damages (potential harm to humans in rela-
tion to expected property damage) in order to use them for 
driving decisions. Two approaches are possible: Injuries or 
fatalities can be factored in as monetary costs, for instance 
the economic value of a person's life or healthcare and the 
costs of treating injuries. That would allow it to be com-
pared with expected property damage. However, setting a 
monetary value for life could be seen as ethically problem-
atic.16 The second option is not to refer to any actual value 
rather work with abstract numbers and weight the potential 
harm to humans several orders of magnitude higher than 
any property damage. This prevents the driving system to 
favor an option where humans are harmed as opposed to any 
damage to property.

Balancing risk against utility and comfort values

AVs should be designed to avoid risk for themselves (and 
their passengers), but this cannot be the only criterion for 
path planning. It is expected that AVs operate without violat-
ing traffic rules and keep risks for themselves and others low. 
However, when planning exclusively by minimizing risk, 
many driving decisions will end up in no movement at all, 
because other road users and the uncertainties in sensing and 
prediction will always impose some risk that usually scales 
with the amount of movement  (see: Eggert, 2018, p. 129).

A behavior planning system should therefore incorpo-
rate beside risk also utility variables (e.g., progress towards 

Fig. 2   The graphic illustrates an overtaking maneuver from a birds-
eye view. The red AV has started its overtaking maneuver of the 
white vehicle on a road with two-way traffic. The future positions of 

the AV itself and the other car are predicted including its uncertain-
ties, illustrated by the green and blue ellipses. (Color figure online)

15  For instance, when using the time-to-contact metrics (TTC) for 
risk estimation (e.g., Ward et al., 2014).

16  This could mean that human life could be sacrificed in the name of 
other goods which is seen as a violation of human dignity (e.g., Hori-
zon 2020 Commission Expert Group, 2020, p. 21).
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a destination with a certain comfort). To compare different 
driving options regarding all criteria relevant for driving, 
a so-called cost function is used. Unsafe paths cause high 
costs, and an efficient and comfortable driving flow has low 
costs. For the parametrization of such a cost function, it is 
important that utilities and comfort have no impact on the 
course of the vehicle when the AV faces a crash situation; 
collision risk must become the dominant driving force. Due 
to that it is a common approach for the parametrization of 
the cost function to weight the costs of a significant collision 
risk at least one magnitude higher than the costs of strong 
discomfort and low utility (Probst et al., 2021).

Addressing unequal exposure in AV 
development

In this section we discuss if and to what extent, design 
choices in decentralized AV’s risk estimation and deci-
sion-making modules, can address unequal exposure. The 
way, in which the risk of potential encounters between 
AVs and other road users is modelled, especially regarding 
severity, has an impact on driving decisions and so on the 
risk exposure of those involved.

Approach: severity‑sensitive risk 
estimation including others

Risk estimation is seen as a measure to allow the vehicle to 
make decisions to find a safe path in complex traffic situa-
tions. In current AV approaches, we often see that sever-
ity is modelled as being constant, meaning that every crash 
has the same severity (e.g., TTC methods for risk estima-
tion, as referred to in the previous section). Such a simple 
severity model does not allow to decide between different 
paths of collision probabilities, where one potential accident 
would be more severe. A kinematic severity modelling, as 
we have also presented it above, considers that the veloci-
ties, the angle of the encounter as well the involved masses 
have an impact on the expected harm.

However, even when incorporating a more advanced 
severity-sensitive model to estimate risks, current AV 
approaches consider risk mainly as risk for the AV and 
its passengers. This means risk is predicted from the AV’s 
point of view and only considers other road users as obsta-
cles which can cause harm to the AV and its occupants.

In the interest of a fair risk distribution, we argue, that a 
risk estimation for the AV’s behavior planning component 
must not only refuse a simple severity modelling towards 
a more advanced rather should also include the other road 
users in any given scene. One way to do so is to calculate 
the severity of a potential collision, not only considering 

the effects for the AV and its passengers, but also the 
potential negative impact on all other people involved. 
Being able to identify other road users via environmental 
sensing also allows to estimate their probable severities in 
case of an encounter with the AV.

We sketch one approach how to take the other road 
users into account explicitly. The focus is on  how to cal-
culate the severity of  potential encounters when multiple 
entities are involved which might bear differently from the 
negative implications.  

Given two vehicles, it might be straight-forward to 
take the average severity of the two entities that might be 
involved in a probable accident. According to such an aver-
aging model, calculating the severity of an encounter is per-
formed by summing up the individual severities and dividing 
them by the number of entities involved.

As we have described in the beginning, crashes can be 
highly asymmetric with regards to the negative implica-
tions for the colliding parties. A car passenger will likely be 
unharmed when colliding with a pedestrian at 60 km/h, but 
the pedestrian will most likely be seriously injured. Regard-
ing the example, applying an average model would underes-
timate the vulnerability of the pedestrian in such asymmetric 
constellations in relation to expected encounters between 
symmetric road users.

When there are entities with little expected harm involved 
together with high severity candidates, the involvement of 
an advantaged (well protected) entity is watering down the 
overall severity of a possible encounter. Certainly, a severity 
calculation must be assessed in relation to other constella-
tions. A possible encounter in a symmetric constellation, 
e.g., between two cars, which both expect a medium severe 
outcome might then berated as high as the mutual severity 
in the asymmetric constellation.

That is the reason why we think such an average model 
conflicts with the claim to especially take into account 
vulnerable road users (Horizon 2020 Commission Expert 
Group, 2020, p. 31). It seems to be more appropriate, to 
always give full priority to the entity which has the highest 
expected harm. To formalize this, the severity of a potential 
encounter between two or more entities can be calculated by 
predicting the severity for each of the entities separately and 
then selecting the maximum value.

In this way, the entity with highest risk has a strong effect 
on the risk-based behavior planning—the consequence is 
that cautious behaviors around vulnerable road users will 
become more likely.

Using this basic proposal, we highlight some aspects rel-
evant for further discussions in the next paragraph.

S = max
(

SAV, Sv1, Sv2,… , Svn

)

.
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Discussion

Applying a risk estimation metric which always gives prior-
ity to entities with the highest expected harm is in accord-
ance with prior approaches on fair risk distribution for AVs, 
adopted from John Rawls—mostly in an immediate high-
risk context (Leben, 2017). According to Rawls, an institu-
tional allocation policy ought to be chosen, which is to be 
to the greatest benefit of the least advantaged members of 
society—which he referred to as the difference principle. It 
can be seen as a form of social solidarity (Rawls, 1971, p. 
90). The difference principle was originally designed for a 
society-wide distribution of primary goods. The arguments 
which support the difference principle for the distributions of 
social goods, seem also to be valid for the distribution of low 
and moderate risks—especially since we introduced risks as 
a joint burden of road traffic as social practice. Incorporat-
ing the principle in the risk estimation architecture, as we 
propose it, directly affects the in situ driving behavior but it 
also has a more systemic impact when effects are multiplied 
across a fleet of vehicles. Seeing it this way, we can frame 
the risk estimation and management mechanisms as a kind 
of institutional allocation policy, for which Rawls’ theory 
was originally designed for.17

In Fig.  2, a situation in which the AV is overtaking 
another slower vehicle was illustrated. We could imagine 
an alternative scene in which the white car is replaced by a 
cyclist. The corporal damage of a collision of the AV with 
a cyclist is significantly higher than with another vehicle, as 
we would see in the injustice discussion above, the fatality 
rate between cars and vulnerable road users is very high 
even at relatively small velocities. An overtaking maneuver 
with the same distance and velocity will be considered as 
riskier for the cyclist case; in technical terms, it will be a 
path with higher costs. To compensate this, the overtaking 
maneuver could be performed at a slower speed, with more 
lateral space or not at all.

Applying such a relative decision schema means judging 
one constellation relative to another and acting accordingly. 
This is reasonable from a fair distribution standpoint since 
“fairness is […] a matter of how one candidate is treated 
relative to others” (Broome, 1984, p. 43). How one candidate 
is treated in relation to the other depends on the legitimate 
claims they each have on the public good, in the driving case 
this is safety or the absence of risk. Those who have more 
safety needs (i.e., are more vulnerable) must to be given 
priority relative to others.

Another aspect which is relevant to discuss is if and how 
the other road users’ risk-taking and risk-imposing behavior 
should be considered in the AV’s risk avoidance behavior 
(see discussion above). In theory, there are observable fac-
tors of other road users’ attitudes towards risk-taking and 
risk-acceptance. For instance, if a motorcyclist is driv-
ing above the speed-limit, it can be inferred, that he has 
a higher risk-acceptance. Since the expected severity of a 
crash between the AV and the speeding motorcycle is very 
high, primarily for the motorcyclist, a severity-aware risk 
estimation forces the AV to keep a high distance. In this 
hypothetical situation, keeping distance to the motorcycle 
might bring the AV closer to a truck and so increases the risk 
of the AV’s occupants compared to the same situation with 
a speed-limit compliant motorcyclist. Since the motorcyclist 
has an observable high risk-acceptance, it might be reason-
able to ignore this higher risk for the motorcycle rider, which 
results from its speeding behavior.

Conclusion

A dedicated risk estimation together with a behavior plan-
ning module allows to make explicit choices about how the 
AV occupants and other road users are exposed to risk in 
each driving scene. We have shown that it is technically fea-
sible to adjust state-of-the-art approaches towards a continu-
ous in situ severity-sensitive risk estimation which considers 
others’ situated risks following fair distribution principles. 

Addressing the distribution of risk before an accident 
situation has an impact on the chance of road users get-
ting into accidents and is therefore an important variable 
to address inequal risk exposure. We have argued that it is 
the designers’ responsibility to adapt the AV architecture 
to incorporate fair risk distribution objectives not only in 
accident cases but also in routine driving.

However, the proposed fair distribution approach which 
gives priority to entities with the highest expected harm, 
does not result in a numerically equal distribution of risk 
between all categories of road users. Even when vulnerable 
road users profit the most, they will always, due to the strong 
asymmetry in protection, be more exposed to risk than the 
AV, as long as we expect that AVs integrate in the traffic 
flow and follow utility objectives, similar to human-driven 
cars (no very passive driving or a full-stop policy). We have 
argued that, even being in the spectrum of low and moder-
ated risk, routine driving can be seen as risk-taking activ-
ity which affects others. According to Ferretti this requires 
justification (Ferretti, 2010) through being able to inform 
affected people about incorporated risk-utility tradeoffs and 
the reasons behind these. In this regard an AV architecture 
with a dedicated risk estimation module is preferable to 
black-box approaches of automated driving, since it allows 

17  A further discussion on the ethical justification why Rawls’ differ-
ence principle, also called “maximin” rule, serves a good guidance 
for situated decisions of ethical AVs, can be found in the literature 
(Dietrich & Weisswange, 2019; Leben, 2017).
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both to explicitly control risk related trade-offs and to give 
information about the risk assessment for driving decisions.
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