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Abstract—The goal of Multi-Objective Path Planning
(MOPP) is to find Pareto-optimal paths for autonomous agents
with respect to several optimization goals like minimizing risk,
path length, travel time, or energy consumption. In this work,
we formulate a MOPP for Unmanned Aerial Vehicles (UAVs).
We utilize a path representation based on Non-Uniform Rational
B-Splines (NURBS) and propose a hybrid evolutionary ap-
proach combining an Evolution Strategy (ES) with the exact Di-
jkstra algorithm. Moreover, we compare our approach in a sta-
tistical analysis to state-of-the-art exact (Dijkstra’s algorithm),
gradient-based (L-BFGS-B), and evolutionary (NSGA-II) algo-
rithms with respect to calculation time and quality features of
the obtained Pareto fronts indicating convergence and diversity
of the solutions. We evaluate the methods on a realistic 2D
urban path planning scenario based on real-world data exported
from OpenStreetMap. The examination’s results indicate that
our approach is able to find significantly better solutions for
the formulated problem than standard Evolutionary Algorithms
(EAs). Moreover, the proposed method is able to obtain more
diverse sets of trade-off solutions for different objectives than
the standard exact approaches. Thus, the method combines the
strengths of both approaches.

Index Terms—multi-objective optimization, path planning,
hybrid algorithms, evolutionary algorithms, UAV, unmanned
aerial vehicle

I. INTRODUCTION

Single-objective path planning problems for mobile robotic
applications have been well-studied for the last decades
[1]. These approaches often account for finding a shortest
path for a single robot known to be the only agent in a
cluttered environment. A rising interest in Multi-Objective
Path Planning (MOPP) approaches has been developing
with the increasing integration of autonomous agents in
real-world applications, where different robots and humans
act in the same environment. Such multi-agent, human-
machine systems result in much more complex path planning
problems. Not only Euclidean distances or obstacles but
also other objectives need to be considered concurrently.
Possible objectives can be differentiated into two groups
related to: 1) robotic design requirements, and 2) demands of
different stakeholders in the robot’s environment. Examples
for the former category are minimizing energy consumption,
satisfying actuator saturations, or maximizing the quality of
communication signals. Examples for the latter category are
minimizing the risk of harming a human, minimizing the

noise immission on humans, or avoiding the intersection with
other agent’s paths.

In lots of cases, optimizing different objectives indepen-
dently leads to paths of different shapes. That is why it is
important to be able to provide some trade-off solutions,
which are generally not optimal with respect to only one
objective, but allow for finding a good compromise among
all objectives. Those solutions build up the so-called Pareto-
optimal front in the objective space. Finding the Pareto-
optimal front is the aim of Multi-Objective Optimization
(MOO). In this work, we focus on developing MOO tech-
niques with emphasis on path planning.

In Section I-A we will present and categorize different
classes of optimizers that solve the MOPP problem. Con-
ventional path planning techniques rely on gradient-based
or exact optimizers. They are fast and nearly or, under
some assumptions [2], completely optimal in solving single-
objective optimization problems. But, they show drawbacks
in the optimization of multiple objectives or multimodal
problems. In recent years, especially meta-heuristic path
planning approaches, like Evolutionary Algorithms (EAs),
have spread [3]. EAs have been shown to perform very well
on MOO problems, identifying a well-diversified Pareto set
also for multimodal problems. But, EAs have disadvantages
as they usually need more computational resources and are
not able to guarantee optimality. In Section II we propose a
new hybrid EA that combines the benefits of both classes of
optimizers.

Motivated by Tovey [4] we have the ambition to bench-
mark our approach not only exclusively within the research
area of nature-inspired algorithms, but also within the area
of exact and gradient-based solvers. This is why we compare
our approach in Section III to the state-of-the-art multi-
objective genetic algorithm NSGA-II (Non-dominated Sort-
ing Genetic Algorithm) [5] as well as to the gradient-based
optimizer L-BFGS-B (Limited-memory Broyden-Fletcher-
Goldfarb-Shanno algorithm with Bounds) [6] and to the
graph-based Dijkstra algorithm [7]. We evaluate the perfor-
mances of the different approaches on the formulated MOPP
problem on a real-world UAV path planning scenario in the
city of Darmstadt, Germany. To the best of our knowledge,
we are the first to conduct examinations on the MOPP
problem with such a versatile group of benchmark solvers.
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We show that our hybrid approach performs significantly
better than contemporary EAs while avoiding the drawbacks
of exact and gradient-based solvers. Finally, we conclude the
paper and give an outlook to interesting future investigations
in Section IV.

A. Related Work

Autonomous robots are used in all kinds of environments,
e.g., underwater, on the water, on the ground, or in the air.
Thus, the range of objectives for MOPP is very wide. We
cluster MOPP approaches according to different categories
that are: 1) the types of objectives, 2) the way how multiple
objectives are handled, 3) the used optimizers, and 4) the
representation schemes.

1) Types of objectives: In many approaches the length
of the path is used as one objective [8]–[19]. Babel [13]
and Yin [20] refine this objective to the travel time of the
agent. Oberge et al. [12], Ganganath et al. [15], and Ma
et al. [18] derive different energy consumption models and
compute the energy needed to travel along a certain path
in order to minimize it. A group of path planners [8]–[12],
[16]–[18], [20] aims to maximize the clearance to static
obstacles or defined danger zones. Other approaches [9],
[12], [13], [16]–[18] consider various feasibility objectives
like a path’s smoothness, minimal curvature, or its maximum
altitude. Furthermore, some works take a safety objective into
account, which can be seen from two different perspectives:
Ahmed et al. [11] ensure safety through maximization of the
robot’s range of vision in its environment, whereas Babel’s
[13] approach minimizes the agent’s chance to be detected
by other agents. Lastly, Mittal et al. [14] and Rubio et al.
[19] introduce some risk metrics that quantify the damage
resulting from a potential crash for an agent following a
certain path.

2) Handling of multiple objectives: A group of approaches
[12], [17], [20] follows a common way to handle multiple
objectives with a single-objective optimizer by a weighted
aggregation of the objectives into a single objective function.
Babel [13] is choosing one of the several proposed objectives
to optimize it separately and thus can not provide any Pareto
front. Jalel et al. [16] are applying several single-objective
optimization stages, which has the effect that solutions of
a latter stage can get worse with respect to objectives of
a previous stage. The other approaches [8]–[11], [14], [15],
[19], [20] handle two objectives in a multi-objective manner.
They differ from our approach in terms of the used objectives
like stated in 1), the utilized solver and the developed
representation scheme, whose consideration follows in 3) and
4).

3) Used solvers: Some works use different graph-based,
single-objective solvers to solve their path planning problems,
respectively. Jalel et al. [16] utilize a version of the Bellman-
Ford algorithm [21]. Babel [13] uses the Dijkstra algorithm
[7]. Yin et al. [20] choose the A* algorithm [22], which is a
generalization of the Dijkstra algorithm. Moreover, Oberge et
al. [12] and Jalel et al. [17] use a single-objective genetic al-
gorithm (GA). Finally, several optimizers are able to directly

handle multiple objectives. Many approaches [8], [9], [11],
[14], [19] use the multi-objective genetic algorithm NSGA-
II [5]. Particle swarm optimization approaches are used by
Zhang et al. [10] and Ma et al. [18]. Lastly, Ganganath
et al. [15] utilize a New Approach to Multi-Objective A*
(NAMOA*) [23] to solve the MOPP problem.

4) Representation schemes: A path’s representation that is
used by a graph-based solver can only consist of a discrete set
of nodes and edges. Therefore, a group of approaches [8], [9],
[15], [20] uses paths that appear to be two-dimensional, grid-
based, zig-zag-shaped polylines with a varying number of
nodes. Similarly, Zhang et al. [10] and Ma et al. [18] choose
two-dimensional straight line segments as paths. However,
the representation is restricted to a fixed number of nodes.
The same representation is extended by Oberge et al. [12] and
Rubio et al. [19] to three dimensions. Other approaches avoid
paths with sharp turns by using smooth 2D B-spline curves
[11], [14] or their generalization to rational B-splines [16],
[17]. Babel [13] is constructing complex paths by optimally
selecting polynomial path segments from a precomputed set
of segments.

B. Fundamentals

1) Multi-objective Optimization: The goal in MOO in its
most general formulation is to find D-dimensional solution
vectors z =

[
z1 . . . zD

]T
that minimize or maximize a

set F of E objective functions

fe(z), e = 1, . . . , E (1)

that are subject to F inequality constraints

gf (z) ≥ 0, f = 1, . . . , F, (2)

as well as to G equality constraints

hg(z) = 0, g = 1, . . . , G. (3)

Besides, each component of z can be constrained by a lower
and an upper bound

z
(L)
d ≤ zd ≤ z

(U)
d , d = 1, . . . , D. (4)

The search space S contains all possible solutions of the
optimization problem. A solution is feasible if it satisfies all
constraints and variable bounds. The set of all feasible solu-
tions is called a feasible region. Through objective functions,
a point in the search space S is mapped into the objective
space O. In theory, a solution that optimizes all objectives
independently is called the utopia point zUtopia. De facto,
it does not exist. Therefore, the concept of dominance is
introduced. A solution z1 is said to dominate another solution
z2 (z1 ≼ z2) if z1 is not worse than z2 for all objectives and
z1 is strictly better than z2 in at least one objective. Every z in
a set of solutions that is not dominated by any other solution
in this set belongs to the set of non-dominated solutions. By
mapping the non-dominated set into the objective space, a
set of values called Pareto set is obtained.



2) Non-Uniform Rational B-Splines (NURBS): Referring
to Piegl et al. [24], a NURBS curve of order p+1 is defined
by

C(u) =

np−1∑
i=0

Ni,p(u)wiPi

np−1∑
i=0

Ni,p(u)wi

, (5)

where
• np is the number of control points,
• p is the degree of the basis function Ni,p,
• Pi =

[
xi yi

]T
is the ith control point (assuming a 2D

curve) and
• wi is its weight.

The basis functions Ni,p are defined along the parameter u
with respect to a defined knot vector

U =
[
u0 . . . um

]T
,

containing m + 1 knots, whereas m = np + p. The basis
functions can be calculated recursively using the De-Boor-
Cox formulas [25], [26], [27].

II. HYBRID EVOLUTION STRATEGY (HES)

We begin by formulating the objective functions of the
tackled optimization problem in Section II-A. The definition
of the optimization vector z, thus the representation of the
path, is introduced in Section II-B. After that, we propose
the hybrid algorithm in Section II-C.

A. Problem definition

We consider a path planning scenario on a rectan-
gular, two-dimensional map, which we define by D =
[xmin, xmax] × [ymin, ymax]. The objectives are computed
based on E two-dimensional scalar fields Fe : (x, y) ∈
D → R. Given a start vector xs = C(a) ∈ D and a goal
vector xg = C(b) ∈ D the tackled MOPP problem targets
finding curves C = {C(u) : u ∈ [a, b]}, so that the set of
E objectives F = {f1, . . . , fE} is minimized. All objectives
are defined by the line integral

fe(z) =

∫
C
Fe(C(u))ds

!
=

∫ b

a

Fe(C(u))|C′(u)|du. (6)

The definition of the vector of optimization variables z will
be given below.

B. Representation

Piegl et al. [24] give a detailed look into the definition of
NURBS curves and their properties. When NURBS curves
are used as a path representation in path planning problems,
especially three properties are useful, namely,

• the convex hull property, meaning that the curve lies
within the convex hull that is spanned by the control
points,

• local approximation, meaning that a slight change in
a control point’s position will affect the curve’s shape
only locally around this control point, and

• infinite differentiability apart from knots, where the
curve is p − c times differentiable, with c being the
multiplicity of the knot.

The former two properties are helpful in the optimization
process itself, as the curve can be constrained to a bounded
area and escape local minima by varying only one component
of the optimization variable vector. The last property ensures
the smoothness of the path on the representation level. This
is particularly advantageous in case of agents that rely on
smooth paths due to the limitations of the actuation systems
they use. In this sense, smooth paths would thus result in a
lower energy consumption.

The vector of design variables is defined as

z =
[
w0 x1 y1 w1 . . . xnp−1 ynp−1 wnp−1 wnp

]T
, (7)

where the number of control points np is a hyperparameter
of the optimization algorithm. In all experiments we choose
np = 15 , which was fitted empirically to the scenario size.
Note that

[
x0 y0

]T
= xs and

[
xnp

ynp

]T
= xg are part

of the problem definition and, therefore, are not subject to
optimization. Thus, referring to Section I-B1, we have D =
3np − 4.

With the basis function degree p = 2, the knot vector

U =
[
0 0 . . . 1

np−pk . . . 1 1
]T

,

where k = 0, . . . , np − p is defined such that the curve is
clamped to the first and last control point.

Moreover, during the optimization, the control point posi-
tions are bounded by the size of the design domain xmin ≤
xd ≤ xmax and ymin ≤ yd ≤ ymax.

C. Algorithm

There are many optimizers like Particle Swarm Opti-
mization (PSO), Differential Evolution (DE), or Simulated
Annealing (SA) that can address arbitrary quantifiable objec-
tives and constraints. We put emphasis on a straightforward
implementation as well as interpretable results. Therefore, the
algorithm proposed by us is based on a standard Evolution
Strategy (ES), which is known to perform well on continuous
optimization problems. Later, we also compare it to a Genetic
Algorithm (GA), which is a commonly used alternative. An
ES optimizes so-called individuals I = {z,σ}, which consist
of the vector of design variables z and a vector of step sizes
σ =

[
σ1 . . . σD

]
. The ES is running for T generations.

At generation t = 0, with t ∈ [0, T ], the algorithm starts by
initializing the population consisting of µ parent individuals
Is with s = 1, . . . , µ. Thereafter, an evolutionary process is
carried out until a stop criterion is met. This process consists
of mutation and recombination of λ offspring individuals,
evaluation of those, and selection of µ individuals for the next
generation. In contrast to a GA, in an ES, the step sizes σd

of the mutation are also subject to the evolutionary process.
1) Initialization: We present the default and an advanced

approach here. In the ES’s default implementation, µ indi-
viduals are drawn from the search space according to the
uniform random distribution. With this method, due to the



representation based on control points, used in this work,
the initially obtained curves would be highly suboptimal.
That is why in our default implementation control points are
sampled equidistantly on a straight line segment between xs

and xg, and are varied componentwise with Gaussian noise
N (0, σ2

G), with a hyperparameter that we set to σ2
G = 5m,

which was found to give good results in a prior empirical
evaluation. Weights are initialized with wi = 1, whereas
the initial step size vector σ0 is set by the user. With this
initialization method, the ES takes a long time to converge
to a near-optimal path if the optimal solution differs greatly
in shape from a straight line. This is why we propose a
hybrid ES that includes an advanced initialization phase
for the control point positions. In a preprocessing step any
user-defined single-objective optimizer can be used to find
nNOS near-optimal solutions for the derived weighted and
aggregated single-objective optimization function

fA(z) = ρ1f1(z) + . . .+ ρEfE(z), (8)

where
∑E

e=1 ρe = 1 holds. The obtained solutions are used to
initialize nNOS individuals. The remaining µ− nNOS parent
individuals are initialized according to the default approach.

2) Variation: From µ parent individuals, the ES calcu-
lates λ offspring individuals by randomly selecting a parent
individual for λ times and applying variation operators to
it. We use two different variation operators. Firstly, a step
size crossover that averages the step sizes of two randomly
selected individuals Ii,t and Ij,t at generation t yields

σi,t+1 = σj,t+1 = 0.5 (σi,t + σj,t) . (9)

Secondly, a mutation operator based on the extended log-
normal rule [28] is applied to every individual Is,t. For this
purpose its step size vector is adapted initially, yielding

σs,t+1 = eτ0ξ0
[
σ1,te

τξ1 . . . σD,te
τξD

]T
. (10)

Here, all ξd ∼ N (0, 1) are different random numbers drawn
from the standard normal distribution. Furthermore, we use
the default values of τ0 = l√

2D
as well as τ = l√

2
√
D

,

with l, being a hyperparameter that is set to l = 1. Then the
individual itself is adapted with the newly calculated step
sizes

Ir,t+1 =
[
w0,t + σ1,t+1ξ1 . . . wnp,t + σD,t+1ξD

]T
, (11)

where r = 1, . . . , λ and ξd ∼ N (0, 1) holds.
3) Selection: In order to select µ new individuals from the

λ varied children, we chose a selection operator based on the
number of objectives E. For E = 2 the non-dominated and
crowding distance sorting selection operator from NSGA-II
[5] has proven to work well. For E ≥ 3 the selection operator
from NSGA-III [29] as well as the selection operator from
RVEA (Reference Vector guided Evolutionary Algorithm)
[30] have been tested. The former works with non-dominated
sorting and a nearest-to-reference-point selection, while the
latter is matching individuals to niches by choosing minimal
angles to defined reference vectors and then selecting them
based on an angle-penalized distance measure.

4) Stop criterion: To stop the optimization process, the
best achieved fitness value is tracked with regard to all E
objectives. When none of them has improved for tT genera-
tions, where tT is a user-defined parameter, the optimization
terminates.

III. EVALUATION

In this section, we test the proposed algorithm on a
real-world scenario, which is introduced in Section III-A.
We evaluate it against state-of-the-art solvers presented in
Section III-B. Parameters for the conducted experiments are
given in Section III-C. We will introduce different metrics
that are used for the comparison in Section III-D before
demonstrating the results of the experiments in Section III-E.

A. Scenario

The evaluation is based on OpenStreetMap (OSM) [31]
data of a map section that is visualized in Fig. 1 and shows
the German city of Darmstadt. We use the OSM data to
sample different low-level grid maps, representing, e.g., the
city’s road network, or the height of buildings. The grid maps
are discretized according to resolutions xres and yres in x and
y direction, respectively. We use these low-level grid maps
to derive exemplary high-level grid maps:

• For a flying agent, we assume that a crash landing on
a roof will cause less damage to humans than a crash
landing anywhere else in the city. Therefore, we suppose
paths that go over buildings to have a lower risk of
harming a human than paths over other areas. Based on
the buildings map, the derived risk map in Fig. 2 can
be calculated such that for every grid cell applies: the
further away the nearest building, the higher the risk.

• In addition to this, we also want to model a noise immis-
sion property. We assume that paths that go over streets
will be perceived as less noisy by humans compared to
paths that go over other areas. Therefore, we introduce
a noise map that can be seen in Fig. 3. The noise value
in every cell increases linearly with the distance to the
nearest road.

Fig. 1: Map of the city of Darmstadt, Germany, imported from OSM
and used for the evaluation.

The described high-level grid maps are used in the opti-
mization, replacing the scalar fields Fe in the line integral
(6). Please note that due to the discretization, the continuous
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Fig. 2: Risk map that was generated with underlying OSM data. In
this risk model, grid cells with lighter colors indicate a higher risk,
i.e., greater damage, in case of a failure if the particular grid cell
belongs to the path.
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Fig. 3: Noise map that was generated with underlying OSM data.
In this noise model, grid cells with lighter colors indicate a higher
noise immission on humans if a planned path goes through the
particular grid cell.

integral is estimated by a trapezoidal rule integration. The
integral is calculated on the high-level grid-maps, which are
interpolated by a bivariate spline surface interpolation.

B. Benchmark solvers

We compare our approach with the state-of-the-art multi-
objective optimizer NSGA-II [5], which uses polynomial
mutation and simulated binary crossover as variation opera-
tors. Compared to our approach, the same selection operator
is used for bi-objective problems, but NSGA-II lacks the
evolutionary step size control.

Furthermore, we also solve the problem with the gradient-
based optimizer L-BFGS-B [6], a variant of the widely-used
L-BFGS algorithm [32], which is capable of incorporating
variable bounds. Moreover, our approach is compared with
a bidirectional version of the famous Dijkstra algorithm [7],
which finds shortest paths in graphs.

Please note that the NSGA-II and L-BFGS-B approaches
also use the control-point-based representation (7) of our
method. However, this representation can not be adapted to
the Dijkstra algorithm because Dijkstra’s method has a graph-
based search space and, therefore, calculates a graph-based

solution. In order to fit the Dijkstra algorithm to our problem,
the grid map is transformed into a weighted graph based on
the cell entries of the grid map. The Dijkstra algorithm will
then find the optimal zig-zag path from xs to xg. Eventually,
to compare the output with the other solver’s solutions, the
derived path is approximated by a NURBS curve using the
least square method with the same number of control points
np as in the other approaches.

We want to clarify that Dijkstra and L-BFGS-B are not ca-
pable of handling more than one objective at once. Therefore,
to maintain comparability, we weight and aggregate multiple
objectives into a single one as also done in equation (8).
A Pareto front can then be obtained by running nMO,sweep

optimizations for different values of the weights ρe.

C. Parameters

In Table I, we give an overview of the most important
parameters for each approach. Parameters that were not intro-
duced by us are set to standard values from literature. Please
note that in the following, our hybrid ES with advanced
initialization is abbreviated as HES, while the version with
the default initialization is called ES. In the same way,
NSGA-II with default and hybrid initialization are referred to
as NS and HNS, respectively. As abbreviation for L-BFGS-
B we introduce LB, for the Dijkstra algorithm DIJ, and for
the Dijkstra with NURBS curve approximation ADIJ. We

TABLE I: Setup of the optimization methods used in the paper

Parameter Symbol Value

General

scenario dimensions [xmin xmax] [0 1124]
[ymin ymax] [0 948]

# of objectives E 2
discretization resolution xres, yres 4m, 4m

# of control points np 15
basis function degree p 2

Method

ES

initial step size [σx,0 σy,0 σw,0]
[
1 1 0

]
parent population size µ 15

offspring population size λ 100
generation threshold tT 10

HES # of pre-calculations nNOS 5
preprocessing optimizer ADIJ

NS

crowding degree ηcrossover 20
crossover probability pcrossover 0.9

crowding degree ηmutation 20
mutation probability pmutation 1/D

population size N 100
generation threshold tT 10

HNS # of pre-calculations nNOS 5
preprocessing optimizer ADIJ

LB
DIJ

ADIJ
# of optimizations nMO,sweep 65

compare the solvers for a broad set of different start and end
positions xs and xg. To obtain a representative set for the
statistical analysis, we randomly generate 107 start and end
point combinations and weight them according to

w(xs,xg) = (xs + xg)
T [ 1

xmax−xmin

1
ymax−ymin

]T
+ d,

(12)



where

d =
||xs − xg||2√

(xmax − xmin)2 + (ymax − ymin)2
. (13)

The random combinations are then ordered according to w
and 30 samples are drawn equidistantly from this set to get
a path test set that is evenly distributed in space as well as in
distance. The derived start and end positions are visualized
in Fig. 4.
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Fig. 4: Start points xs and corresponding end points xg of 30
randomly generated scenarios for the evaluation.

D. Metrics

The solvers are compared on the basis of
• the number of non-dominated solutions nnon,dom gen-

erated by each solver,
• the hypervolume HV of a solver, normalized to the

best and worst hypervolumes of all solvers for a certain
scenario. The Hypervolume indicator [33] measures
the area in the objective space enclosed by the non-
dominated solutions and a defined reference point,

• the generational distance (GD) metric by [34]

GD(S, SR) =

√∑
s∈S minsR∈SR

||s− sR||22
|S|

, (14)

that measures how well the elements s in the set S of
the obtained solutions in the objective space converge
towards the nearest solutions sR of a reference set SR

of solutions in the objective space. The lower the GD,
the better is the convergence between the obtained front
and the reference front.

• the inverted generational distance (IGD) indicator in-
troduced by [35]

IGD(S, SR) =

∑
sR∈SR

mins∈S ||s− sR||2
|SR|

, (15)

which, in contrast to GD, sums up the distances of all
reference solutions sR to the nearest obtained solution
s. The IGD metric is therefore a measurement for the
convergence as well as the diversity of the obtained
solutions.

E. Results

The evaluation of the objective functions for all generated
solutions is the time-sensitive part of the evolutionary and
the gradient-based solver. Accordingly, for a fair basis of
comparison, the number of objective function evaluations is
fixed to nfun,eval = 18800 ± 3% for the ES, HES, NS and
HNS approach. DIJ and ADIJ do not use function evaluations
during the optimization phase. Therefore, we set the number
of optimizations for DIJ and ADIJ to nMO,sweep = 65 so that
their measured calculation time lies within the same range of
tcalc = 92s± 11% compared to the other solvers.

The obtained results can be seen in Table II. It should
be noted that the scores generated by DIJ are highlighted
in gray, as its solutions only serve as a reference set. They
are optimal in the sense of a zig-zag path representation, but
they do not meet the requirement of a smooth path that was
presented in Section II-B. To meet this condition, the DIJ
generated path was smoothed in a post-processing step. This
strategy is covered by the ADIJ approach.

The results clearly indicate the weakness of the LB ap-
proach for the present problem definition. The reason for
that is the multimodal character of the grid maps. The L-
BFGS-B solver pushes the paths into local optima and then
terminates.

In a similar fashion, the ES and NS approaches will
eventually get stuck in local minima. Compared with the
reference Pareto fronts of DIJ, this behavior results in the
small normalized hypervolumes as well as high GD and
IGD values of the Pareto fronts of LB, NS, and ES. As
an example, we visualize the Pareto fronts for two of the
30 scenarios in Fig. 5 and Fig. 6. Please note that among
themselves the ES approach (green front) outperforms the ES
approach (orange front). The automatic step size adaption of
the ES might be the reason why more distant solutions are
identified more quickly compared to NS, leading to a much
more diversified Pareto front.

Looking at the reference DIJ approach, it is interesting to
see that it produces only 28 non-dominated solutions from 65
optimization runs with differently weighted objectives. This
demonstrates the great drawback of multi-objective problems
being solved by a single-objective solver with a weighted
aggregation of the objectives. Furthermore, by the smoothing
step in the ADIJ approach, the hypervolume drops by 26%
from HVN,DIJ = 98% to HVN,ADIJ = 72%, losing another
11 non-dominated solutions.

The hybrid approaches HES and HNS compensate for
those disadvantages, using our hybrid strategy. They achieve
hypervolumes of HVN,HES = 87% and HVN,HNS = 80%
and, thus, significantly1 better normalized hypervolumes than
the ADIJ approach in the same amount of time. Furthermore,
with the hybrid approaches, the convergence (GD) improves
by 12% for the HES and by 5% for the HNS approach as
well as the IGD measure by 31% and 15%, respectively.

1Applied Wilcoxon two-tailed rank-sum test with n = 30, P < 0.05 and
medians of MHVN,HES = 88%, MHVN,ADIJ = 75% and MHVN,HNS =
82% yielding UHES,ADIJ = 732 and UHNS,ADIJ = 609.



In Fig. 7, the boxplot for the examined hypervolume
metric can be seen. When comparing the HES and the HNS
approaches, the first achieves a median of 88%, the latter
a median of 82%. By applying the Wilcoxon rank-sum test
(n1 = 30, n2 = 30, P < 0.05, two-tailed, U = 609), it
can be found out that the distributions of the normalized
hypervolume differ significantly for both solvers.

The paths for the minimum noise extreme points of the
Pareto fronts in Fig. 5 are visualized in Fig. 8. Those for the
minimum risk extreme points of the Pareto fronts in Fig. 6
are shown in Fig. 9. Looking at the positions of the extreme
points of the corresponding paths in the Pareto front plots, it
can be seen that in both cases the HES and the HNS solver
generate better paths than the ADIJ approach.

TABLE II: Mean results for the evaluation on 30 scenarios

nnon,dom HVN GD IGD
ES 64 49% 353 461

HES 79 87% 191 196
NS 81 3% 489 719

HNS 170 80% 206 245
LB 18 29% 547 606

ADIJ 17 72% 217 284
DIJ 28 98% 9 14
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Fig. 5: Comparison of the Pareto fronts obtained by different solvers
for one of the test set scenarios (Scenario A).
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Fig. 6: Comparison of the Pareto fronts obtained by different solvers
for one of the test set scenarios (Scenario B).

IV. CONCLUSION & OUTLOOK

In this work, we formulated a Multi-Objective Path Plan-
ning (MOPP) problem and proposed two hybrid evolutionary
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Fig. 7: Boxplots for the different solvers regarding the normalized
hypervolume metric.

0 200 400 600 800 1000

x position in m

0

200

400

600

800

y
p
o
si
ti
o
n
in

m

Fig. 8: The best paths calculated by the optimizers for the minimum
risk value in scenario A.
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Fig. 9: The best paths calculated by the optimizers for the minimum
noise value in scenario B.

algorithms to tackle them. They were benchmarked against
state-of-the-art evolutionary, gradient-based and exact algo-
rithms on several instances of a real-world scenario for
Unmanned Aerial Vehicles (UAVs). The statistical results
of the comparison revealed the advantages of our hybrid
approaches.

Exact, graph-based algorithms, like Dijkstra’s algorithm,
deliver optimal solutions for single-objective problems ef-
ficiently. Approximating a Pareto front in multi-objective



problems is possible by sampling different weights with a
weighted aggregation of objectives. However, this method
is inefficient at least in higher dimensions of the objective
space, leading to comparably sparse and unequally distributed
solutions on the Pareto front. Furthermore, it is notewor-
thy that the use of specialized algorithms like Dijkstra’s
algorithm is restricted to objectives whose objective values
can be derived from a graph representation. Multi-objective
evolutionary algorithms are known to overcome those draw-
backs, but require more computational resources. By the
advanced initialization step of the proposed hybrid evolution
strategy (HES) and the hybrid NSGA-II (HNS) algorithm we
combine the strengths of exact and meta-heuristic algorithms.
Compared to randomly initialized evolutionary approaches,
they gain speed and better convergence towards the true
Pareto front. Compared to normal single-objective exact
solvers, they gain efficiency in generating non-dominated
solutions and thus diversity. Also, the hybrid approaches
themselves show a significant difference in performance. The
HES approach shows a considerable improvement against
HNS in the hypervolume of the generated Pareto fronts. A
possible reason might be the step size control of the ES.

In future studies we would like to examine the properties
of the different approaches for more than two objectives. For
instance, we want to integrate an energy consumption model
as a direct objective. The model should include the length of a
path on the one hand and its curvature, which should fit to the
agent’s dynamic motion model, on the other hand. Moreover,
as ascending flights of UAVs consume lots of energy, an
extension of the representation to 3D seems to be desirable.
On top of that it would be interesting to investigate how an
adaptation in the number of NURBS control points affects
the solution quality, depending on the lengths of the paths.
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