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Research in social robotics is commonly focused on designing robots that
imitate human behavior. While this might increase a user’s satisfaction and
acceptance of robots at first glance, it does not automatically aid a non-
expert user in naturally interacting with robots, and might hurt their ability
to correctly anticipate a robot’s capabilities. We argue that a faulty mental
model, that the user has of the robot, is one of the main sources of confu-
sion. In this work, we investigate how communicating technical concepts of
robotic systems to users affect their mental models, and how this can
increase the quality of human-robot interaction. We conducted an online
study and investigated possible ways of improving users’ mental models.
Our results underline that communicating technical concepts can form an
improved mental model. Consequently, we show the importance of con-
sciously designing robots that express their capabilities and limitations.

Keywords: human-robot interaction, mental models, interaction design,
robot architecture, technical concepts, robot transparency

1. Introduction

In recent years, the field of robotics has advanced rapidly. With vacuum cleaning
robots or even humanoid robots such as Pepper,1 this field is no longer limited
to the industrial sector. Instead, new applications in private lives emerge. This
change leads to new challenges for robotic engineers and researchers. Robot’s
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working environments are no longer static and consistent as in factories, where
their behavior can be pre-programmed. Hence, robots need continuous adapta-
tion to novel and dynamic environments. Moreover, interaction partners are no
longer experts, but naive users who want an intuitive interaction with robots.

Citizens of modern societies are regularly confronted with technology and
are therefore used to several de facto standards regarding interfaces and the cur-
rent state of the art. Nevertheless, most are not specialists in specific technologi-
cal fields. Hence, neither require nor possess extensive knowledge about the inner
workings of technical systems. We henceforth refer to them as naive users.

Intuitive human-robot interactions can be approached from contrary direc-
tions. Developing robotic systems simulating real humans’ response and behavior
is a common approach in current research, thus convincing users to have emo-
tions (Breazeal et al., 2016; Vollmer & Schillingmann, 2018). While this approach
reduces the cognitive load for users and at the same time increases the satisfaction
on the user’s side, it also raises problems (Breazeal et al., 2016; Duffy, 2006;
Hassenzahl et al., 2020; Hegel et al., 2011). Today’s robotic systems are still limited
in their functionality and cannot cover the range of human capabilities. In partic-
ular, the way robots learn differs exceedingly from the way humans do (Vollmer
et al., 2016). Thus, resulting in errors in human-robot interactions. In such situa-
tions, naive users are prone to be unable to trace the error back to its origin. This
problem is due to the user’s faulty mental model about the robot.

We understand a mental model as a cognitive framework people use to form
an internal representation of the things they interact with (Staggers & Norcio,
1993). People build initial mental models of things they are unfamiliar with based
on expectations and prior experiences. This initial mental model changes con-
tinuously based on new experiences. Thus, convincing naive users that social
robots possess human internal mechanisms causes users to utilize knowledge
about human-human interactions to build their mental models of robots. While
this might work to some degree, a faulty mental model will cause incomprehensi-
bility in error situations. Moreover, it causes erroneous user conduct, both even-
tually leading to misunderstandings and dysfunctional human-robot interaction.
We consider learning interactions in particular as a relevant use case. When a
user teaches new skills or knowledge to a robot a faulty mental model can lead to
severe consequences. This might cause wrong sample generation or even learning
incorrect skills, which takes both further away from a mutual mental model.

Based on this mismatch between the user’s mental model and the actual func-
tionality of the system, we argue social robots should not simulate biological func-
tions and behavior. Instead, robots need to communicate concepts with their real
functionality and limitations. However, this information should not overload the
users. An improved mental model on the user’s side will reduce the number of
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erroneous human-robot interactions. With knowledge about the system’s func-
tioning and limitations, naive users will be more proficient in coping with errors.

We think that a new direction of research should focus on communicating
insights into robots’ architecture. To investigate this, we developed two com-
plementary ways to communicate insights of a robotic system. These are prior
instructions and a robot feedback system as visualizations. We evaluated their
influence on the user’s mental model in an online survey.

The remaining parts of the paper are structured as followed. In Section 2
we review factors that influence a mental model and ways to provide insights
about robotic systems. Based on this, we formulate our hypotheses in Section 3.
Section 4 includes our system realization and our study design. In Section 5 we
present our results from the conducted online survey. Subsequently, we discuss
the results and relate our findings to the hypotheses in Section 6. In Section 7 we
summarize our work and provide an outlook to future work in Section 8.

2. Related work

2.1 Dual nature of computational artifacts: Relevance and architecture

An essential characteristic of computational artifacts (like robots) – similar to bio-
logical agents – is their dual nature: While an internal mechanism or algorithm
generates a behavior, it can be observed from the outside (Rahwan et al., 2019;
Schulte & Budde, 2018). Therefore, the field of didactics of computer science dif-
ferentiates between the relevance of a computational artifact – which for the user
is perceived as its function, e.g. the capability to autonomously drive in an envi-
ronment or to execute spoken commands – and the architecture which is the algo-
rithm or mechanism that produces this behavior e.g. the processing chain from
perception over reasoning to action making use of abstractions such as object cat-
egories and states. It has been postulated that it is critical to make learners aware
of the difference between relevance and architecture (Schulte & Budde, 2018).
This is not a trivial task as humans tend to have intuitive mechanisms to predict
other biological agents’ behavior based on their own experiences.

2.2 Relation to human interactive learning and pragmatic frames

When teaching children, humans exhibit a range of highly adaptive behaviors that
tailor learning input to the learner’s capabilities and understanding and facili-
tate learning by directing attention and structuring the interaction (Brand et al.,
2002; Nelson et al., 1989; Pitsch et al., 2014; Vollmer et al., 2009). One essential
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strategy utilized by parents is the use of Pragmatic Frames, recurring interaction
patterns that allow the learner to use experiences from known, previous interac-
tions in novel situations. This supports the process of abstracting from context
(Bruner, 1985; Rohlfing et al., 2016). The potential of pragmatic frames for human-
robot interaction has been described by Vollmer et al. (2016). When teaching
a robot, humans seem to intuitively make use of pragmatic frames (Hindemith
et al., 2019). However, while using such strategies is beneficial for children, they
may not be for current robot systems. For example, some learning algorithms rely
on randomly sequenced learning data whereas teaching in context is based on
repeating and slightly modifying an action, again and again, consequently leading
to clusters of similar data in the input. Thus, these strategies are well-tuned to the
human mind. This includes the ability for the theory of mind (TOM), i.e., to take
the perspective of another person. This requires a mental model of the other per-
son consisting of her physical capabilities such as perception and action alongside
her mental states like goals and intentions and even emotional states (Sterelny,
1990). Humans tend to apply such a model to technical artifacts as well, as the
involved processes are highly intuitive. However, as the cognitive architecture of
technological artifacts, such as robots are very different from a biological human
mind, this often leads to misunderstandings and failed interactions. In this work,
we investigate how far humans can benefit from technological concepts for the
formation of correct mental models while interacting with robots.

2.3 Communicating technical concepts

We hypothesize the communication of technical concepts can be helpful to
improve users’ mental models about robots. Information communication for
human-robot interaction is usually realized via instructions that should be as
intuitive and accessible to non-experts as possible. Another strand of research
communicates information directly via implicit or explicit robot feedback during
the interaction.

2.3.1 Instructions
While experts are experienced in operating their system, without further informa-
tion, naive users fail to do so. Therefore, it is necessary to provide new users with
supplemental materials to increase system understanding. This additional infor-
mation can be provided in various ways. For example, information can be pro-
vided as a manual to read, a video to watch, or a tutorial where users also take
action. Cakmak and Takayama (2014) investigated the influence of these three
channels on the users’ ability to successfully interact with a robot. The different
types of instructional material were evaluated in a Programming by Demonstra-

Why robots should be technical 247



tion scenario. As a result, interaction videos mediate the needed knowledge the
best. Based on these results, we also utilize interaction videos in our study.

2.3.2 Feedback
Feedback is an essential factor in communicating the unobservable processes of
the robot. This, in turn, influences how users respond to interactions with a robot.
Communication of inner processes to the user can improve the comprehension
of the decision making process of the robot (Wortham et al., 2017). Users prefer
a robot that provides feedback, even though it might malfunction at some point
(Hamacher et al., 2016).

Concerning how feedback should be provided, Breazeal et al. (2005) showed
that a combination of explicit and implicit feedback improves the effectiveness
of human-robot interaction because the malfunction of the robot can be more
easily detected and recovered, in contrast to only explicit feedback. Thomaz
and Cakmak (2009) examined the learning performance of a robot that learned
objects in a social way and a non-social way. In the social condition, the robot
used gaze behavior to indicate errors, which besides better sampling from human
partners led to faster error recovery in the interaction. While this paper focused
on implicit feedback, Otero et al. (2008) examined the impact of explicit verbal
feedback on the perception of user demonstrations. The majority of the subjects
repeated the same demonstration until positive feedback was given by the robot,
instead of trying to optimize the given demonstration. Other approaches on
robot feedback aim to communicate what the robot learned (e.g., de Greeff and
Belpaeme, 2015; Vollmer et al., 2014) and their execution capabilities (e.g., Kwon
et al., 2018). In our work we used an introduction as an explicit way, and the visu-
alization as an implicit way to communicate the inner working of the robot.

3. Hypotheses

Based on the goal to improve human-robot interactions by shaping an appropri-
ate mental model of the robot, we hypothesize the following:

Hypothesis 1: Providing architectural concepts allows users to gain more
knowledge about the functionality of a robot.

Hypothesis 2: Insights into the architecture of a robot increases the ability to
recognize and explain errors in human-robot interaction.

Hypothesis 3: Technical concepts differ in terms of their familiarity and observ-
ability. These factors influence the user’s ability to recognize and
understand problems in human-robot interactions.
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4. Methods

To investigate our hypotheses, we developed two ways of providing architecture
insights about the robot: (a) architecture information is given in an instruction
video before the human-robot interaction and (b) a visualization of the current
internal states of the robot is shown to users along with the interaction with the
robot.

We conducted an online study devised as a survey. In this survey, participants
watched different erroneous human-robot interaction videos and answered ques-
tions regarding the source of the underlying problems.

4.1 Scenario

For the scenario, we developed our system with regard to an object learning
interaction. The goal of this scenario was to teach the robot a label for an object.
The object recognition was realized by using Aruco marker detection (Garrido-
Jurado et al., 2014). These markers were attached to the objects to uniquely iden-
tify each object. The learning of a label for an object was realized by storing a
map between an Aruco marker ID and the verbally provided label. The scenario
was selected to incorporate established concepts in human-robot interactions. In
the following, we will give you a more in-depth view of the used system and the
mentioned concepts.

4.2 System and concepts

Our approach was realized on a robotic system. The technical concepts were
selected based on the setup of the robot and the implemented scenario.

4.2.1 Robot

Robotic platform
We used the robotic platform scitos G5 by Metralabs.2 The robot is equipped with
two RGB-D cameras. One is mounted on a pan-tilt unit at the top of the robot.
The other one in front of the robot. To display information, a touch display is
mounted above the second camera. Behind the display, a microphone and two
speakers are located. The robot is also equipped with a 6 DOF robotic arm and a
mobile base with front and rear lasers, which were unused in this study.

2. https://www.metralabs.com/en/ [accessed: 2021-03-11]
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System
The robot was developed based on ROS (Stanford Artificial Intelligence
Laboratory et al., 2014). The robot’s main functionalities for the scenario were:

– object recognition
– speech recognition
– speech synthesis
– behavior control

The object recognition was developed using the Aruco marker detection to over-
come the problem of unstable object recognition. The RGB images from both
cameras were used to detect these markers in the world. Objects were equipped
with a marker, which had a unique identifier. Thereby the system was able to track
each object, even if it was not visible for the robot for a certain amount of time.
For the speech recognition, we used the google service Cloud Speech-to-Text.3 To
reduce the amount of recorded audio by google, we used an additional wake-
up-word detector. To interpret the recognized speech, we developed a grammar
parser based on the Backus-Naur-Form (McCracken & Reilly, 2003). The speech
synthesis was realized by a voice synthesizer. For the behavior control, we devel-
oped a finite state machine, based on the flexbe engine (Schillinger et al., 2016).

4.2.2 Concepts
Based on the developed robotic system, we selected the three most common
concepts in current robotic systems: object recognition, speech recognition, and
finite state machine. Furthermore, these concepts have been operationalized in
error situations presented in videos.

Object recognition
The used Aruco marker detection is similar to the scanning of QR codes (Soon,
2008) or bar codes (Beller & Wang, 1997), which is used in various real-life
scenarios. This allows us to investigate the third hypothesis, which states that
familiarity and observability influence the ability to recognize and explain errors.
Therefore, we did not use an object recognition system that detects the actual
objects but recognizes objects by their corresponding Aruco marker.

Speech recognition
While our speech recognition software was able to recognize natural language, it
was unable to infer the intent of the commands. Therefore, we used a grammar
parser to assign intent to the speech command. Because the concept of having

3. https://cloud.google.com/speech-to-text [accessed: 2021-03-11]

250 Lukas Hindemith et al.

https://cloud.google.com/speech-to-text


limited speech understanding capabilities is important for users to know, we com-
municated this concept.

State machine
A frequently used way to control the robot’s behavior is a finite state machine. In
state machines, the robot’s actions are realized as states. Each state provides an
outcome that can lead to other states. By designing such a set of states and con-
nections between them, the robot can fulfill a predefined goal. The higher the
flexibility of a robot’s behavior should be, the more work it costs to design a corre-
sponding state machine. Consequently, state machines are usually limited in their
flexibility and therefore the user has to stick to the pre-programmed sequence of
actions for the robot to work properly. For the user to be able to follow the correct
sequence, knowledge about the state machine and its sequence has to be provided.

4.3 Experimental design

The design decisions to communicate the architecture information were based
on the concepts mentioned above. For providing such insights about the robot,
we decided on two complementary approaches. The first approach was to design
an instruction video that gives direct explanations of the robot’s architecture and
functionality. This video is displayed to one group of users before the interaction
with the robot. The second approach communicates these concepts indirectly by
providing visualizations about the internal states of the robot. This visualization
is shown to users while they are interacting with the robot. In the following, we
will discuss each approach in more detail.

4.3.1 Architecture instruction video
The instruction video was designed to communicate the technical concepts of the
robot in a direct way. Our goal was to inform about the software and hardware
features of the robot equally while avoiding the cognitive overload of the user.
Hence, the video combined information about the hardware components and
their functionality on the software level. To reduce possible confusion of the user,
each concept was introduced independently from the other concepts. To direct
the user’s attention only to one aspect at a time, each fact about a concept was
printed in a box and shown one after another. Previous boxes that correspond
to the same concept were still displayed. For an improved understanding of the
used hardware, a 3-dimensional model of the robot was displayed in the center of
the video. The corresponding hardware of each concept was also highlighted by
colored ellipses as an overlay of the 3-dimensional model. An arrow between the
text box and the colored ellipses helped to connect the information. To improve

Why robots should be technical 251



the understanding of the displayed information, the text boxes are also read out.
Thereby the user is stimulated in a multi-modal way, which improves the infor-
mation reception (Sweller et al., 2019).

Figure 1. Sample scene from the instruction video that describes the camera of the robot.
The text boxes were shown in the order: Top right, top left, bottom left. The text in the
top right describes the camera as a hardware feature. The text in the top left informs
about the marker detection. How this marker detection can be used is described in the
bottom left information box.

The focus of the insights was to mediate the general concepts, their possi-
bilities but also limitations. No details about the underlying algorithms or their
implementations were given. Hence, the information text was designed to contain
technical terms while still be simple enough to be understandable for naive users.
In addition to this, the wording should not convey any analogies to human char-
acteristics. For example, wording such as “With the microphone, the robot hears
the user” for the speech recognition module would imply the robot can hear like
a human. Instead, wording such as “The microphone […] is used to process speech
input from the user.” emphasizes the technicality of the system. The text boxes of
a concept were arranged to first mention the used hardware, followed by the soft-
ware side usage. As a follow-up, additional notes on how this information can be
used were mentioned in a green highlighted box. Refer to Figure 1 for an exam-
ple frame from the introduction video, in which the robot’s camera is introduced
together with object recognition.
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4.3.2 Robot visualization
While the instruction video was shown before the interaction, the visualization of
the internal states of the robot was shown alongside the interaction. To not dis-
turb the interaction, the design communicated the technical concepts of the robot
more indirectly. Consequently, this approach leaves more room for interpretation
in contrast to the instruction video, as the visual elements were not explained. In
the following, our visualizations of these concepts are described (cf. Figure 2).

Figure 2. Frame of the interaction video with additional visualizations, describing the
internal states of the robot. Visual elements from top left to bottom right: Speech
recognition, state machine, main camera stream, scanning camera stream, human-robot
interaction.

Marker detection for object identification
To communicate the visual perception of the robot, we showed the current image
stream from the head camera of the robot. The detected Aruco markers were visu-
alized as overlays of the image stream. Therefore, the overlays are bounding boxes
around the detected markers. The bounding boxes are colored depending on the
current status of the marker. The status of a marker can be focused or not focused.
A focused marker indicates the current interaction is centered around this marker.
If a marker is focused on by the robot, the color of the associated bounding box
is colored green. Otherwise, the bounding box is colored red. The design choice
of the colors is the same as for the speech recognition (cf. Section 4.3.2). Stored
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labels for Aruco markers were printed above the corresponding bounding box and
were colored the same (cf. Figure 3).

Figure 3. Clipped sample image of the object recognition visualization. The left marker is
not tracked and therefore red. The right marker is currently tracked by the robot, which
is indicated by a green bounding box. The learned label by the robot of each marker is
written above the bounding boxes.

Verbal communication
The main communication between the robot and the user was verbal. To trace
the history of the interaction, the visualization contained the utterances of both
the robot and the user. Because the process of speech synthesis by the robot did
not influence how the user is expected to behave, no further information was pro-
vided about this concept.

The speech recognition process was visualized in a way that several parts of
the communication were displayed. As the robot was not constantly listening to
speech input, the user should at all times be able to notice whether the robot is lis-
tening to speech input. After an utterance was recognized, a visualization should
show what was recognized and whether the command could be interpreted by the
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robot. With these types of information, the user is more likely to be able to detect
potential errors in the speech recognition process.

The overall layout was designed with the aim of intuitiveness and familiarity.
Accordingly, we decided to visualize the verbal communication in the style of
a chat box, such as WhatsApp4 or Messenger.5 With 2× 109 monthly users for
WhatsApp and 1.3× 109 monthly users for Messenger in October 2019 (Clement,
2020) the design of chat boxes is familiar to a significant percentage of the popu-
lation.

Our design, with exemplary input, can be seen in Figure 4. The arrangement
of the text boxes was based on the perspective of the user. Therefore, the speech
output of the robot was printed in a speech bubble on the left side of the chat
box. The right side shows the speech recognition of the command provided by
the user. This allocation of perspective is the de facto standard in messengers with
such a design. To communicate when the robot listened to speech input, a blue
speech bubble with three dots was displayed. This visualization is used by the
WhatsApp messenger to communicate that someone is currently writing a mes-
sage. After the speech input was processed by the robot, the resulting recognition
was displayed. At this point, we differentiated whether an intend could be deter-
mined or not. If the robot could determine an intend, the speech bubble of the
corresponding speech input had a green background color. Otherwise, the back-
ground color of the speech bubble was red. The color decision was based on the
positive respectively negative meaning of the green and red colors in our mod-
ern society. For example, traffic lights use the color green to communicate that a
driver is allowed to drive, respectively red to communicate the driver must wait.
Additionally, the color red mediates possible danger.

Finite state machines for robot control
Based on the highly mathematical nature of finite state machines, we expected this
technical concept to be incomprehensible to most naive users. Therefore, our goal
was to visualize a simplification of this process. Instead of visualizing the entire
sequence, we only visualized the current state. To make the current state compre-
hensible, while requiring as little attention as possible, each state was represented
as an icon. Figure 5 shows the five icons used in our visualization to communicate
the most important states of the state machine.

The designs for the icons were made by kiranshastry from www.flaticon.com.6

Our approach was to use simple icons, follow a uniform design among each other,

4. https://www.whatsapp.com/ [accessed: 2021-03-11]
5. https://www.messenger.com/ [accessed: 2021-03-11]
6. https://www.flaticon.com/authors/kiranshastry [accessed: 2021-03-11]
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Figure 4. The chat box visualization for the verbal communication. The robot’s speech
output is on the left. The right side displays the speech recognition of the robot. Whether
the robot currently listens to speech is indicated by a blue speech bubble with three dots.
The recognized speech is written in a speech bubble on the right side as well. If the
speech could be parsed by the robot, it is displayed in a green speech bubble (e.g. first
and second recognized speech). Otherwise it is written in a red speech bubble (e.g. last
recognized speech).

Figure 5. The used icons to visualize the current state of the robot. The icons from left to
right: The robot is currently speaking (robot speaks), the robot listens for speech input
(robot listens), the robot scans the room for a marker (robot scans), the robot stores new
information in its memory (robot stores), the robot is currently occupied with a task
(robot works).

and are intuitive. Based on these guidelines, the symbols for speech recognition
(robot listens) and speech synthesis (robot speaks) are based on symbols used by
Microsoft’s operating system Windows, which is the most popular operating sys-
tem worldwide (Liu, 2020). Since QR markers are used in many areas of applica-
tion, the scanning symbol (robot scans) is expected to be familiar to many people.
The symbol to store new information (robot stores) is a combination of a docu-
ment and an add (plus) symbol. This combination of two familiar icons facilitates
an intuitive understanding. The last symbol is a robot and is used whenever the
robot is doing something where the user needs to wait (robot works). While this
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design might not be known from somewhere else, a robot face can be easily iden-
tified while still be very simple in its design.

4.3.3 Course of online study
To verify our hypotheses we conducted an online survey with 130 participants. In
this survey, participants had to detect and further elaborate on erroneous human-
robot interactions in videos. Furthermore, parts of the participants’ mental model
about the robot were measured. We divided the participants into four different
condition groups. Each group was shown a different amount of information about
the robot. To measure the impact of providing technical concepts of the robot to
the participants, we used a 2× 2 study design. The baseline was only shown the
interaction video. The Instr and Vis groups received additional information based
on one of the approaches each. The fourth group Instr+Vis received the combined
information of both approaches (cf. Table 1).

Table 1. The condition groups of the online survey and their amount of provided
information

Condition type No instruction Instruction

No Visualization Baseline Instr
Visualization Vis Instr+Vis

The online survey was carried out using the online portal Prolific7 to acquire
participants. The course of the survey is illustrated in Figure 6. First, the par-
ticipants were welcomed and asked general questions about their person. Fur-
thermore, we measured their technical affinity, using the Affinity for Technology
Interaction Scale (Franke et al., 2019a).

After the general questionnaires, each participant was assigned randomly to
one of the four condition groups. Depending on the condition to which the par-
ticipants were assigned, they were shown an instructional video with architectural
information about the robot or not (cf. Section 4.3.1). Afterward, a video of a suc-
cessful human-robot interaction, following the scenario, was presented. Depend-
ing on the condition, the interaction video was enriched with information about
the internal states of the robot (cf. Section 4.3.2). To check the participants’ knowl-
edge about the robot’s features, open questions were asked. We separated features
of the robot into hardware and software (cf. Table 2). Afterward, three erroneous
human-robot interaction videos were presented to the participants in a random-
ized order. While the interaction in the videos stayed the same for all conditions,
the Vis and Instr+Vis conditions were shown enriched videos in the same way as

7. https://www.prolific.co [accessed: 2021-03-11]
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Figure 6. Course of online study, starting from top left to bottom right. At the beginning,
participants were asked to fill out questionnaires about themselves and their technical
affinity. Afterwards, depending on the condition, the participants were shown an
instruction video and an interaction video. In a follow-up questionnaire about the robot
features, the participants’ knowledge about the robot was surveyed. Afterwards, the
erroneous interaction videos were shown and related questions were asked. In the end,
questionnaires about the mental model, godspeed and SUS were surveyed.

the initial interaction video. After each video, several questions about the origin of
the error and how participants observed it were asked (cf. Table 2). Subsequently,
each participant was asked open questions about the technical concepts that led
to the errors and what they associate with them. We also collected parts of the
Godspeed (Bartneck et al., 2009) and SUS (Bangor et al., 2008) questionnaires in
order to measure subjective ratings with regard to the robots’ appearance.

Table 2. The open questions asked throughout the survey

Category Question

Hardware features Which components does the robot have that allow it to observe or interact
with its environment.

Software features What skills and abilities does the robot have?
Interaction problem What went wrong during the interaction you saw in the last video?
Origin of error Why did the problem occur?
Error observation How did you recognize the mistake?
Error correction What would have been correct?
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4.3.4 Human-robot interaction videos
For the human-robot interaction, we have implemented an object labeling sce-
nario (cf. Section 4.1). The general interaction flow is shown in Figure 7. First, the
human greets the robot, upon which the robot welcomes the human and asks for
a task. The human triggers the object learning interaction by a command, which
the robot confirms. To teach a label for an object, first, the human shows the
object of interest into the scanning camera of the robot. Afterward, the human
provides the label of the object verbally. The robot confirms the learning and ends
the interaction. For the erroneous interaction videos, the interaction had viola-
tions at some point each. But in each video, there is no more than one error. The
errors were based on the concepts described in Section 4.2.2 and induced by the
human.

Figure 7. The interaction flow of the object labeling scenario, from left to right.

Object detection error
One of our technical concepts was the Aruco marker detection as a way to identify
objects. To generate an error that aims at this concept, the user fails at pointing
the marker towards the robot and instead rotates the marker sideways in front of
the external camera. Because the robot cannot detect any marker, it encounters a
timeout, which causes the robot to switch to a “failed” mode, where it says that
something went wrong, then ends the interaction. In the following, we refer to
this video with No Object.

Speech recognition error
Because the robot can only process exact commands, we induced an error by
rephrasing the utterance to provide the label. Therefore, instead of saying “This is
a cup”, the user says “It is a cup”. Both sentences have the same meaning while the
wording differs. Because the robot cannot process the command, it switches to the
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mentioned “failed” mode, then ends the interaction. In the following, we refer to
this video with Failed Speech.

State machine error
For the concept of state machines, the sequence of actions was violated at some
point. After the robot switches to the “learning” mode, the robot expects to scan
an object. Instead, the user first provides the label and tries to show the object
afterward. Consequently, the robot switches to the “failed” mode after receiving
the label and ends the interaction. In the following, we refer to this video with
Failed SM.

5. Results

The analyses were based on 122 out of 130 participants. 8 participants were
excluded due to incomplete entries. All participants were located in the United
States (63 women, 56 men, 2 diverse, 1 anonymous, Mage =34.09 years, age range:
18–74). Each participant was assigned randomly to one of the four condition
groups (24 Baseline, 38 Instr, 29 Vis and 31 Instr+Vis). Due to the randomization
process of the survey software, condition Baseline has slightly less while condition
Instr has slightly more participants than the other groups. Shapiro-Wilk normal-
ity checks (Shapiro & Wilk, 1965) showed non-normal distributed data, and fol-
low up Kruskal-Wallis tests (Breslow, 1970) for gender and age did not indicate
any significant differences between the condition groups. Hence, we had balanced
condition groups in terms of participants.

5.1 Hypothesis 1: Providing architectural concepts allows users to gain more
knowledge about the functionality of a robot

To investigate this hypothesis, each participant was asked questions regarding the
hardware and software features of the robot after the introduction. To analyze the
answers to the open questions, we assigned each one of them the features men-
tioned. We only focused on features that were important for the human-robot
interaction in the videos. As key figures, we calculated the number of features each
participant mentioned. In a second step, we took a detailed look at each feature
and how many participants mentioned them.
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Which components does the robot have that allow it to observe or interact with
its environment? (hardware)
The important features for the hardware of the robot were the camera, the micro-
phone, the pan-tilt unit (PTU), and the speaker. To observe the influence of the
instruction video on the knowledge about the robot, the speaker was not men-
tioned in the introduction video but was included in the analyses.

We first applied a Shapiro-Wilk normality check, which indicated a non-
normal distribution of the data. Therefore, we used the Kruskal-Wallis test, which
showed a significant difference in the number of mentioned hardware features. A
follow-up post-hoc Dunn test (Dunn, 1964) revealed that the conditions Instr and
Instr+Vis mentioned significantly more than the Baseline (0.0403 and 0.0163) and
the Vis (0.0220 and 0.0081) conditions (cf. Table 3).

Table 3. Shapiro-Wilk normality check and Kruskal-Wallis, with follow up post-hoc
Dunn test for the number of hardware features mentioned between all conditions,
p‑values <0.05 are highlighted in bold, Shapiro Wilk (statistic =0.8787, p-value = 1.5–08),
Kruskal-Wallis (H-statistic =11.20, p-value = 0.01)

Condition 1 Condition 2 p-value

Instr
Baseline 0.0403
Vis 0.0220
Instr+Vis 0.6243

Vis
Baseline 0.9127
Instr+Vis 0.0081

Instr+Vis Baseline 0.0163

A closer look at each hardware feature (cf. Figure 9) turned out that the micro-
phone and PTU features had differences in their frequency (Kruskal-Wallis test).
The follow-up post-hoc Dunn test (Dunn, 1964) revealed that the conditions Instr
and Instr+Vis mentioned the microphone feature significantly more frequently
than the Baseline and Vis conditions. Furthermore, the Instr condition mentioned
the PTU features more often than the Baseline and Vis conditions (cf. Table 4).
The camera and speaker features had no differences in frequency between the
conditions. In general, most participants mentioned the camera feature, in con-
trast to the other features.
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Figure 8. Number of mentioned hardware features per participant

Figure 9. Frequency of each hardware feature
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Table 4. Kruskal-Wallis test, with follow-up post-hoc Dunn test for the frequency of
mentioned hardware features. Below the features are the p‑values of the Kruskal-Wallis
test. Entries are p‑values of the Dunn test. p‑values <0.05 are highlighted in bold,
p‑values <0.1 are highlighted in italic

Condition 1 Condition 2

Hardware feature

Camera
0.5317

Microphone
0.0000

PTU
0.0701

Speaker
0.1971

Instr
Baseline – 0.0001 0.0303 –
Vis – 0.0009 0.0227 –
Instr+Vis – 0.9609 0.1462 –

Vis
Baseline – 0.6017 0.9413 –
Instr+Vis – 0.0012 0.3423 –

Instr+Vis Baseline – 0.0002 0.3913 –

What skills and abilities does the robot have? (software)
As we did for the hardware features, likewise we did for the software features.
Again, we only took into account the features relevant to the interaction videos.
These were:

– object recognition
– speech recognition
– speech synthesis
– learning

Figure 10 illustrates how many software features each participant mentioned.
A Shapiro-Wilk normality check showed a non-normal distribution, and the
Kruskal-Wallis test indicated no significant differences between the conditions (p-
value =0.1092).

We also analyzed how often each software feature was mentioned by the con-
dition groups. We then applied the Kruskal-Wallis test with a subsequent Dunn
test. As shown in Figure 11, all conditions mentioned the software features almost
equally often. Tests showed only for the speech synthesis that the Vis condition
mentioned this feature significantly more frequently than the Instr condition
(p-value =0.0167) and a trend in the difference for the Instr+Vis condition (p-
value =0.0701) (cf. Table 5).
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Figure 10. Number of mentioned software features per participant

Figure 11. Frequency of each software feature
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Table 5. Kruskal-Wallis, with follow-up Dunn test for the frequency of mentioned
software features. Below the features are the p‑values of the Kruskal-Wallis test. Entries
are p‑values of the Dunn test. p‑values <0.05 are highlighted in bold, p‑values <0.1 are
highlighted in italic

Condition 1 Condition 2

Software feature

Object Rec.
0.4465

Speech Rec.
0.8674

Speech synthesis
0.0912

Learning
0.1279

Instr
Baseline – – 0.1793 –
Vis – – 0.0167 –
Instr+Vis – – 0.6055 –

Vis
Baseline – – 0.3809 –
Instr+Vis – – 0.0701 –

Instr+Vis Baseline – – 0.4055 –

Concerning the hypothesis, the results showed that participants who received
architectural information in the form of an instruction video could name more
hardware features of the robot. The same effect was not visible for the software
features of the robot.

5.2 Hypothesis 2: Insights into the architecture of a robot increases the ability
to recognize and explain errors in human-robot interaction

To examine this hypothesis, we analyzed the answers to the open questions after
each video (cf. Table 2). First, we checked if the participants recognized the error
and could explain why the error occurred. We chose a binary format to rate the
correctness of each answer. The rating was based on the factors cause and effect
of the error. The first analysis showed that if a participant could answer what hap-
pened, the question regarding why this error occurred was answered correctly as
well. Due to this, and some participants answered the what question too general,
we only focused on the explanations why the error occurred, for further investi-
gations.

Figure 12 shows how many participants provided correct explanations for
each interaction video. The Kruskal-Wallis test indicated a significant difference
between conditions for each video and all videos combined (cf. Table 6). While
the post-hoc Dunn test already shows the most significant differences for the
Instr+Vis conditions for each video, it surpasses all other conditions significantly
in terms of the number of correct explanations for the combined results of all
videos.
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Figure 12. Correctness of the given explanations

Table 6. Kruskal-Wallis, with follow-up Dunn test for the number of correct
explanations. Below the videos are the p‑values of the Kruskal-Wallis test. Entries are
p‑values of the Dunn test. p‑values <0.05 are highlighted in bold, p‑values <0.1 are
highlighted in italic

Condition 1 Condition 2

Erroneous interaction

No Object
0.0142

Failed Speech
0.0265

Failed SM
0.0026

Combined
0.0000

Instr
Baseline 0.0163 0.8905 0.5874 0.2215
Vis 0.2576 0.7404 0.0640 0.0978
Instr+Vis 0.4074 0.0120 0.0388 0.0041

Vis
Baseline 0.2082 0.6610 0.2534 0.7457
Instr+Vis 0.0634 0.0076 0.0002 0.0000

Instr+Vis Baseline 0.0024 0.0354 0.0183 0.0002

These results show that our hypothesis is confirmed when combining both
approaches for providing insights into the robot’s architecture, but has to be
rejected for each approach individually.
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5.3 Hypothesis 3: Technical concepts differ in terms of their familiarity and
observability. These factors influence the user’s ability to recognize and
understand problems in human-robot interactions

A key figure for this hypothesis was the number of correct explanations for each
video (cf. Figure 13). The Kruskal-Wallis test indicated a significant difference
between the videos (H-statistic= 81.1717, p-value =0.000). The subsequent post-
hoc Dunn test revealed that the No Object error was detected significantly more
than the other errors (cf. Table 7). While the Failed SM error was noticed slightly
less than the Failed Speech error, there was no significant difference.

Figure 13. Amount of correct explanations per video

Table 7. Kruskal-Wallis, with follow-up Dunn test for the number of correct explanations
per video. p‑values <0.05 are highlighted in bold, p‑values <0.1 are highlighted in italic

Condition1 Condition2 p-value

No Object
Failed Speech 0.0000
Failed SM 0.0000

Failed Speech Failed SM 0.2497

Kruskal-Wallis (H-statistics =81.1717, p-value = 0.0000)
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Concerning the third hypothesis, we also asked the participants, after each
video, how they recognized the error. To assign each answer to a category, we
chose the following categories:

– Instruction: The initial instruction video
– Initial Video: The initial working Human-Robot-Interaction video
– Interaction: The current Human-Robot-Interaction video
– Visualization: The additional visualization about the robot’s internal states
– Other: Could not be categorized to one of the others

The answers can be seen in Figure 14. A Kruskal-Wallis test indicated significant
differences for the Initial Video and the Interaction category between the videos.
A post-hoc Dunn test revealed that the Failed Speech and Failed SM error videos
were significantly more often detected by the Initial Video than the No Object
error video. In contrast to this, the No Object error video was detected significantly
more often in the current interaction video than the other two videos (cf. Table 8).
Based on these results, we can see that concepts differ in terms of familiarity and
observability.

Figure 14. Categories of how the error was detected for correctly named error sources
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Table 8. Kruskal-Wallis, with follow-up Dunn test for the frequency of error observation
categories. Below the categories are the p‑values of the Kruskal-Wallis test. Entries are
p‑values of the Dunn test. p‑values <0.05 are highlighted in bold, p‑values <0.1 are
highlighted in italic

Condition 1 Condition 2

Error observation

Initial video
0.0003

Interaction
 0.0061

No Object
Failed Speech 0.0008 0.004
Failed SM 0.0017  0.0314

Failed Speech Failed SM 0.9955  0.6517

5.4 ATI, godspeed and system-usability-scale

At the beginning of the survey, participants were asked to fill out the ATI ques-
tionnaire (Franke et al., 2019b). Furthermore, the participants were asked to fill
out parts of the godspeed and the system-usability-scale (SUS) questionnaire at the
end of the survey. We only included the key figures anthropomorphism, likeability
and perceived intelligence from the godspeed questionnaire. Other parts of the god-
speed questionnaire focus on key figures that were unimportant for our analysis.

To evaluate the influence of a better understanding of the robot towards
the questionnaire scores, we grouped all participants by the number of correctly
explained erroneous videos (i.e., participants with zero correct explanations were
in group 0, those who could detect one in 1 etc.). Shapiro-Wilk normality checks
showed non-normal distributions for the key-figures anthropomorphism, Like-
ability and SUS.

The Kruskal-Wallis test showed significant differences for the anthropomor-
phism and SUS score. The follow-up post-hoc Dunn test revealed that participants
who were able to explain all three errors had a significantly lower anthropomor-
phism score than those who detected fewer errors. In contrast, the SUS score was
higher for participants who detected more errors (cf. Table 9). However, the ATI
score, which reflects the technical affinity, did not influence the results.
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Figure 15. Boxplot of the ATI scores grouped by number of correct explanations

Figure 16. Boxplot of the SUS scores grouped by number of correct explanations
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Table 9. Contingency tests for the godspeed and SUS scores, grouped by number of
correctly explained errors. Entries are: F-/H-statistics and p‑values of One-Way ANOVA
respectively Kruskal-Wallis. p‑values <0.05 are highlighted in bold, p‑values <0.1 are
highlighted in italic

ATI
Shapiro-Wilk (p-value =0.1401)
One-Way ANOVA (F-statistic =0.7618, p-value =0.5177)
Anthropomorphism
Shapiro-Wilk (p-value = 2.1451e-05)
Kruskal-Wallis (H-statistic =6.2771, p-value =0.0989)

Condition 1 Condition 2 p-value

0
1  0.3271
2  0.4992
3  0.0253

1
2  0.7268
3  0.0640

2 3 0.047
Likeability
Shapiro-Wilk (p-value = 0.0125)
Kruskal-Wallis (H-statistic =1.1651, p-value =0.7614)
Perceived Intelligence
Shapiro-Wilk (p-value =0.2516)
One-Way ANOVA (F-statistic =0.5137, p-value =0.6736)
SUS
Shapiro-Wilk (p-value = 0.0168)
Kruskal-Wallis (H-statistic =13.9733, p-value = 0.0029)

Condition 1 Condition 2 p-value

0
1 0.4658
2 0.0669
3 0.0024

1
2 0.1019
3 0.0012

2 3 0.1094

6. Discussion

Based on the online survey results (cf. Section 5), we can derive statements
regarding our hypotheses. The first hypothesis stated that providing insights on
the robot’s architecture will improve knowledge and understanding of such. The
results from the feature listing show that architecture information increases the
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knowledge about the robot’s hardware. In particular, this is true for features that
might not be well-known, like the microphone or the pan-tilt unit. Already famil-
iar features are not boosted. Apart from that, the architecture instructions did
no improve the understanding of the software features. Instead, we observed the
opposite: the architecture condition mentioned fewer software features than the
other conditions. This problem might have occurred based on the design of the
instruction video. The video mentioned each hardware feature before the soft-
ware side usage. Therefore, an overload of information could have led to only
memorizing the hardware features. Besides, the video may have primed users,
leading to an increased focus on information from the instruction video.

Figure 17. Boxplot of the GODSPEED scores grouped by number of correct explanations

Our second hypothesis stated that architecture insights help to recognize and
explain errors in human-robot interactions, as these improve the users’ mental
model about the robot. We tested this hypothesis with two different approaches to
communicate architecture information. Our results were not able to support our
hypothesis when only an instruction video presents information. The provided
architecture information does not improve the ability to explain errors in human-
robot interaction. A reason might be a lack of insights reading the current status
of the robot. Although users have an improved initial mental model, they cannot
apply the architecture knowledge in the current situation. Similarly, the visualiza-
tion approach did not improve the ability to explain errors. Instead, it seems to
make it worse for some error types (i.e., Failed Speech and Failed SM). An over-
load of information and misinterpretations might be the problem. In turn, the
quality and intuitiveness of our visualization might have produced this. Addition-
ally, a visualization without further information on what it communicates allows
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much freedom for interpretation. Consequently, this can lead to confusion, which
results in unexplainable error situations.

However, both approaches seem to complement each other. The results show
that in the fourth condition of showing an instruction video and providing a visu-
alization, the ability to detect errors is significantly higher. By improving the men-
tal model through the instruction video, the visualization is less confusing while
its meaning can be more easily recognized. Additionally, the visualization helps to
observe the learned architecture information throughout the human-robot inter-
action. Which in turn leads to an improved ability to detect and explain erroneous
interactions.

Additional support for our hypothesis regarding the more appropriate shaped
mental model (i.e., not equal to the mental model for another human) provides
the comparison of the questionnaire scores for the number of correctly explained
errors. The anthropomorphism score is lower for participants who could explain
all three errors. Furthermore, the SUS score is higher for participants with more
correctly described errors. It suggests that these participants ascribed less human-
like characteristics to the robot while rating the system as useful despite its appar-
ent limitations. Furthermore, we compared the technical affinity of the
participants who could or could not explain the errors. The results did not show
any significant differences. Therefore, our strategies of communicating insights of
the robot seem to be understandable for people independent of their technical
affinity, including naive users.

While we can see that architecture information improves the ability to explain
errors in interaction and therefore improves the user’s mental model, this ability
also depends on the concept where the error occurs. The results from our third
hypothesis showed that participants explained the object recognition error more
frequently than the speech recognition or the state machine. The better observ-
ability and familiarity of the object recognition concept explains this. More than
half of the participants stated that they had observed the object recognition error
in the interaction itself. The speech recognition and state machine errors, on the
other hand, were detected by reference to the video of the previous correctly
working interaction. We assume that despite theoretical knowledge about tech-
nical concepts, users need to observe the explicit structure of the interaction to
identify an error.

These results suggest that it is reasonable to communicate technical concepts
to users, to improve their mental model. Furthermore, we showed that the used
concepts have a significant influence on the error detection ability. For example,
we selected the concept of object recognition in a way that people could use pre-
vious knowledge of QR-scanners. Therefore, we argue that already established
technical concepts should gear the design of robotic concepts, together with tech-
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niques to communicate it. Although we showed that communicating technical
concepts helps to shape a more appropriate mental model, we cannot make a gen-
eral statement about the design of such information. Especially the cognitive load
of users should be considered. Further studies are required to evaluate how much
information about a concept contributes to a better understanding of them. More-
over, each concept has specific factors that a user needs to understand.

Our observations show that the concept of finite state machines, which is at
the core of human-robot interactions, is neither familiar nor observable. Hence,
further improvements towards this direction are needed. It is reasonable to con-
sider the observations regarding pragmatic frames (cf. Section 2.2). Vollmer et al.
(2016) investigated the use of pragmatic frames in human-robot interactions.
They showed that an interaction with a robot, where the user teaches the robot, is
still not flexible enough for intuitive interactions with the system. We suggest that
an alternative framework should allow for simple reasoning on the robot’s side
to communicate its internal processes. Simultaneously, such a framework needs
to be more flexible and adaptable for naive users. Thus, enabling a more intu-
itive interaction. In that way, the mental model develops while shaping the robot’s
behavior, based on the user’s expectations. Kaptein et al. (2017) used a belief-
desire-intention (BDI) based agent to communicate the decision making process.
While they showed that adults prefer explanations in terms of the robot’s goals,
we believe that this forms an incorrect mental model about the robot with unreal-
istic expectations regarding its cognitive abilities. Besides, a BDI architecture with
its hierarchical structure might not be suitable to be taught by naive users, tak-
ing into account the potential complexity of such structures. Saunders et al. (2015)
developed a flexible system that users can personalize. Current sensor states guide
the decision-making process, similar to reactive behaviors. Such a system is based
on technical concepts but probably still simple enough for humans to understand.
Thus, it could present a more intuitively understandable alternative to currently
widely used state machine frameworks.

7. Conclusion

This paper is concerned with the problem, how to improve users’ mental models
of robots in human-robot interactions. We investigated a new approach by com-
municating insights into the robot’s architecture in two different ways. One
method tried to communicate technical concepts in a direct way, similar to a man-
ual. The second approach was indirect by visualizing the current internal states of
the robot.
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We evaluated the approaches in an online survey, where participants had to
detect and further elaborate erroneous human-robot interactions. In addition to
each method, we compared them to a baseline and also as a combined approach.

The results showed that both approaches on their own do not help to explain
erroneous situations. In contrast to this, the combination of both strategies
improved the ability to detect errors significantly. Furthermore, the ascribed
anthropomorphic characteristics were lower, while the usability was rated higher.

Based on the results, we conclude that the current social robotics trend,
pretending that the robot has human-like abilities and emotions, might not be
the optimal research direction. Our society is confronted with technology long
enough for people to be able to deal with technical concepts. The results of this
paper suggest that robot designers should communicate the technical concepts
to the users. Thereby, robots and users can achieve common ground on mental
models.

8. Future work

For our further work, we will develop and evaluate new technical concepts for
robotics. Thus, we want to improve users’ mental models of the robot. In turn, this
will potentially optimize human-robot interactions and reduce the occurrence of
erroneous interactions.

One finding was that the state machine concept was one of the most incom-
prehensible ones for participants. Because the robot control is at the center of each
interaction, users should understand this concept to detect and correct errors in
interactions. Therefore, we will focus on alternatives to this concept.
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