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Abstract— Increasing numbers of devices are equipped with
cameras generating large amounts of images. State of the
art technologies allow to automatically identify relevant and
aesthetically pleasing images after they were stored. Here,
we demonstrate a robot that estimates the gradient of image
aesthetics in its environment and actively navigates towards the
maximum. Aesthetics navigation is integrated into a modified
robotic lawnmower, switching online between tasks based on
estimated aesthetics scores. This behavior generates higher
aesthetics scores than offline selection of images captured
during standard behavior. The proposed system extends robotic
behavior from the purely functional towards a cooperative and
empathic level.

I. INTRODUCTION

“The soul cannot thrive in absence of a garden.” (Thomas
More, Utopia), yet often we spend less time in nature than
we would like. Gardens continuously change, including light-
ing and weather and changing vegetation, offering different
beautiful views only from specific angles at certain times.
On the other hand, most views most of the time are less
aesthetically pleasing.
A human garden enthusiast will typically not take random
photos and later search for good ones. Rather he or she will
continue gardening until something especially interesting
catches the eye, move closer and consider taking a photo
there. Here we introduce an outdoor service robot that
mimics this behavior: the robot performs its standard task
of mowing and simultaneously estimates the aesthetics of
views. If the score is sufficiently high, it follows the gradient
towards the most beautiful perspective and takes images. At
the end of the day, the robot can present a digest of beautiful
views to its owner. To our knowledge, this is the first instance
of such robot navigation behavior in unconstrained envi-
ronments. Our contributions include a fast online aesthetics
score estimation in the wild, a simple method to follow its
gradient, and the integration of aesthetics navigation with
standard mowing behavior on a modified robotic lawn mower
(see Fig. 1).

Cameras, especially in smartphones, have become ubiqui-
tous and the total number of photos generated is estimated
over one trillion per year [1]. Furthermore, autonomous cars,
mobile robots and household appliances are increasingly
equipped with cameras (e.g., [2]), giving the possibility of
capturing images with high personal value from the specific
environment of a user. However, exhaustive manual search
for interesting or beautiful images becomes impossible and
thus such autonomous systems should assist their users
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Fig. 1. Prototype robot. Research is demonstrated on a modified lawn
mower robot with added camera and computational power. The system
autonomously switches between mowing and following aesthetics gradients.

with selecting images, or preferably only generate relevant
images.
Image aesthetics relates to image content, composition, ap-
pearance, and style – automatic prediction of aesthetics is
a complex task. However, recent machine learning models
have shown the feasibility to predict the aesthetic value of
images (e.g., [3], [4], [5]). These approaches typically focus
on learning from offline image databases like AVA [3] and
estimate aesthetics on images after they were uploaded to a
PC or the cloud. Such an approach is limited to the selection
of fixed images, possibly yielding limited improvements by
cropping promising parts [6] or postprocessing [7]. However,
at this point in time the camera perspective that led to an
image is obviously fixed and can not be improved anymore.

In contrast, our proposed system can actively drive towards
a location yielding the highest scoring image. In Section III
we show that image scores are significantly higher in this
case than for recordings during standard mowing as a control
task.

Google Clips [8] follows a similar approach, based on
a highly integrated “intelligent camera” for automatic on-
device detection of good images. It reduces the amount of
captured imagery to limit human post-processing. However,
the device has to be placed by the user at a reasonable
position since it can not by itself navigate towards good
views.
Cameras for “life logging” (e.g., [9], [10]) are devices worn
by a user and typically generate an image digest of daily ac-
tivities for the user. These systems also have to select relevant
images from a large sequence and cope with unconstrained
environments. Like the prior approach, though, they can not



Fig. 2. System overview. Camera images are passed to aesthetics estimators, which were trained on three different resolutions. The resulting score maps
are combined by selecting their maximum at each position. If the mean value of this map exceeds a threshold, aesthetics navigation can be activated (see
further constraints in the text). The maximum of averages over score map columns determines the robot steering direction.

move independently and thus not actively find interesting or
beautiful views.
The patent on a self-balancing robot [11] has been interpreted
as a “personal paparazzi”[12]. Such a robot design has more
degrees of freedom to adjust camera pose in 3D space and
may follow humans around in larger environments.
An early implementation of a similar idea is a robot that
detects interesting targets and actively navigates to a position
to optimize photo quality [13]. The approach is limited to
group photos of people and is based on hand-crafted rules
for image composition.

II. METHODS

We extended a commercial lawn mower robot (Honda
Miimo 310) with a fixed frontal camera (Logitech Brio 4k
with autofocus and a horizontal field of view of 81◦). For
the high computational load of online aesthetics estimation,
the robot was additionally equipped with a notebook con-
taining an NVidia Geforce GTX 1070. The mower’s ECU
is connected to an onboard embedded system via CAN
bus as in [2], which is in turn connected to the laptop
for aesthetics estimation. Low-level control is located on
the ECU, whereas the embedded system monitors aesthetics
score and switches robot behavior between standard mowing
and aesthetics navigation. Navigation is initiated when the
average image score exceeds a value of 0.6 (this setting was
empirically determined so the robot spends approximately
1/3 of the time with aesthetics navigation and 2/3 with
the default task of mowing). During navigation, the robot
drives with constant speed while input images are filtered by
the aesthetics estimator and the filter response is averaged
vertically, allowing it to always turn towards the current angle
with highest average score (see Fig. 2). Navigation terminates
when (1) the score drops below 0.5, or (2) an obstacle is hit,
or (3) navigation time exceeds three minutes, or (4) the robot
drives over the border wire.

We applied two different models for outdoor aesthetics
estimation and gradient following. The first model is the
readily available ILGNet [14] with 13 layers trained on AVA
[3], which achieves over 85% accuracy in classifying low-
scoring vs. high-scoring samples in AVA2. The analysis of
ILGNet in our scenario revealed a strong dependency on low-
level image statistics (see Sec. III), as well as poor general-
ization to the unbiased image stream in the garden domain.
Additionally, ILGNet’s “fully connected” layer constrains

the input image size to 227x227 pixels. For estimating the
aesthetics gradient, however, we need to apply the estimator
as a filter on a larger image to yield the individual subregion
scores. The model’s architecture would require a full and
highly redundant computation pass on each image patch,
leading to frame rates below 0.1Hz and thus unacceptably
slow for robot navigation, even with the fastest available
mobile GPU.

Consequently, we built and trained a second alternative
model based on the fully convolutional VGG16 architecture
[15], which can be scaled to arbitrary image dimensions.
The final classification layer in VGG16 was replaced with a
global averaging layer to allow direct regression to the AVA
aesthetics labels during training. After training, the global
averaging layer was removed, and the resulting 20-layer net
could be used on larger images, yielding a spatial distribution
of aesthetics scores. The number of trainable convolution
layers was 14, with a total number of 14,714,688 trainable
parameters. Initial parameters for VGG16 from pretraining
on Imagenet [16] are available in Keras [17]. To improve
performance in a garden domain, we extended the AVA
training database with approximately 5% additional images
from the Oxford Flower Database [18] as positive examples
(regression target score 0.75) and clutter objects on grass [19]
as negative examples (regression target score 0.25). From this
combined set of 267,940 images, we generated 1 million
training images using image augmentation and trained the
network using batch normalization as a standard technique
for improving model performance. After training, we remove
the averaging layer in order to retrieve the aesthetics score
estimate of each individual image subregion. See Fig. 3 for
example images from the top 10 percentile (left) and bottom
10 percentile (right). The robot’s onboard notebook with
an NVidia Geforce GTX 1070 filters input images of size
1024x512 at approximately 4Hz.

The results of aesthetics gradient navigation strongly de-
pend on the estimator’s basin of attraction for finding high-
scoring views, i.e., how likely it is that the robot can follow
the gradient towards an aesthetics maximum for a given dis-
tance. Initial experiments showed that the above architecture
allows the robot to reliably turns towards and approaches
large and colorful scene elements, resulting in high scores
at the end of the approach. For smaller and isolated objects,
like a single blooming flower, the maximum distance where



Fig. 3. Example images. Left block: images from top-10 percentile score. Right block: images from bottom-10 percentile score.

Fig. 4. Cumulative aesthetics score distributions. Red: results for
random mowing as control condition; mean score is significantly lower
than navigation mean and proportion of high-scoring images is much lower.
Green: results for proposed behavior with automatic navigation towards
aesthetics maximum, including non-navigation phases. Navigation mode
scores are significantly higher than in control condition. Blue: results for
hand-carried camera in garden, trying to capture beautiful views.

the approach likelihood is above 50% is below 0.5m. In this
setting, for typical trajectories the gradient direction ofen
changes erratically before converging towards a high-scoring
target.
Image augmentation during training increases model invari-
ances to small translations, rotations and rescaling of images.
However, there is no mechanism to predict image scores
for larger distances in scale space. Consequently, we extend
our system with a multiscale estimator for computing the
aesthetics gradient (see Fig. 2). We trained two additional
similar network on half and quarter training image resolution,
respectively. Applying these estimators to full resolution
input images serves for estimating image scores in larger
distances. For gradient estimation, the score values from full,
half, and quarter scale models are combined by taking the
maximum score of any scale at any given position. This
approach increases the basin of attraction, i.e., the typical
distance from which the robot reliably turns towards a local
maximum, to approximately 2m, and the resulting frame rate
is reduced to approximately 1Hz, which is still sufficient for

our scenario (see Fig. 2 for a sketch of the full processing
pipeline). Typical navigation trajectories in this setting have
fewer changes of direction and converge more quickly onto
a high-scoring region. Most often, high-scoring views are
at the work area border, where navigation aborts when the
robot reaches the area wire. Few trajectories lead from one
high-scoring view to other distinct nearby regions with high
scores. Cyclic trajectories never occured.

During any short time window of recording, images
and computed scores are highly similar. Selecting only
the highest scoring images for final presenting to the user
then includes many redundant duplicates. Furthermore, the
working area of a lawn mower robot is limited and similar
views are likely to occur during operation. We implemented
two mechanisms to cope with image redundancy: temporal
selection and filtering by feature similarity. Temporal
winner-takes all selection chooses the highest scoring image
from each 2-seconds interval and discards lower-scoring
images. This mechanism suppresses redundant views from
within a single navigation episode. Scond, we want to
remove overly similar images from a whole recording.
Images from natural environments are never identical in
practice. However, a meaningful similarity measure to
identify and remove redundant images recorded over longer
time spans is not trivial. Here, use a greedy heuristics
based on the aesthetics estimator model’s penultimate layer
activation as a feature vector for each image and compare
the norm of activations. Starting with the highest scoring
image, all lower-scoring images with a feature L2 norm
smaller than a threshold are discarded.

We collected data from four different gardens and one
rural field in three different experimental conditions: “con-
trol mode” using standard random pattern mowing on the
robot, “aesthetics navigation mode” as described above, and
“manual mode”, in which a webcam was manually carried
through the gardens with the objective to capture beautiful
views. We consider control mode for baseline performance
and manual mode as an upper bound for result quality,
because of full human control over the recording and more
degrees of freedom in camera control than on the robot.



III. RESULTS

In the following, we first analyze results for the state
of the art aesthetics estimation model ILGNet [4], discuss
its shortcomings for aesthetics navigation and proceed with
results of our adapted model based on VGG16.

ILGNet achieves very good results for estimating
aesthetics scores on the AVA benchmark set. Does it
represent high-level concepts such as content, style, or
image composition, or does it rather correlate with trivial
low-level image statistics? We analyzed the impact of
image statistics, including image saturation, additive noise,
contrast, gamma, hue angle, brightness, and JPEG block
artifacts on aesthetics estimation with ILGNet. We identified
strong influences of these manipulation on aesthetics scores.
Figure 5 depicts means and variances of scores for changing
image saturation (left) and additive white noise (right), as
well as example images (’original’) and their respective
transformation yielding maximum score (’maximum’).
Complete color desaturation, as well as color oversaturation,
on average cause high scores, whereas low image saturation
lead to lower scores. Human aesthetics preference positively
correlates with image saturation [20], and, since AVA
contains color and grayscale images, a high average score
for grayscale images seems plausible. However, the model’s
strong score increase for extremely oversaturated images
is unlikely to correlate with human preference. Second,
ILGNet’s scoring for noisy images is more surprising. For
small amplitudes of additive white nose the average score
decreases but increases for high noise amplitudes. Third, we
tested the effect of small translations on ILGNet scores. As
expected, scores of many images only changes minimally
for translations of less than 10 pixels. For some images, the
alignment of the image relative to the model’s first layer
filters resulted in score amplitude variations of up to 50%,
whereas the human observer can hardly detect a difference
in these images. We found that this effect is present in
images that previously were encoded with JPEG, which
leaves small 8x8 pixel block artifacts in images.
Very noisy images, extremely oversaturated images, and
shifted JPEG images are probably not part of the AVA
training database and thus the model predictions do not
generalize well to such changes of statistics. It is, however,
evident that low-level statistics has a very strong impact
on model scores (also see similar findings in [21]). These
results suggest that in our scenario the robot may follow a
gradient score towards maximum saturation or contrast and
thus fail at generating aesthetic images. In the following,
we show that with the alternative model based on VGG16,
despite such shortcomings of aesthetics prediction, a robot
can follow the aesthetics gradient and find images that are
preferred by human subjects over control recordings. Image
augmentation during model training increases invariance
towards small translations, noise, and other low-level image
changes.

To show that aesthetics navigation yields more aesthetic

images than control behavior, we first show that the average
score is significantly higher in navigation mode. Second, we
show that a majority of human subjects prefer high scoring
images over medium and low-scoring images.
The mean aesthetics score under control conditions with
default random mowing behavior is 0.65 (see Fig. 4 for
cumulative score distributions). The mean scores of images
during aesthetics navigation is 0.67, which is significantly
higher than in control condition (p-value of permutation test
for hypothesis “scores drawn from identical distributions” <
0.0001). Note that aesthetics navigation to a large degree also
consists of default mowing behavior with random navigation
whenever the aesthetics score threshold is not exceeded
(see Sec. II above). Thus, the distribution of low scores is
also similar between the two conditions. However, primarily
the high scoring images are relevant for our scenario. The
fraction of high scoring images in navigation mode (2.7%
of images score higher than 0.9 and 1.4% > 0.95) are
much higher than in control mode (0.1% > 0.9 and 0% >
0.95; see Fig. 4). As expected, the mean score of 0.71
for manual recordings is higher than under navigation and
control conditions.

The AVA image aesthetics database [3] is a popular
benchmark for machine learning. It contains a wide variety
of styles and domains, including outdoor imagery similar to
what a robot mower could encounter. However, a number
of issues put into question if a model learned on AVA will
generalize to robotically generated garden images. Firstly,
all of the images in AVA were taken and actively selected
for publication by humans, whereas a robotic system does
not have such a filtering step. Such a capture bias is a
well-known phenomenon in machine learning [22]. Secondly,
closer inspection of AVA reveals large amounts of images
were strongly processed and/or unrelated to classical image
aesthetics, e.g. jokes and memes. It is highly unlikely that
such abstract, self-referential concepts can be learned and
generalized by current machine learning methods. Finally,
the robot’s camera perspective strongly differs from the usual
human perspective. Together, these observations may indi-
cate that we achieved higher scores with aesthetic navigation
but that the model may not generalize to images taken by
the robot. Thus, we next validate that model scores agree
with the human aesthetics preferences by performing the
following test. The recorded garden images were binned by
their estimated aesthetic score, and three bins (high: 90-100
percentile; medium: 45-55 percentile; low: 0-10 percentile)
were selected. From each bin and for each test subject,
we randomly sampled a set of 12 images. 17 test subjects
were asked to order their respective sets by their perceived
aesthetic value. 71% of subjects ranked the image set from
the “high” group highest. No subject ranked a set from the
“high” group lowest (see Table I). Note that four out of five
subjects who preferred the medium-ranked images noted that,
while they rated individual views from the high-ranking set
higher, they preferred the medium ranking image set due to
its higher diversity.



Fig. 5. Impact of low-level image properties on aesthetics score. Left box: average aesthetics score over variations of image saturation. Grayscale and
oversaturated images typically score highly. Example images (“original”) and their respective maximally scoring saturation transforms (“maximum”). Right
box: average aesthetics score for additive white noise. Score typically increases with noise amplitude. Example images (“original”) and their respective
maximally scoring noisy transforms (“maximum”).

high human

preference

medium human

preference

low human

preference

high model score 12 5 0

medium model score 4 9 4

low model score 1 3 13

TABLE I
Aggregate results of human aesthetics preferences versus model

scores. 71% OF SUBJECTS RANKED THE IMAGE SET FROM THE HIGH

MODEL SCORE GROUP HIGHEST. SEE TEXT FOR DETAILS.

IV. DISCUSSION

We have demonstrated an outdoor robot that integrates
a standard service task of mowing with actively searching
for and driving towards the most aesthetic views in its
environment. Following the aesthetics gradient results in
higher aesthetics scores and these scores agree with the
preferences of a majority of subjects.

Robustness on unconstrained outdoor images and a
smoothness in camera position space are necessary for
following the aesthetics gradient. Our modified network
architecture achieves these goals and allows fast online aes-
thetics estimation of each subregion. However, the model’s
final averaging layer removes most information on image
composition, which is an important aspect of image aes-
thetics. Nevertheless, with our model architecture, we have
shown that our system’s aesthetics prediction is sufficient
for aesthetics navigation. A very recent alternative model
[23] may again allow to integrate information on image
composition.

Models trained on AVA predict aesthetics based on training
data from a large group of people. Can such an average
aesthetics model be expected to produce reasonable results,
or are personalized models necessary? Recent work [24]
has shown a dependency on the visual domain: a relatively
high degree of inter-person consistency in the assessment of
aesthetics was found for natural landscape images, compared
to images of artwork and architecture. Thus, gardens are a
better domain for aesthetics navigation than, for example,
a museum guidance robot. Nevertheless, personalization to

a specific user’s taste will certainly increase the perceived
quality. Any sufficiently smooth scalar score can serve as
an alternative to aesthetics, e.g., memorability [25], interest-
ingness [26], image content, or a combination of these. A
simple user-provided weighting of such scores may lead to
personalized results in a much simpler way than requiring
fine tuning of the deep learning aesthetics model.

With the current parametrization, the robot spends approx-
imately one third of operation time in aesthetics navigation
mode. Aesthetics navigation is more often triggered at the
borders of the lawn than centrally, leading to a higher
proportion of aesthetics navigation in smaller gardens. Since
small gardens require less mowing, the combined behavior is
unlikely to reduce mowing performance. Furthermore, both
tasks can mostly be performed in parallel. During the testing
period, both in standard mowing mode and in aesthetics
navigation mode, we did not observe the mower to get
stuck and require human intervention, nor did we observe
systematically unmowed areas.

In order to increase user acceptance and to increase mow-
ing efficiency, we plan to improve the approach for image
diversity within recordings and over consecutive recordings.

Aesthetics navigation may be interesting for other robots
than lawn mowers, e.g., cleaning robots or other (future)
household robots. As a future outlook, replacing implicit
models of aesthetics on 2D images with models based on 3D
geometry and meaningfully segmented objects may lead to
an “intelligent robotic photographer”. Following the aesthet-
ics gradients in such a representation may even incorporate
environmental manipulations for composing better images
(“move the garden chair to the left”) by the robot itself or
by human-robot cooperation.
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