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Abstract—In automotive digital development, 3D shape morph-
ing techniques are used to create new designs in order to match
design targets, such as aerodynamic or stylistic requirements.
Control-point based shape morphing alters existing geometries
either through human user interactions or through computational
optimization algorithms that optimize for product performance
targets. Shape morphing is typically continuous and results in
potentially large data sets of time-series recordings of control
point movements. In the present paper, we utilize recurrent
neural networks to model such time-series recordings in order
to predict future design steps based on the history of currently
performed design modifications. To build a data set sufficiently
large for the training of neural networks, we use target shape
matching optimization as digital analogy for a human user
interactive shape modification and to build data sets of control
point movements in an automated fashion. Experiments show the
potential of recurrent neural networks to successfully learn time-
series data representing design changes and to perform single-
and multi-step prediction of potential next design steps. We
thus demonstrate the feasibility of recurrent neural networks for
learning successful design sequences in order to predict promising
next design steps in future design tasks.

Index Terms—Recurrent neural networks, computer aided
engineering, deep learning, optimization

I. INTRODUCTION

Central to digital design development in the automotive

domain is the variation of 3D shapes in order to fulfill

requirements of the various stakeholders involved. Require-

ments comprise aesthetic design-guidelines, but also func-

tional performance targets such as aerodynamic efficiency or

structural stiffness. Even though various tools from computer

aided design (CAD) and engineering (CAE) provide means

for altering shapes, the necessity to simultaneously meet

various—potentially conflicting—targets, leads to considerable

complexity in the design process. To support a human designer

in handling this complexity, we propose to learn a model of

existing, successful shape manipulation sequences, in order

to predict potential future design steps from the modifica-

tions currently applied. Such a model offers the possibility

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 766186.

to provide real-time feedback on the current design and to

collaboratively guide the designer through the design process.

On a 2D design level, recently two systems have been

proposed, which provide real-time guidance to human users

while drawing online. ShadowDraw [1] relies on a database

of images and provides feedback to user sketches by offering

opaque visual layers of potentially similar objects. SketchRNN

[2] is a generative, deep neural network trained on a database

of drawing sequences by human users. When presented with a

novel sketch sequence for a pre-selected object class, the net-

work proposes alternatives of next drawing steps to illustrate

potential design directions.

The present paper aims at transferring the idea of guiding

the design process using a model trained on existing data

into 3D design space for engineering applications. Here, a

number of challenges emerge. First, we need to select a

meaningful representation capable of modifying objects with

a high degree of flexibility and low number of parameters. In

the present paper we rely on shape morphing methods such

as free form deformation (FFD) [3]–[5] that are state-of-the-

art techniques in engineering applications and allow human

users to perform intuitive design changes [6]. Second, due

to the high complexity of engineering designs, a large data

set of design modification sequences is required as training

data for our prediction model. Since it would be very costly

(and in reality impossible) to generate this amount of data

manually, we propose to utilize computational optimization

methods for generating these sequences. We propose to tune

the hyperparameters of an evolutionary optimization algorithm

such that the optimizer’s output closely matches user-generated

deformation sequences. Based on these hyperparameter set-

tings we generate a large number of deformation sequences

from repeated optimization runs. Third, for learning the design

sequences, we utilize multi-input recurrent neural networks

(RNNs), which are capable to abstract temporal information

contained in deformation time-series and enable us to predict

future potential shape morphing directions based on a current

state of design modifications.

The remainder of the paper is organized as follows: We
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review prior work on learning models for engineering tasks

and on artificial neural networks in section II; in particular,

we review RNNs as network architectures specialized on

processing sequential data. We then introduce, in section III,

an approach for data generation from a simplified 3D design

task, resulting in a sufficient amount of multivariate sequences

of design changes. In section IV, we present results on training

an RNN on the generated design sequences in order to predict

future design steps. In section V, we discuss our results in the

light of providing real-time guidance to designers performing

3D design tasks in the engineering domain.

II. PRIOR ART

A. Metamodeling

Learning from data that results from optimizing a design to

match a given design target, is also referred to metamodeling
[7]–[9]. Commonly, metamodeling means training a model

on the steps an optimizer performs with the goal to predict

optimal design parameters, x, such that an objective function,

f(x), is optimized. Metamodels replace complex or compu-

tationally expensive aspects of an optimization, such as the

evaluation of a gradient or cost function, by a simpler and

cheaper model. Hence, metamodelling models the design pro-

cess, with the goal of approximating a globally optimal model

as accurately as possible at a reasonable cost. Furthermore,

metamodels allow to explore the design space to obtain deeper

insight into the design problem and a better formulation of

the optimization task. In the context of metamodeling, the

feasibility of artificial neural networks (ANN) for learning

from engineering data has been explored in [9]. ANNs have

shown the ability to learn from high-dimensional design spaces

and a limited number of samples [8], suggesting ANNs as a

promising approach to model engineering design data.

However, purely feed-forward ANNs assume independence

between individual data samples and require fixed-size input.

Both assumptions are violated if sequential inputs or inputs

with temporal dependencies are considered. To handle these

limitations, recurrent neural networks (RNN) have been pro-

posed (see [10] for a review), which model time-dependency

in the input explicitly. RNNs and recent extensions using

deep neural networks (DNNs), for instance, long short-term

memory (LSTM) networks [11], have been used successfully

to learn from sequential data, while requiring little to no input

of prior knowledge [12]. Furthermore, RNNs have been used

as generative models [13], [14] which allows to use them to

generate novel sequences based on the latent representations

learned from data.

Hence, state-of-the art DNN architectures offer promising

capabilities for modeling sequential engineering design data.

Yet, current engineering applications make only limited use

of such architectures, even though, ANNs, and in particular

DNNs, not only offer greater flexibility when dealing with

high-dimensional problem spaces, as commonly encountered

in engineering contexts, but also provide generative models,

which offer novel opportunities for exploring the design space.

The latter has been demonstrated successfully for the 2D

domain [1], [2], where recent applications use RNNs to model

human sketches and offer guidance to human users during a

design task.

B. Recurrent Neural Networks

RNNs are neural network architectures that model time-

dependency, in particular long-term dependencies, in their

inputs [10]. Compared to other modeling approaches for tem-

poral data, RNNs have a high expressive power due to a high

number of hidden states and non-linear activation functions

[15]. Furthermore, networks are differentiable such that gra-

dients for training are cheaply computed. RNNs model time-

dependency by introducing recurrent or feedback connections

that, when calculating the network’s current output based on

the current input, allow to include the network’s previous states

into the calculation.

Early RNN architectures suffered from practical problems

during training, in particular, the calculation of the gra-

dient for backpropagation can become unstable, such that

gradients either “vanish” or “explode”. To overcome these

shortcomings of earlier architectures, current architectures like

LSTMs propose improvements to the original architecture

[11]: LSTM cells overcome training problems, by introducing

self-feedback connections of constant weight that enable a

gradient to propagate through a cell for multiple time steps

without decreasing and therefore to vanish. An additional

multiplicative unit learns when to open and close in- and

output gates of the cell in order to allow for constant error flow

over multiple time steps. Newer implementations introduce

forget gates [16], which can reset the internal state of the cell.

Based on these additions to classical RNNs, LSTM networks

have shown to be able to learn long-range dependencies

more successfully and robustly. Accordingly, LSTM networks

achieve state-of-the-art performance in a variety of application

domains (e.g., speech recognition [17], or video encoding [18],

see also [10] for a review).

Modern RNNs, such as LSTMs, have been shown to handle

complex interactions between multivariate input- and output

sequences [19]. Hence, not only predictions of single but also

multiple time steps, are possible. Furthermore, these networks

are generative, i.e., they are able to generate new sequences

by providing probabilistic predictions of future samples. By

sampling repeatedly from the RNNs output distribution com-

plete, novel sequences can be generated [13]. Recently, these

generative capabilities together with the expressive power of

RNNs have been used to model sequences from 2D-design

tasks, such as human drawing [1], [2], and, in particular, the

generative capabilities of RNNs have been used to guide users

in drawing new designs. Similar approaches to generating

temporal sequences have been explored in other domains, e.g.,

for the generation of music [20].

As a consequence, RNNs are a promising tool for learning

design sequences in the engineering domain, in particular,

for learning sequences describing complex tasks such as 3D

design processes. Furthermore, their generative abilities can

be exploited to guide novel users based on the learned design
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experience. However, even though RNNs are a promising tool

for learning from multivariate, sequential data, applications

to engineering design tasks are lacking so far. In the present

paper, we therefore explore the use of RNNs for learning

sequences describing an engineering 3D design task.

III. METHODS

In the spirit of progressing towards a 3D cooperative design

tool for industrial data, we first describe how a sufficient

amount of data for training an RNN were generated: to

this end, we defined a shape-manipulation task solved by

FFD, which was repeatedly carried out using an optimization

algorithm, and resulted in a set of sequences of FFD control

point movements. Next, we introduce the RNN architecture

used to learn these sequences in order to predict future control

point movements.

A. Shape Manipulation Task

To obtain a simplified, yet relevant shape manipulation

process in the engineering context, we propose a target-shape

matching task where a human designer or an optimization

algorithm have to modify an initial shape such that it matches

a predefined target shape. We use target-shape matching as a

proxy for a design process, where a human user operates a

CAD system with the intention of modifying a shape such

that a design target is met. Such a target may be either

given implicitly, e.g., based on aesthetic considerations, or

explicitly, e.g., based on functional or structural requirements.

An optimal result of the matching task is a design with

minimal distance to the target shape.

Target-shape matching is a popular approach when evalu-

ating otherwise time-consuming optimization methods in the

engineering domain. Instead of performing an optimization

task that requires the evaluation of a costly objective function,

the optimization task is replaced by target-shape matching,

assuming that calculating the distance between the current

shape and the target shape surface is computationally cheaper.

For example, optimizing a part for aerodynamic performance

requires Computational Fluid Dynamics (CFD) simulations,

where every simulation may take between a couple of minutes

to hours. Hence, optimizing for aerodynamic performance

requires iterative shape modification and CFD simulation until

the optimization converges. This approach becomes infeasible

if large numbers of optimization runs are to be carried out,

where each run may require several hundreds of optimization

and simulation steps. Thus, to test optimization approaches,

target-shape matching replaces such costly objectives by first

defining a target shape as the global optimum to be reached by

the optimization, and second, using the optimization method to

modify shape parameters to fit an initial, e.g. random, design

to the target.

B. Free Form Deformation

As a tool to modify an initial shape such that the distance

to a target shape is minimized, we use FFD [4]. FFD allows

easy manipulation of a shape by providing the user with a

set of control points around the shape, that can be moved in

3D space in order to deform the geometry (Figure 1). Also,

by recording the sequence of control point movements, FFD

offers a straightforward parameterization of the manipulation

process in terms of direction and magnitude of control point

movements. FFD deforms shapes by first embedding the ge-

ometry in a parallelepiped lattice such that the points defining

the geometry can be expressed with respect to the local co-

ordinate system spanned by the lattice. Deformations are then

introduced by transforming the lattice and recomputing the

points describing the geometry with respect to the transformed

lattice.

Fig. 1: Schematic representation of the car shape surface

mesh [21] embedded in the FFD lattice. Spheres indicate

control points of the lattice. Layers of control points can be

grouped together to control planes to minimize the number of

optimization parameters.

We represent a geometry as a polygon surface mesh, K =
(G,P ), where the mesh connectivity is described by a graph

G = (V, E) with mesh vertices V and |V | = N , edges E ⊆
V × V , and 3D coordinates P . The geometry is embedded

into the control lattice’s local coordinate system,

�v = �v0 + s�s+ t�t+ u�u, (1)

where �s, �t, and �u are unitary vectors defining the coordinate

system, �v0 describes the system’s origin, and s, t, and u are

the resulting local coordinates.

Within the uniformly spaced lattice, we define control

points, pi, which, when displaced, deform the geometry ac-

cording to [4]:

vFFD =

l∑
i=0

(
l

i

)
(1−s)l−isi

{
m∑
j=0

(
m

j

)
(1− t)m−jtj

[
n∑

k=0

(
n

k

)
(1− u)n−kukpijk

]} (2)

where vFFD is the deformed surface mesh vertex and l, m,

n are the number of control planes in �s-, �t-, �u- direction,

respectively. In our case, each plane is defined by a set of

control points that are moved simultaneously. In the remainder

of this article, we will use the movement of a whole control

plane for the deformation of shapes. Formulation (2) ensures

continuity within the lattice, such that control volumes with

more than three planes impose continuity of curvature on

deformed shapes, i.e., a smooth deformed surface, which is

usually desired when modeling engineering components.

For data generation, we considered a benchmark car shape

[21], represented by a mesh refined to N = 8474 nodes.
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For FFD, we used a lattice with six planes each in x-

and z-directions, and four planes in y-direction. Assuming

symmetry of planes with respect to the geometric center of the

vehicle, plane positions along the normal directions yield an

eight-dimensional design space for deformations. We record

sequences of shape deformations as the current distance of

each control plane xi (i ∈ {1, . . . , 8}) to the geometric center

of the shape.

Fig. 2: Planes of the control lattice used for free form

deformation of the car shape.

C. Optimization Algorithm used for Data Generation

In order to avoid the manual generation of a large data set of

shape deformation sequences for training an RNN, we propose

to generate a synthetic data set by solving the target-shape

matching task using computational optimization. In such an

optimization task, the objective is to minimize the geometric

difference between the initial and the target shape, which can

be measured by a modified version of the Hausdorff distance

[22],

H(V, V0) =
1

2

(
N∑
i=1

min
ai∈V0

|ai− ã|2+
N∑
j=1

min
ãj∈V

|ãj −a|2
)

(3)

where ai denote mesh vertices of the reference shape, V0, and

ãj denote vertices of the deformed geometry, V .

During the optimization, the initial shape is modified using

FFD of the eight control planes defined above, where control

planes are moved iteratively in each optimization step accord-

ing to the optimization algorithm for search and minimization.

The optimization algorithm used was the covariance matrix

adaptation evolution strategy (CMA-ES) [23], following the

implementation proposed in [24]. CMA-ES is a popular choice

for optimization in the engineering domain, due to a high

convergence ratio, also for small population sizes, an adaptive

step-size, and a low number of hyperparameters [23], [25]–

[27]. We set the hyperparameters such that the convergence

behavior of the algorithm approximated shape modifications

sequences as performed by a human designer, leading to a

(3, 10)-evolutionary strategy, i.e., populations of ten offspring

individuals and three parents, with initial size step of 0.01.

Shape modifications performed by human users were investi-

gated in a user study using a simplified shape-matching task

(data not shown). Hyperparameters were set to generate design

sequences close to operations performed by users experienced

in the operation of CAD systems.

The optimization was performed over 70 generations for

150 different target shapes. Each target shape was generated

as a random deformation of the initial car shape, obtained

using FFD to scale the shape randomly in each direction.

Deformations were sampled from a uniform distribution under

the constraint that the scaling in each direction should be

within ± 40% of the shape’s initial size. The feasibility of

the optimized shape was evaluated through visual inspection.

Each optimization run resulted in an eight-dimensional design

sequence of individual control plane movements, xi. Each

sequence denotes the distance of the control point to the

geometric center of the car shape in each generation of the

optimization.

D. Recurrent Neural Network Model

For learning from generated data, we used an LSTM net-

work [11] and trained it on the eight-dimensional sequences

describing control plane position.

The network architecture consisted of a one-layer LSTM

of 256 units, followed by one fully connected output layer

containing eight cells, corresponding to the number of desired

outputs. The learning rate was set to 0.01, batch size and

number of epochs were set to 32 and 128, respectively. We

used the Adam optimizer [28] and the mean square error as

loss function for training. We implemented the LSTM network

using the Keras framework [29] with a Tensorflow back-end

[30].

To use the LSTM network for prediction, we converted

the design sequences into individual samples using a sliding

window of length w and step-size 1, leading to a three

dimensional tensor with dimensions samples, time steps and

features. Here, each sample corresponds to one window of

w time steps and features denote the positions of the eight

control planes, xi. By associating each window with its next

actual time step, we formulate a supervised learning task

of predicting the next time step from the window of the

immediate w past time steps (see Figure 3 for an illustration).

Based on the training data, the LSTM layer abstracts a latent

representation of the input time series, based on which the

fully-connected output layer produces the predicted, eight-

dimensional next step in the sequence.

The model was trained on optimization sequences from

150 geometries and tested on a hold-out set of 5 and 15
sequences of the total 150 geometries. We used single-step

prediction to calculate the loss during training and testing

of the model. For comparison, we used a moving average

baseline model that performed single-step prediction as the

average over the past w input samples. The window length

was determined by choosing the maximum lag, d, at which

the partial autocorrelation function (PACF) of each design

sequence feature decayed below the threshold 1.96/
√
T − d,

where T is the length of the time series and 1.96 defines the

critical alpha level at 5 under the null hypothesis that the PACF
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Fig. 3: Windowing approach used to formulate one-step pre-

diction as a supervised learning problem. Boxes indicate win-

dows used as training samples and colored markers indicate

corresponding next time-steps used as labels.

is zero (assuming the PACF asymptotically follows a standard

normal distribution) [31].

In addition to the single step prediction model, we also

trained a model for multi-step prediction. Multi-step fore-

casting may be performed using a model that immediately

produces a multi-step output or can be performed using a

recursive strategy. The recursive strategy involves using a

one step model iteratively on the next predicted step, while

the predicted sample is used as a new input for making the

following prediction. Due to feeding predictions back into

the model as input, the recursive strategy may lead to an

accumulation of predictions errors such that the performance

quickly degrades as the prediction time horizon increases.

Hence, we here used a multi-step prediction model. The

architecture was identical to the single-step prediction model,

however, the number of LSTM units was increased to 512, and

the number of time steps predicted was set to 3 for each of

the eight features, such that the fully connected output layer

contained 24 cells.

IV. RESULTS

A. Data Preprocessing

Prior to training the LSTM network on the design se-

quences, we truncated optimization runs that showed an early

convergence towards the target shape (Figure 4). For these

runs, later generations showed minimal to no control plane

movement (see Figure 4A for an example). To exclude these

non-informative epochs in the data, we determined a cutoff

criterion for each geometry sequences based on the difference

in the rolling mean, using a window size of 10. If the

difference in the mean fitness fell below 5% of the optimal

fitness, the sequence was truncated (Figure 4B).

We determined the range of the window length, w, for

defining labeled training samples using the PACF of each

sequence [31]. Through cross-validation, we found the best

prediction accuracy in the training data for w = 22, which

was used for the single- as well as the multi-step prediction

model.
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Fig. 4: Preprocessing of design sequences by truncating opti-

mization runs showing early convergence. A Fitness (upper

panel) and rolling mean of fitness (window size 10) over

generations for a representative optimization run, where the

dashed red line indicates cutoff based on the first mean value

with 5% of optimal fitness. B Corresponding design sequence.

B. Single-step prediction

The LSTM network model trained to perform single-step

prediction outperformed the baseline model for all eight

features (Figure 5, Table II), demonstrating that the LSTM

network successfully learned multivariate design sequences

from data. We measured forecasting accuracy using mean

absolute error and mean squared error between baseline-

and model-prediction. In particular, the network was able to

predict the multivariate output, i.e., the joint movement of all

eight control planes, hence, successfully accounting for the

multivariate nature of the data.

To evaluate the capability of the model to suggest next

design steps to a user, we performed predicted modifications

on a deformed car mesh from the beginning of an optimization

run (see Figure 6 for a representative sample).

C. Multi-step prediction

To evaluate whether the LSTM network was able to predict

multiple next design steps, we trained a second model to

perform multi-step prediction for three time steps. Again, the

LSTM model outperformed the baseline model (Figure 7,

Table I). However, the model failed to consistently predict

design changes that mirrored the behavior of the optimizer for

all eight features (e.g., x5, in Figure 7).

V. DISCUSSION

We demonstrated the use of state-of-the-art RNN models for

learning 3D design sequences in order to predict future design

steps. We proposed a feasible parametrization of the design

process in terms of FFD for manipulating 3D surface meshes,

which was feasible for producing design sequences learnable

789



0 10 20 30 40 50

-0.2

0.0

0.2

x
1

0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

x
2

0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

x
3

0 10 20 30 40 50

-0.4

-0.3

-0.2

-0.1

0.0

x
4

0 10 20 30 40 50

generation

-0.4

-0.2

0.0

0.2

0.4

x
5

0 10 20 30 40 50

generation

-0.4

-0.2

0.0

0.2

0.4

x
6

0 10 20 30 40 50

generation

0.0

0.2

0.4

x
7

0 10 20 30 40 50

generation

-0.4

-0.2

0.0

0.2

0.4

x
8

actual

pred. BL

pred. LSTM

Fig. 5: Predicted (red lines) versus actual sequences (blue lines) for three test geometries. Comparison of single-step prediction

using the LSTM network (solid red line) and single-step prediction using the baseline (BL) model (dashed red lines).

Fig. 6: Design changes predicted by the LSTM model for one sample of design changes: deformed car shape at time-step

1 (left) and time-step 22 (middle) of a representative window. Predicted design changes superimposed on the model from

time-step 22 (right). The model proposes to move the roof downward (purple area) and to move the interior of the wheel cover

backward (green area).

TABLE I: Mean absolute error (MAE) and mean squared error (MSE) plus standard deviations for baseline model (BL) and

singlestep LSTM (LSTM) for 5 and 15 test set sequences

BL sLSTM
Training set Test set Training set Test set

5/145 split MAE 0.151 ± 0.002 0.154 ± 0.001 0.117 ± 0.003 0.109 ± 0.004
MSE 0.038 ± 0.005 0.040 ± 0.002 0.020 ± 0.005 0.019 ± 0.007

15/135 split MAE 0.148 ± 0.003 0.153 ± 0.002 0.100 ± 0.003 0.120 ± 0.001
MSE 0.037 ± 0.005 0.040 ± 0.002 0.016 ± 0.004 0.020 ± 0.003

by an RNN. Furthermore, we proposed the use of a realistic

design task from the automotive domain, which could be

solved using computational optimization, such that a sufficient

amount of data for training a DNN could be generated. We

set optimization parameters such that the optimizer produced

design sequences that mimicked the design process as carried

out by an experienced human user.

We evaluate the potential of RNNs for learning a model

of the generated, successful design sequences and explored

how the trained model may be used to guide a (novice)

designer in future design processes by proposing potential

next design steps based on the history of currently performed

design modifications. Such a model is an important step

towards harnessing generative neural networks for modeling

design experience in order to provide this experience to human

designers, forming a human-machine system that is able to

cooperatively support an engineer in a design task.

A. Modeling 3D design Processes

Deep neural networks targeted at sequence learning are a

promising approach for modeling design processes in the engi-
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Fig. 7: Multi-step prediction (red lines) versus actual sequences (blue lines) and baseline (BL) model prediction (dashed red

lines) for a representative geometry. Each panel shows one window of the design sequence and the corresponding three-step

prediction.

TABLE II: Mean absolute error (MAE) and mean squared error (MSE) plus standard deviations for baseline model (BL) and

multistep LSTM (mLSTM) for 5 and 15 test set sequences

BL mLSTM
Training set Test set Training set Test set

5/145 split MAE 0.804 ± 0.002 0.831 ± 0.001 0.679 ± 0.003 0.700 ± 0.004
MSE 0.276 ± 0.005 0.286 ± 0.002 0.095 ± 0.005 0.104 ± 0.007

15/135 split MAE 0.770 ± 0.003 0.800 ± 0.002 0.657 ± 0.002 0.702 ± 0.006
MSE 0.269 ± 0.004 0.284 ± 0.003 0.092 ± 0.004 0.108 ± 0.002

neering domain, in particular, for handling multi-dimensional

in- and outputs as they arise from 3D design processes. We

showed that a specific type of RNN, an LSTM network,

was able to learn and predict the next time step of the

design process given the immediate history of modifications

performed.

The prediction of multiple design steps showed promising

performance compared to a baseline model. However, the

predictions were not consistently in line with the design steps

used by the optimizer for all control planes of the FFD. Here,

future research should aim at improving the prediction of

multivariate design changes for longer prediction horizons.

Furthermore, future work may use the trained RNN to ex-

plore the design space by exploiting the generative capabilities

of RNNs and producing novel sequences of design changes.

In summary, RNNs showed the ability to learn from mul-

tivariate sequences representing shape modifications in a 3D

design task. The networks’ ability to generate novel design

steps and to provide single- as well as multi-step prediction,

make them promising candidates for learning from existing

design data such as to model the design knowledge and

experience contained within the data.

B. Towards Building Interactive Design Systems

The presented results are a promising step towards using

DNNs for providing collaborative support to an engineer

during a 3D design task. In particular, DNNs may be used as

part of an interactive system that supports the design process

by providing real-time feedback through predicting potential

next modification steps.

Building interactive systems to support engineers in a design

task is a long-standing topic in engineering research [32]. In

particular, providing guidance during the design process has

been identified as a central aspect in building such systems.

State-of-the-art machine learning methods like DNNs, and

in particular generative networks, provide an unprecedented

opportunity to provide such guidance by modeling design

experience learned from large amounts of realistic data and

proposing next design steps. In particular, DNNs have been

shown to provide collaborative assistance [2] and thus—

instead of replacing human activity—amplify human ability

such as to productively “couple agency and automation” [33].

Successful examples of such collaboration can be found in

artificial intelligence methods integrated in human-machine

interfaces [33], or knowledge bases that support ideation

processes (see [34] and references therein). The present work
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illustrates how DNNs for sequential data may be used to work

towards collaborative assistance also for complex design tasks

in the engineering domain.

C. Future Work

We presented the first evaluation of RNNs for learning

from 3D design sequence data. Future work should expand

this line of research by a more extensive investigation of

neural network architectures for learning from such data. For

example, windowed time series data may also be used to

train convolutional neural networks, allowing for a further

investigation of the benefit of recurrent neural network ar-

chitectures over, e.g., convolutional ones. Furthermore, we

may compare RNN models used here to classical time series

models, such as autoregressive (AR) models, e.g. ARIMAX

for multivariate time series [35]. Note, however, that the goal is

to ultimately exploit generative capabilities of trained models,

where (deep) neural networks have shown the most promising

results [2]. Future work should therefore ultimately extend the

presented models to generative architectures to allow for the

creation of new design sequences from trained models. Future

research should also explore the generalization capabilities

of the trained model to previously unseen objects, also to

provide support in the early modification steps. For practical

application, retraining a model on large data sets may not

be feasible. Hence, it is necessary to investigate how well a

model trained on design data from one objects performs in the

prediction of design sequences for a similar task on a novel

object.
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