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ABSTRACT 
Machine learning is opening up new ways of optimizing 

designs but it requires large data sets for training and 
verification. While such data sets already exist for financial, 
sales and business applications, this is not the case for 
engineering product design data. This paper discusses our efforts 
in curating a large Computer Aided Design (CAD) data set with 
desired variety and validity for automotive body structural 
compositions. Manual creation of 60,000 CAD variants is 
obviously not viable so we examine several approaches that can 
be automated with commercial CAD systems such as Parametric 
Design, Feature Based Design, Design Tables/Catalogs of 
Variants and Macros. We discuss pros and cons of each method 
and how we devised a combination of these approaches. This 
hybrid approach was used in association with DOE tables. Since 
the geometric configurations and characteristics need to be 
correlated to performance (structural integrity), the paper also 
demonstrates automated workflows to perform FEA on CAD 
models generated. Key simulation results can then be associated 
with CAD geometry and, for example, processes using machine 
learning algorithms for both supervised and unsupervised 
learning. The information obtained from the application of such 
methods to historical CAD models may help to understand the 
reasoning behind experiential design decisions. With the 
increase in computing power and network speed, such datasets 
together with novel machine learning methods, could assist in 
generating better designs, which could potentially be obtained by 
a combination of existing ones, or might provide insights into 
completely new design concepts meeting or exceeding the 
performance requirements. 

1. INTRODUCTION 
Automotive body structures have evolved through decades 

of vehicle generations with the objective to, one the one hand, 
satisfy a multitude of safety requirements and, on the other hand, 
to minimize weight and cost. To improve designs from model 
year to model year, data from crash testing, simulations and 
service in the field is used to improve designs. However, the 
design of functional components, for instance, A, B, and C 
pillars, is highly constrained by styling surfaces, packaging 
requirements and closures such as doors and windows. To 
improve designs under these constraints, structure designers 
tweak an existent component’s geometry by trial and error to 
incorporate new data and apply required changes from model to 
model. New designers are thus heavily dependent on existing 
designs used in the past. In modern design processes, there is a 
desire to move away from the preconceived notion of what 
designers have considered “good enough” in the past and to 
make use of novel, especially computer-aided techniques, in the 
design of automotive components. 
 
The rapid development of the topology optimization and the 
availability of commercial tools offers the possibility to find load 
paths, from which to derive conceptual designs as starting point 
[1][2]. However, the applicability of topology optimization to the 
automotive design process is limited: tools produce monoliths of 
solid cross sections, whereas automotive body components are 
mostly sheet stamped pieces joined together with spot welds or 
other hybrid joining methods. While there is ongoing research in 
both “in process” and “post process” methods [3][4] to produce 
multi component assemblies of thin walled components, the 
method is not able to handle the details required for real world 
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components. Another obstacle is that multiple linear and 
nonlinear load cases are involved in evaluating performance of 
automotive structures; combining multiple nonlinear load cases 
in FEA results is theoretically non-tractable. 
 
Due to the complexities an engineer is faced with, efficiency of 
the virtual development process may be improved by support 
from machine learning or artificial intelligence systems which 
are immensely successful in, for instance, natural language 
processing or image recognition. A comparable system 
applicable to engineering designs would have potential to 
harness all the data that is available from previous developments 
in a way similar to the engineers' experience, but with 
complementary skills such as making sense out of big amounts 
of previous data on designs, performance and decision 
consequences. 
 
Recent approaches on geometric deep learning [5][6] extend the 
principles of artificial neural network methods towards handling 
3d geometries, which are the primary data type found in the 
automotive design process. For example, so-called autoencoder 
architectures for 3D objects [7][8] facilitate new computational 
representations for geometries and have successfully been 
applied to topology optimization [9]. Furthermore, machine 
learning or optimization approaches may be applied to state-
based representations, based on the structural state of a design 
under load [10][11]. 
 
However, novel machine learning and artificial intelligence 
methods require a high amount of data for training, while 
typically the geometric and performance data of industrial 
development processes are not stuctured in a database suitable 
for application of the methods mentioned. Therefore, in this 
paper we present a method to generate a suitably large dataset 
that can be used as starting point for research on bringing 
computer-aided engineering together with state of the art 
machine learning and artificial intelligence approaches. 

1.1 Set Based Design and Optimization 
Up to now, there are several practical relevant approaches 

for design optimization in virtual vehicle development. 
Traditional mathematical methods such as hill-climbing 
algorithms are referred to as point based because they work with 
a single design point which is incrementally improved. They are 
mostly single objective, highly dependent on the start point, and 
in danger of stalling at local peaks. On the other hand, set based 
methods exist, which work with several data points. For global 
optimization, stochastic search algorithms are proposed, such as 
genetic algorithms (GA) or evolution strategies (ES) [12]. Both 
methods utilize an iterative semi random approach to improve 
populations of parameter/feature variations. For these 
optimization methods, the number of generated samples to find 
an optimal solution is not known beforehand. In contrast, 
sampling methods, such as Design of Experiments (DOE) and 
Taguchi, allow to specify beforehand the number of 
parameter/feature combinations to evaluate since they are driven 

by some sampling scheme, e.g. latin hypercube sampling. Based 
on these data samples, a response surface or surrogate is 
constructed, e.g. kriging models, regression models or neural 
networks, and an optimization is carried out on the surrogate 
with eventually re-evaluation on the real performance function. 
Of course, modern methods also integrate surrogates in 
evolutionary optimization to speed up the overall runtime by 
partially evaluating populations on the surrogate. However with 
an increasing number of parameters/features it is difficult, if not 
impossible, to get response surfaces that fit the data well. The 
number of parameters/features is typically specified based on 
human heuristics or on data analytics, e.g. sensitivities. Recently 
geometric deep learning [5] or spectral decomposition of 
geometries [13][14] are new data-driven approaches to find 
abstract geometry-representing features for 3D designs in the 
network latent representation or the spectral coefficients. 

1.2 Parametric and Feature Based Methods in CAD 
Most CAD systems support a range of parametric design 

methods [15], which include 2D constraints, user defined 
features, design tables or catalogs, user-defined macros and 
parametric equations. 

2D Constraints: A large number of 3D features are sketch based 
(extrude, revolve, loft, general sweep etc.). Sketch entities can 
be dimensioned and constrained so that only a few parameters 
drive the geometry. Even a fully constrained sketch can have 
multiple solutions due to the nonlinear nature of constraint 
equations. In such cases, CAD systems use heuristics to choose 
a particular solution. Also, there may be no valid solutions for 
certain parameter values (e.g. two sides of a triangle must be 
greater than third). One other issue is that if there are inner loops 
in a sketch, certain combinations may cause self-intersections of 
the sketch or change the number of loops – all of these will lead 
to failure in generating the 3D feature from that sketch. 

Design Catalogs/Tables: Provides a unified parametric scheme 
for an entire component. Their use is in creating one CAD model 
for size variants. Tables lack variety, even if a CAD system 
allows selective activate or suppression of localized features. 

User Defined Features: Combine parameters from sketches with 
3D parameters (e.g. sweep length, direction), as well as feature 
sequence. This amounts to adding a sub-tree in the construction 
history. They provide a mechanism to add a localized shape. One 
issue is positioning these features relative to other features in a 
robust way. This is easier interactively, as reference entities can 
be picked by the user. If the features are sketch based, it brings 
along all the issues mentioned for sketches and 2D constraints. 

Macros: Macros encode a geometry creation procedure. It could 
apply to creating an entire part or selected features or 
modifications. Macros can support conditional actions, 
iterations, nested loops, giving them greater flexibility. 

Parametric Equations: Parametric equations can be used to cross 
link parameters between different levels. For example, 2D sketch 
parameters related to 3D feature parameters; parameters in 
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multiple sketches related; dimensions driven by functional 
requirements such as allowable stress. 

In Section 2 we will consider the suitability of each of these for 
automatically generating large data sets. 

1.3 Big Data & Artificial Neural Networks 
Recent advances in computational capabilities to generate 

and store large amount of data have led to the increasing 
availability of so-called big data. The term big data refers to data 
set sizes that cannot be handled by commonly used commercial 
software and methods for data mining, analysis and machine 
learning. A definition of big data is given as, “Big data represents 
the information assets characterized by such a high volume, 
velocity, and variety to require specific technology and 
analytical methods for its transformation into value” [16]. There 
are three important characteristics of big data known as the three 
Vs - Volume, Variety, and Velocity [17]. Volume refers to the 
quantity of data generated and stored, 

Variety is the type and nature of data in the dataset, and 
Velocity is the time taken to generate the dataset. 

Artificial Neural Networks (ANN) consist of an input layer, an 
output layer and may comprise several connected interior 
(hidden) layers of neurons. Hidden layers produce an output 
from inputs and embedded functions that are learned from 
training data by adapting weights and biases [17]. Network 
architectures with a high number of hidden layers are commonly 
referred as deep neural networks and have recently provided 
impressive results in a variety of application domains [18]. They, 
however, require large amounts of training data for successful 
application. ANNs have traditionally been used for regression or 
classification tasks. For the latter, ANN may classify data 
samples into two categories (e.g., structure meets or does not 
meet criteria; Good/NoGood; fraudulent or non-fraudulent 
transaction), or multiple groups (e.g. risk level, Measure of 
Goodness Rating on some scale). For a Boolean performance 
output (G/NG), there will only be two neurons in the output layer 
(Figure 1) [10]. The input will be either raw data or predefined 
features. Training of an ANN means the processing of training, 
while for each sample or a batch of samples, the (randomly) 
initialized weights are adapted such that some error or loss 
function is minimized. 

There are many open source and commercial packages available 
for deploying ANN deep learning, such as Matlab NN Toolbox 
[19] for standard network architecture and Google Tensor Flow 
[20] for deep neural networks. 

Big data plays an important role in shaping various aspects of 
mechanical engineering like product design and development, 
product manufacturing and product efficiency [21]. Data are 
collected over the product design and development process, and 
also during the Product life cycle (PLC). Thus, a designer’s 
knowledge and experience along with customer feedback are 
incorporated into the data collected, such that data mining 

techniques offer the opportunity to innovate and create new 
products by facilitating information visibility and process 
automation in design and manufacturing [22]. 

There are different types of data that can be mined for various 
objectives. For example, in product design and manufacturing 
data mining may help to manufacture better next-generation 
products, sharpen competitive advantage and reduce the overall 
product lifecycle time [23]. One type of data that can be mined 
for optimization is the CAD model of a product's geometry from 
the conceptual design stage. State-of-the-art machine learning 
and ANN models offer the possibility to learn from geometric 
data, for instance, to solve classification tasks for geometric 
shapes or to learn features in an unsupervised fashion as 
discussed by Achlioptas et. al. in [7]. Especially unsupervised 
feature learning is a promising approach for the extraction of 
novel features that are commonly not considered in traditional 
computer-aided design [24]. 

1.4 Scope of Study & Functional Requirements: 
Although the approach taken in this project can be applied 

to any structural component, the scope of this project is for the 
structure of automotive hoods. These components must meet 
several performance requirements: in the case of an automotive 
hood, hood lift and twist deflection (linear static analyses); 
pedestrian impact and frontal impact (dynamic and non-linear 
analyses). Since these structures are made from sheet metal 
stamped components, stiffness is achieved by creating ribs and 
channels, while light weighting is achieved by cutouts. The hood 
frame, which is responsible for almost all of the stiffness and 
strength, is bonded to the skin (class A surface) with adhesives. 
The size, aspect ratio and curvature of the skin varies from 
vehicle to vehicle which constrains the overall frame structure. 

The big data set needed for supervised or unsupervised learning 
must meet the following functional requirements: 

 Automatically generate CAD models 
 Automatically generate mesh and apply boundary 

conditions (BCs) to finite element (FE) models 
 Models must be geometrically valid 
 Models must meet manufacturability criteria 
 Models must produce a wide variety of feature shapes, 

sizes and pattern constraints 
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a) Response surface approach 

 
b) Deep Learning Approach 

Figure 1: Correlating performance with geometry,  
(a) Traditional approach, (b) Multi-layer neural network 

In this paper, we discuss our approach to generate a large amount 
of 3D CAD data, using CATIA v5, with the purpose to enable 
various machine learning and data mining tools to generate new 
designs and facilitate the creative design process. The conceptual 
designs (CAD models) can also be fed to a FEA solver to 
determine performance metrics. For this purpose, the paper first 
discusses different approaches to create large amount of data 
followed by discussion on step-by-step process with a case study. 
This method is feature based, and the designer is required to add 
any new feature to a collection of features called the feature 
library. Thus, the variety of designs achieved for the machine 
learning algorithm is affected by the variety of features present 
in the library. 
2. RESEARCH METHODOLOGY FOR CAD DATA 

GENERATION 
Although the methodology proposed here could be 

implemented with any major CAD system, we used CATIA V5 
as it is used widely by big auto companies, such as Ford, Honda, 
Tesla etc. As part of this research, two general methods/tools to 
automate the generation of explicit CAD models were proposed:  
1. Implicit model (unevaluated geometry): Construction 

history, generative shape design operations, procedures and 
sequence 

2. Explicit Model (evaluated geometry): Identification of 
geometric features and their parameters, distinguish 
between relevant and irrelevant features 

We began by dissecting existing hood design, to understand the 
construction history, but they contain hundreds of operations, 
and car model specific features such as seal beads, bolt holes, 
and character line which are not relevant to this study. The 
general procedure of creating a hood frame along with the hood 
skin for mass production cars is shown in figure 2. 

 

Figure 2: Overall procedure of the design of a hood  

So, idealized models of hood frames were extracted by only 
considering the main structural features and disregarding the 
features that do not play a role in structural integrity of the 
model. A few idealized hoods are shown below in Figure 3. 

Model # Idealized hood Sketch 
1 

 

2 

 

3 

 

Figure 3: Idealized hood examples 

Idealized hood models were defeaturized and key features such 
as the rib patterns, pockets, outer shape and profile of side, rear 
and front ribs and connections such as hem, mastic beads and 
bolt locations were identified on hood frames. A few of them are 
displayed in the table below. 
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Main ribs with pockets Hood lock flats 

  

  

 

 

Front/rear rib Hinge flat 

  

Figure 4: Some of the key features identified on the hood frame 

As part of this research, multiple methods/tools to automate the 
generation of explicit CAD models are compared. The methods 
investigated are: 

1. Design/Parameter Tables 
2. User Defined Features with Design Tables 
3. Macros with Parameters Table 

Each one of these methods are discussed in detail in following 
sub-sections. 

2.1 Design/Parameter Tables: 
Design table is a parametrizing tool within CATIA to create 

and manage component families [25]. Components such as parts 
can be parametrized and stored as a table, using Microsoft Excel 
or in a tab delimited text file. Shown in figure 5, the structure of 
a design table in CATIA where, columns represent all the 
parameters in the part, while rows define the set of values for 
each variation. By loading the part file defined in the design 
table, the parameters are updated accordingly. This saves the 
time and effort for the designers to generate each part 
individually. Figure 6 shows an example of a parameterized 
sketch with features and size parameters for the boundary 
generated using the design table: features are easily varied 
according to the dimensions defined in the design table. While 
such advantage exists, the designers have to make sure to define 
all required constraints, and make sure the values in the design 
table do not generate non-manifold designs. Thus, the designer 
should be aware of the ranging limits of the parameterized 
dimensions. Additionally, the units of the dimensions have to be 
consistent in order to maintain integrity of the models. However, 
such guidelines are essential for any parametric modeling. 

 

Figure 5: Interface of design table used in CATIA 

 
 

a) Sketches of the parametrized features  

 

b) Instantiated features with different parameter values 

Figure 6: Example of parametrized features using design table 

This method provides the ease of integrating and generating 
CAD designs in CATIA V5. However, it is not always possible 
to integrate/combine individual features generated from a design 
table, while applying external constraints like manufacturing 
constraints, to generate a fresh design, given the number of 
models required to create a large dataset. Other commercial 
systems like SIEMENS NX®, uses expressions to read 
parameter values form a design table and feed it into the 
parameters in the part.  
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2.2 User Defined Features with Design Table for 
Parameters: 
Power copies are a group of CATIA entities (eg. points, 

lines, surfaces, formulae etc.) generated in a particular order, that 
are independent of the environment they were originally created 
in, and can easily be adapted to a new environment. The concept 
of creating power copies is similar to part families in that, it 
contains the reference to an external model, driven by a set of 
pre-defined parameters. However, the power copies generated 
need not necessarily represent an entire part, but can represent 
only a certain feature. 

Primary entities required to create a power copy are Definitions, 
Inputs and Parameters. The terms are defined as follows: 

Definitions: The geometries or entities generated when a power 
copy is instantiated 

Inputs:  The geometrical entities that serve as an input to the 
power copy 

Parameters: The driving parameters used in the generation of the 
geometry, using a power copy 

In the process of creating power copies, the construction 
methodology can be captured either for a single feature or for 
multiple features. Creating power copies for multiple features are 
called Compound Features. 

Similar to the previous method of using just the design table, 
generating hundreds of thousands of designs using power copies 
would take immense manual effort since the power copies have 
to be instantiated for each row in the design table. 

2.3 Macros with Parameters Table: 
The architecture of CATIA called the CATIA Application 

Architecture (CAA) consists of Application Programming 
Interfaces (APIs) used to develop user specific functionality for 
CATIA. The three primary ways to create programs that interact 
with CATIA are VBScript, VBA and Visual Basic. CATScript is a 
scripting language, in VBScript, developed specifically for 
CATIA. The advantages of CATScript are the ability to record a 
series of operations performed in the CATIA window and the 
ability to access CATIA’s pre-defined form features (eg. extrude, 
sweep etc.) directly. 

The data structure for CATIA v5 automation consists of these 
main components, namely, Collections, and Objects. Collection 
is a group of similar objects. Objects (e.g. pad, pocket, sketch, 
line, etc.) are entities created, selected and/or modified in 
CATIA. Almost every object is associated with a property and 
method. Property is a characteristic of the object (e.g. get radius 
size, get hole diameter, get chamfer angle, etc.), while a method 
is an action performed on the object (e.g. set radius size, set hole 
diameter, set chamfer angle, etc.) [26]. Most commercial CAD 
systems store the steps involved in creating a feature, in a 
construction tree or specification tree as in CATIA. 

The Documents collection provides access to all files that are 
loaded in the CATIA session. The Document class is an abstract 
class, meaning it cannot be instantiated to create an object. 
However, it provides the base functionality that is inherited by 
all of the specific document types. The PartDocument class 
represents a CATIA part, where geometric modeling is done. 
Figure 7 shows the object diagram of the Document class. 

 
Figure 7: Infrastructure of Automation Objects [27]  

The steps performed, from the beginning, to generate a CAD 
model can be captured in a macro and re-run later to re-create the 
model without human intervention. Macros can either be scripted 
manually or be recorded while performing the operations in 
CATIA. These methods of macro creation are similar to the ones 
discussed in [28]. Macros allow designers to capture design rule 
bases and leverage this knowledge to ensure design compliance 
and to meet standards. Automation of rule bases can be done to 
incorporate best design practices, design validation etc. [29]. 

Macros can create either the whole part or individual features on 
a part. However, in the case of generating individual features, 
another macro will be required to assemble the features together 
to create the final part. This method, of using multiple macros to 
generate features and the part, requires the geometric entities to 
have unique names. Since macros repeat, every operation 
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recorded in a particular order, errors due to naming of geometric 
entities, may arise when running multiple macros 
simultaneously. This is a common issue with automating CAD 
generation using macros. 
 
2.4 Combination of Methods: Power Copies & Macros 

with Parameters Table: 
The use of macros to instantiate a power copy helps 

overcome the disadvantages in using these tools separately. 
Although VBScript is powerful in terms of providing access to 
the user to define basic entities (like points, curves etc.) within 
CATIA, it is a sequential programming method. Hence, the 
process of using a macro, in combination with power copy and 
parameter table, eliminates this disadvantage and provides a 
modular workflow. Table 1 summarizes the advantages and 
disadvantages of the methods discussed above. 

Table 1: CAD Data Generation Methods 

 

In conclusion, the approach of using CATIA macros to 
instantiate power copies provides a flexible yet powerful 
workflow to create large dataset for data mining. The method 
used to generate large datasets is explained in detail, using an 
example model, in the next section. It is worth mentioning that 
although this method is currently implemented in CATIA, 
similar process can be employed in other major CAD software 
such as Siemens NX or CREO. 

3. METHODOLOGY AND CASE STUDY 
3.1 Overview 

The process of creating large datasets in CAD, using power 
copies along with DOE tables and macros, requires an initial 
effort investment in creating power copies for the features 
involved, but pays off greatly later when generating large 
number of designs. The proposed methodology is summarized in 
the flow chart of Figure 8. It starts with the base component, on 
which various features are created and assembled. Construction 
entities are created from this base geometry, such as offset 
planes, wireframe geometry, coordinate systems etc. In the next 
step, power copies of features, instantiated by a macro, are 
created. In order to induce variety in designs, there is a need for 
a set of variables that can be changed without losing the integrity 

of the geometry. The values of parameters, required to generate 
each design, are stored in the rows of a table. The structure of 
this table is similar to a design table in CATIA. Large variety in 
concept designs are generated by varying the values of 
parameters, within certain limits, using design of experiments 
(DOE) methods. The output geometries have to be checked for 
geometrical integrity. This is partly done in creating each power 
copy and addressing errors. This is further enforced by applying 
filtering rules on parameters in the DOE table. The next step is 
to check the performance of the new concept designs, by setting 
up the FEA model to run simulations for various load cases. 

 

Figure 8: Workflow for Generating Large Datasets of CAD 
Data  

Power copies: 

For any component of interest, we need to identify relevant and 
irrelevant features from existing CAD models. The component 
is idealized by de-featuring irrelevant features and simplifying 
the geometry of relevant feature, along with their corresponding 
parameters. The de-featuring is done such that the overall 
performance of the component, for critical load cases, is not 
compromised. In addition, features that do not add structural 
integrity to the component are eliminated. The critical features 
are captured in power-copies that are instantiated at a later stage 
to reproduce the features. The power copy is defined such that 
the input consists of a single surface on which features are 
instantiated. 
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An underlying sketch defines the feature captured in a power 
copy. The sketch is created using 2D entities like lines, curves 
etc., on the global planes and then projected onto the 
corresponding reference surface. Dimensions and constraints 
applied on the sketch arrest all the degrees of freedom, of the 
entities, in order to prevent the sketch from breaking when 
parameter values are updated. The parameters used in the sketch 
consists of driven and driving parameters. The driving 
parameters are updated based on the values provided during the 
creation of the feature, while the driven parameters are updated 
according to the underling relation or equation.  

Figure 9 uses a simple model, to show the use of power copy, for 
a rib/slot feature. In this figure, the slot feature is created as a 
power copy, have the following parameters: Slot Length, Width, 
Height, X Position & Y Position. This power copy can be 
instantiated on any surface. It can be done automatically on the 
base surface, which creates the final desired part by executing 
the series of commands specified in the power copy.  

 

Figure 9: Parameters on the Cylinder Feature 

The design table in CATIA drives the parameters that are 
checked against the constraints applied in the power copy to 
prevent any geometric violations, before generating the feature. 

Once the sketch is created, corresponding surface operations are 
performed in order to generate the feature. A feature might 
require multiple surface operations to fully define itself and 
provide support to a dependent feature, if any. Figure 10 shows 
the power copy dialoged box for the rib feature along with the 
required inputs and parameters. 

 

Figure 10: Sample Power Copy Creation 

Design of Experiments Table: 

Parameters like dimension, size, and position of features, defined 
as an input, are varied within a particular limit in the DOE table. 
In order to generate variety in designs generated, the DOE table 
also includes a toggle parameter to switch on or off individual 
features in a part. Toggle parameters are controlled by 0s and 1s. 
Combinations of parameter values are generated using DOE 
methods, to induce variety, while remaining within design 
boundaries of each feature. Having extreme cases (maximum 
variation) and a good space filling (intermediate designs) can 
enhance data mining results; thus, the Box-Behnken method 
works best as the space-filling algorithm to populate the DOE 
table. The main difference between a design table in CATIA and 
DOE table is that the parameter values in the latter, are populated 
using a DOE method, externally, to ensure the parameter values 
are set such that it covers the available space within the domain, 
without intersecting other features. The relation between the 
performance and parameter combinations/values can be 
established using a meta-model. 

Additionally, at this stage, the interaction between features can 
be also be controlled by applying additional constraints, known 
as geometry filtering. The constraints are applied as either 
lower/upper limits or equations between feature parameters. 
Such a geometry filter, at an early stage, helps reduce the number 
of faulty/inconsistent geometries. 

Macro: 

A CATIA macro instantiates the power copies to generate the 
features. The macro also assigns the input and parameter values, 
required by the power copy, from the DOE table one row at a 
time. The input surface is stored in a separate CATIA part file, 
on which the power copies are instantiated using the macro. The 
results are then converted to STEP AP203 files. Figure 11 
demonstrates the workflow of the method discussed above. 
Figure 12 illustrates the pseudo code of the macro to generate 
CAD models. 

 

Figure 11: Flowchart of Hybrid Method 
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Figure 12: Pseudo Code for CATIA Macro 

After running the macros, all the features selected will be 
instantiated with different parameter values on different CAD 
models and depending on the number of variables (n: feature 
types and m: parameter values) it produces m × n CAD models. 
These CAD models should be available for analysis to verify the 
objectives, structural integrity, max deformation, weight, etc.  
As shown in Figure 13, a Python script generates a command file 
for LS-PrePost® to read in the STEP files and generate a FEA 
mesh. 

 

Figure 13: Pseudo Code for Mesh Generation 

3.2 Case Study 
The method/approach discussed in the previous section has 

enabled the creation of a large dataset of CAD models. This 
section explains the step-by-step process using a fictitious 
automotive hood. 

Step 1: The base surface of hood skin defined in CATIA serves 
as the input to generate concept designs. A sample base surface 
is shown in figure 14. 

 

Figure 14: Sample Base Surface of a Hood 

Step 2: Features on the hood are identified and captured into 
power copies with appropriate parameters that are varied in the 
DOE table. The types of features involved are categorized as: 
one, features that belong to structural components usually 
involved in designs of the component of interest, and two, 
features that involve removal of material to reduce the weight 
like, pockets and cutout features. The cutout features either are 
separate power copies or are as part of the power copies for the 
structural features; the latter being a compound feature. As a 
compound feature, cutouts and structural features are 
dimensioned and constrained using the same schema, since the 
load paths generated by the structural features drive most cutout 
features. The use of compound features greatly reduces the 
possibility of unacceptable intersections between features in 
contrast to the case of defining the features separately. The sketch 
used to generate one of the structural features is shown in Figure 
15. 
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Figure 15: Detailed Sketch to Generate Feature 

Figure 16 shows an example of multiple features, stored as 
power copies, being instantiated by a macro. The design 
parameters, on these features, are updated from the DOE table 
each time a power copy is instantiated. 

 

Figure 16: Example of Multiple Features Instantiated by the 
Macro 

Step 3: In this step, a DOE table is created for all the parameters 
(power copies inputs). In this table feature parameters such as 
size, location, and depth are varied using DOE methods. In 
addition, value for toggle parameters are included in the DOE 
method to create variety.  As mentioned in the previous section, 
each power copy is well dimensioned and constrained. However, 
when multiple power copies are instantiated using a macro, it 
could result in undesired intersection of features. Thus, 
preliminary filtration checks are set in the design table to prevent 
such geometric violations. For instance, the location of features 
like ribs, pockets, and lock flats are varied within limits, so that 
the number of unacceptable geometries, due to undesired 
intersection, are reduced.  Each row in the DOE table 
corresponds to a unique design. A partial DOE table is illustrated 
in figure 17. 

 

Figure 17: Partial DOE table 
 
Step 4: In this step, all the power copies, along with the 
parameters from the DOE table, are instantiated to create the 
feature of the hood frame, with the base surface as the primary 
input. A fully instantiated model of a hood, with two different 
sets of features, hood lock flat, and hinge locations are shown in 
figure 18. 

 

Figure 18: A Simplified Hood Model with Two Sets of Features 
Instantiated 

Step 5: In this case study, the features and parts are created as 
surface geometry in the Generative Shape Design (GSD) 
workbench in CATIA. Thus, the result is a surface model with 
zero thickness. An LS-PrePost® command file is used to set the 
parameters, like mesh size, and the same is used to generate a 
mesh. Thickness to the surface mesh is added by dragging the 
elements along the thickness direction and the file is saved in 
STL format for machine learning. These steps are performed 
using a python script. The resolution of the STL file is controlled 
by the size of the elements used during meshing. The element 
size affects the result in eliminations of features that are smaller 
than the mesh size. Thus, it is a tradeoff between accuracy of the 
model representation and storage space required for the model. 

The shell mesh can also be setup as a FEA model, with boundary 
conditions (fixtures and loads), and solved for the various load 
cases. Setting up the FEA model and solving for results can be 
done using a python script as well. Figure 19 shows the mesh as 
an STL file. 
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Figure 19: FEA Mesh for STL 

4. DISCUSSION & FURTHER RESEARCH 
The time taken to generate 100 designs – from CAD to 

setting up FEA models - takes 30 minutes on a computer with 
Intel Xeon 2 X 3GHz processor and 32GB RAM. With the use 
of high performance computing (HPC), the same method can be 
scaled up to generate our target of over hundred thousand 
models. 

Since the proposed method is feature based CAD model 
generation, the same attributes can be used for supervised 
learning of geometries. There are many open source and 
commercial packages available for deploying neural net (NN) 
machine learning, such as Matlab Deep Learning ToolboxTM [19] 

and Google TensorFlow [20]. Future work would include 
introduction of manufacturing constraints while generating the 
CAD models, besides the geometry filtering applied in the 
parameter table. In addition, the next step would also be to 
compare the results of supervised and un-supervised algorithms 
that discover features and patterns with deep neural nets based 
on the performance metrics. A method to automatically setup the 
FEA model, based on the mesh generated, and perform 
corresponding simulation needs to be set up. 

The concept designss generated, along with the performance 
metrics, enable the application of novel data mining techniques, 
in particular, the application of state-of-the-art machine learning 
methods. For instance, unsupervised deep learning approaches 
using so-called auto-encoder architectures have been proposed 
for geometric data by Achlioptas et al. [7] (for geometries 
represented as unordered point clouds) and Brock et al. [30][8] 
(for voxel representations). Auto-encoders are a popular 
approach to learning novel computational representations of the 
3D input data [31] and offer the opportunity to identify latent 
variables underlying the data generation process. These variables 
may then be used as features in further tasks. Hence, exploring 
latent representations obtained by data-driven approaches may 
allow to discover (previously unknown) features or effective 
combinations of features that result in structures with superior 
performance. Data-driven approaches may complement and 
extend current approaches that use pre-defined features based on 
the expert designer’s knowledge on a feature's relevance to 

performance. Future work should investigate features extracted 
automatically through unsupervised learning and compare them 
to pre-defined features, derived from expert knowledge. 

In summary, the proposed workflow allows to generate data sets 
of sizes and structure that enable research on machine learning 
and artificial intelligence methods for CAD data with the goal to 
support engineers in the virtual design process. Only the 
availability of large sets of carefully generated and labeled 
engineering 3D data allows transfer novel machine learning 
techniques that have shown unprecedented success in other 
domains to the automotive design process. 
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