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Simplify Your Covariance Matrix Adaptation
Evolution Strategy

Hans-Georg Beyer and Bernhard Sendhoff, Senior Member, IEEE

Abstract—The standard covariance matrix adaptation
evolution strategy (CMA-ES) comprises two evolution paths,
one for the learning of the mutation strength and one for the
rank-1 update of the covariance matrix. In this paper, it is
shown that one can approximately transform this algorithm
in such a manner that one of the evolution paths and the
covariance matrix itself disappear. That is, the covariance
update and the covariance matrix square root operations are
no longer needed in this novel so-called matrix adaptation
(MA) ES. The MA-ES performs nearly as well as the original
CMA-ES. This is shown by empirical investigations considering
the evolution dynamics and the empirical expected runtime on
a set of standard test functions. Furthermore, it is shown that
the MA-ES can be used as a search engine in a bi-population
(BiPop) ES. The resulting BiPop-MA-ES is benchmarked using
the BBOB comparing continuous optimizers (COCO) framework
and compared with the performance of the CMA-ES-v3.61
production code. It is shown that this new BiPop-MA-ES—while
algorithmically simpler—performs nearly equally well as the
CMA-ES-v3.61 code.

Index Terms—Black box optimization benchmarking, matrix
adaptation evolution strategies (MA-ES).

I. INTRODUCTION

THE COVARIANCE matrix adaptation evolution strat-
egy (CMA-ES) has received considerable attention as an

algorithm for unconstrained real-parameter optimization, i.e.,
solving the problem

ŷ = arg opty∈RN (f (y)) (1)

since its publication in its fully developed form including
rank-μ update in [1]. While there are proposals regarding
modifications of the original CMA-ES such as the (1 + 1)-
CMA-ES [2] and its latest extension in [19], or the active
CMA-ES [3], or the covariance matrix self-adaptation evo-
lution strategy (CMSA-ES) [4], the design presented in [1]
has only slightly changed during the years and state-of-the-
art presentations such as [5] still rely on that basic design.
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Taking the advent of the so-called natural evolution strate-
gies (NESs) into account [6], one sees that even a seemingly
principled design paradigm such as the information gain con-
strained evolution on statistical manifolds did not cause a
substantial change in the CMA-ES design. Actually, in order to
get NES competitive, those designers had to borrow from and
rely on the ideas/principles empirically found by the CMA-
ES designers. Yet, it is somehow remarkable why the basic
framework of CMA-ES has not undergone a deeper scrutiny
to call the algorithm’s peculiarities, such as the covariance
matrix adaptation (CMA), the evolution path and the cumula-
tive step-size adaptation (CSA) into question. Notably in [4],
a first attempt has been made to replace the CSA muta-
tion strength control by the classical mutative self-adaptation.
While getting rid of any kind of evolution path statistics
and thus yielding a much simpler strategy,1 the resulting
rank-μ update strategy, the so-called CMSA-ES does not
fully reach the performance of the original CMA-ES in the
case of small population sizes. Furthermore, some of the
reported performance advantages in [4] were due to a wrongly
implemented stalling of the covariance matrix update in the
CMA-ES implementation used.

Meanwhile, our theoretical understanding of the evolu-
tion dynamics taking place in CMSA-ES and CMA-ES has
advanced. Basically two reasons for the superior CMA-ES
performance can be identified in the case of small popula-
tion sizes.

1) Concentrate Evolution Along a Predicted Direction:
Using the evolution path information for the covariance
matrix update (this rank-1 update was originally used
in the first CMA-ES version [7] as the only update)
can be regarded as some kind of time series prediction
of the evolution of the parent in the R

N search space.
That is, the evolution path carries the information in
which direction the search steps were most success-
ful. This directional information may be regarded as
the most promising one and can be used in the CMA-
ES to shrink the evolution of the covariance matrix.2

As a result, optimization in landscape topologies with

1By simplicity we mean a reduced complexity of code and especially a
decreased number of strategy specific parameters to be fixed by the algo-
rithm designer. Furthermore, the remaining strategy specific parameters have
been determined by first principles rather than by empirical parameter tuning
studies.

2Shrinking is a well-known technique for covariance matrix estimation in
order to control the undesired growth of the covariance matrix [8]. Considering
the covariance matrix update in the CMA-ES from the perspective of shrinking
has been done first by Meyer-Nieberg and Kropat [9].
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a predominant search direction (such as the cigar test
function or the Rosenbrock function) can benefit from
the path cumulation information.

2) Increased Mutation Strength: As has been shown by ana-
lyzing the dynamic of the CSA on the ellipsoid model
in [10], the path-length-based mutation strength control
yields larger steady state mutation strengths up to a fac-
tor of μ (parental population size) compared to ordinary
self-adaptive mutation strength control (in the case of
non-noisy objective functions). Due to the larger muta-
tion strengths realized, the CSA-based approach can bet-
ter take advantage of the genetic repair effect provided
by the intermediate (or weighted) recombination.

The performance advantage vanishes, however, when the pop-
ulation size is chosen sufficiently large. However, considering
the CMA-ES as a general purpose algorithm, the strategy should
cope with both small and large population sizes. Therefore, it
seems that both rank-1 and rank-μ update are needed. This still
calls in question whether it is necessary to have two evolution
paths and an update of the covariance matrix at all.

In this paper, we will show that one can drop one of the
evolution paths and remove the covariance matrix totally, thus
removing a “p” and the “C” from the CMA-ES without signif-
icantly worsening the performance of the resulting “MA”-ES.
As a byproduct of the analysis, which is necessary to derive the
MA-ES from the CMA-ES, one can draw a clearer picture of
the CMA-ES, which is often regarded as a rather complicated
evolutionary algorithm.

This paper is organized as follows. First, the CMA-ES
algorithm is presented in a manner that allows for a sim-
pler analysis of the pseudocode lines. As the next step, the
p-evolution path [realized by line C13 (Fig. 1) see Section II
for details] will be shown to be similar to that of the
s-evolution path [realized by line C12 (Fig. 1)]. Both paths
can be approximately transformed (asymptotically exact for
search space dimensionality N → ∞) into each other by
a linear transformation where the transformation matrix is
just the matrix square root M of the covariance matrix C.
After removing the p-path from the CMA-ES, the update of
the C matrix will be replaced by transforming the covari-
ance learning to a direct learning of the M matrix. Thus, one
needs no longer the covariance matrix and operations such as
Cholesky decomposition or spectral decomposition to calculate
the matrix square root. This simplifies the resulting ES consid-
erably both from viewpoint of the algorithmic “complexity”
and the numerical algebra operations needed. Furthermore,
the resulting M-update allows for a new interpretation of
the CMA-ES working principles. However, since the deriva-
tions rely on assumptions that are only asymptotically exact
for search space dimensionality N → ∞, numerical experi-
ments are provided to show that the novel MA-ES performs
nearly equally well as the original CMA-ES. Additionally, the
CMA-ES and MA-ES will be used as “search engines” in
the bi-population (BiPop)-ES framework [11]. The resulting
BiPop-MA-ES will be compared with the original BiPop-
CMA-ES and the CMA-ES v3.61 production code using the
BBOB comparing continuous optimizers (COCO) test envi-
ronment [12]. It will be shown that the MA-ES performs

Fig. 1. Pseudocode of the CMA-ES with rank > 1 weighted covariance
matrix update.

well in the BiPop-ES framework. This paper concludes with
a summary section.

II. STANDARD CMA-ES

Although not immediately obvious, the (μ/μw, λ)-CMA-
ES displayed in Fig. 1 represents basically the one introduced
in [1] and discussed in its current form in [5]. While the
exposition in [5] contains additional tweaks regarding strat-
egy specific parameters, its essence has been condensed into
the pseudocode of Fig. 1. We will discuss the basic operations
performed in Fig. 1 and show that those lines are mathemati-
cally equivalent to the original CMA-ES [1]. In order to have
a clear notion of generational changes, a generation counter
(g) is used even though it is not necessarily needed for the
functioning in real CMA-ES implementations.

A CMA-ES generation cycle (also referred to as a gen-
eration) is performed within the repeat-until-loop (C2–C17).
A number of λ offspring (labeled by a tilde on top of the
symbols and indexed by the subscript l) is generated within
the for-loop (C4–C9) where the parental state y(g) ∈ R

N is
mutated according to a normal distribution yielding offspring
ỹ(g+1) ∼ N (y(g), (σ (g))2C(g)) with mean y(g) and covariance
(σ (g))2C(g). This is technically done by generating at first an
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isotropically independent identically normally distributed N-
dimensional vector z̃(g)

l in line (C5). This vector is transformed

by M(g) into a (direction) vector d̃
(g)

l where the transformation
matrix M(g) must obey the condition

M(g)
(

M(g)
)T = C(g). (2)

Therefore, M(g) may be regarded as a “square root” of the
matrix C(g), explaining the meaning of line (C3). Technically,
M(g) =

√
C(g) is calculated in the CMA-ES using Cholesky

or spectral value decomposition. After having generated the

search direction d̃
(g)

l , it is scaled with the mutation strength
σ (g),3 thus forming the mutation vector. This mutation is added
to the parental state y(g) in line (C7) yielding the offspring
individual’s ỹ(g)

l . The fitness f̃ of the offspring is finally cal-
culated in line (C8). After having generated all λ offspring,
the population is sorted (ranked) according to the individual
fitnesses in line (C10).

The process of ranking is not explicitly displayed, however,
it is implicitly covered by the “m; λ” index notation used (see
below) in the calculation of the angular bracket notations 〈· · · 〉
in lines (C11–C14). Here the m refers to the mth best indi-
vidual (with respect to the objective function values f̃l, l =
1, . . . , λ) in the population of λ offspring. The angular brackets
indicate the process of (weighted) intermediate recombina-
tion. Given λ offspring objects x̃(g)

l , the recombination is
defined as

〈
x̃(g)

〉
w

:=
μ∑

m=1

wmx̃(g)

m;λ (3)

where x̃m;λ refers to an object (i.e., d̃, z̃, and d̃d̃
T
, respectively)

belonging to the mth best individual (with respect to fitness)
of the current offspring population comprising λ individuals.
Originally, the choice of the weights wm used in (3) was

wm :=
{ 1

μ
, for 1 ≤ m ≤ μ

0, otherwise
(4)

also known as intermediate multirecombination [13]. However,
later on and also provided in [5], the weight scheme

wm :=

⎧⎪⎪⎨
⎪⎪⎩

ln
(

λ+1
2

)
− ln m

∑μ
k=1

(
ln
(

λ+1
2

)
− ln k

) , for 1 ≤ m ≤ μ

0, otherwise

(5)

has been proposed. This proposal is based on the heuristic
argument that the best individuals, i.e., those with a small m
should have a stronger influence on the weighted sum (3).
Note, both weight schemes obey the condition

μ∑
m=1

wm = 1. (6)

3Note, σ is often referred to as “step-size” of the mutation, however, this
is not really true and actually misleading, it is just a scaling factor that allows
for a faster adaptation of the length of the mutation.

Calculation of the parent of the new generation (g + 1)

is done by weighted recombination of the y-vectors of
the best μ offspring individuals according to y(g+1) :=
〈ỹ(g)〉w. Using (C6), (C7), and (3), this can alternatively be
expressed as

y(g+1) =
〈
y(g) + σ (g)d̃(g)

〉
w

= y(g) + σ (g)
〈
d̃(g)

〉
w

(7)

and is used in line (C11).
The classical CSA path cumulation is done in line

(C12). It acts on the isotropically generated z vectors.
This line seems to deviate from the original one provided
in [1] and [5]. In the latter publication one finds after adopting
the symbols used4

s(g+1) = (1 − cs)s(g)

+ √
μeffcs(2 − cs)

(
C(g)

)− 1
2 y(g+1) − y(g)

cmσ (g)
. (8)

However, resolving (7) for 〈d̃(g)〉w, one immediately sees that
this is exactly the fraction term in (8). Now, consider the matrix

vector product (C(g))−1/2〈d̃(g)〉w taking (4), (C6), (3), and (C3)
into account

(
C(g)

)− 1
2 y(g+1) − y(g)

σ (g)
=
(

C(g)
)− 1

2
〈
d̃

(g)
〉
w

=
μ∑

m=1

wm

(
C(g)

)− 1
2 d̃

(g)

m;λ

=
μ∑

m=1

wm

(
C(g)

)− 1
2 M(g)z̃(g)

m;λ

=
μ∑

m=1

wm

(
C(g)

)− 1
2
(

C(g)
) 1

2 z̃(g)

m;λ

=
μ∑

m=1

wmz̃(g)

m;λ

=
〈
z̃(g)

〉
w

(9)

one sees that (8) of the original CMA-ES is equivalent to line
(C12). The advantage of line (C12) is, however, that there is
absolutely no need to perform a back transformation using the
inverse of M(g).

Lines (C12) and (C13) also contain strategy specific con-
stants to be discussed below. Here, we proceed with the
second path cumulation used to provide the rank-1 update
for the C-matrix in line (C14). Again, line (C13) deviates
from the original CMA-ES in [5] where one finds after
adopting the symbols used5

p(g+1) = (
1 − cp

)
p(g) + hσ

√
μeffcp

(
2 − cp

) y(g+1) − y(g)

cmσ (g)
.

(10)

4Note, we also assumed cm = 1, recommended as standard choice in [5].
5We assume cm = 1, recommended as standard choice in [5] and hσ = 1.
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As has been shown already above, the fraction term in (10) is

exactly 〈d̃(g)〉w. Thus, we have recovered line (C13).
The C-matrix update takes place in line (C14). The update

equation deviates from those given in [5]. The latter reads after
adopting the symbols6

C(g+1) =
(

1 − c1 +
(

1 − h2
σ

)
c1cp

(
2 − cp

))
C(g)

+ c1p(g+1)
(

p(g+1)
)T

+ cw

μ∑
m=1

wm

⎛
⎜⎝

(
ỹ(g)

m;λ − y(g)
)

σ (g)

(
ỹ(g)

m;λ − y(g)
)T

σ (g)
− C(g)

⎞
⎟⎠.

(11)

Also this equation is equivalent to the corresponding line
(C14). First note that due to (6) the weights sum of C(g) in
the third line of (11) yields C(g) and the corresponding cw can
be put into the first parentheses of the right-hand side (RHS)
of the first line of (11). Now, consider line (C7) and resolve
for d̃

(g)

l , one obtains

d̃(g)

m;λ = ỹ(g)

m;λ − y(g)

σ (g)
. (12)

Thus, one gets for (11)

C(g+1) = (1 − c1 − cw)C(g) + c1p(g+1)
(

p(g+1)
)T

+ cw

μ∑
m=1

wmd̃(g)

m;λ
(

d̃(g)

m;λ
)T

(13)

and taking (3) into account one obtains

C(g+1) = (1 − c1 − cw)C(g) + c1p(g+1)
(

p(g+1)
)T

+ cw

〈
d̃(g)

(
d̃(g)

)T〉
w
. (14)

This agrees with line (C14). The remaining line (C15) of the
CMA-ES pseudocode in Fig. 1 concerns the mutation strength
update. It has been directly adopted from [5]. In that line,
the actual length of the updated s evolution path vector is
compared with the expected length of a random vector with
standard normally distributed components. The latter is the
expected value E[χ ] of the χ -distribution with N degrees of
freedom. If the actual length is larger than E[χ ] the whole
argument in the e-function is positive and the mutation strength
is increased. Conversely, it is decreased. The control rule (C15)
is meanwhile well understood [14]. A slightly modified rule

σ (g+1) = σ (g) exp

[
1

2D

(∥∥s(g+1)
∥∥2

N
− 1

)]
(15)

that works without the E[χ ] value, proposed by
Arnold and Beyer [14], has been analyzed in [10].

Comparing the pseudocode in Fig. 1 with those presented
in [1] or [5], we can conclude that the formulation of
the CMA-ES can be significantly simplified: one only has

6Note, we also assumed hσ = 1.

to calculate the weighted recombinations of d̃, z̃, and d̃d̃
T

according to

〈
z̃(g)

〉
w

:=
μ∑

m=1

wmz̃(g)

m;λ (16)

〈
d̃(g)

〉
w

:=
μ∑

m=1

wmd̃(g)

m;λ (17)

〈
d̃(g)

(
d̃(g)

)T〉
w

:=
μ∑

m=1

wmd̃(g)

m;λ
(

d̃(g)

m;λ
)T

. (18)

Furthermore, the calculation of the inverse to the square root of
C as needed in the original CMA-ES, (8), is no longer needed.
While the pseudocode in Fig. 1 is equivalent to the standard
CMA-ES, it avoids unnecessarily complex derivations result-
ing in a clearer exposition of the basic ingredients that seem
to be necessary to ensure the functioning of the CMA-ES.
However, as will be shown in the next section, this pseudocode
can even be transformed into another one using some simple
and mild assumptions that allow for removing parts of the
evolution path cumulation and the calculation of the C-matrix
at all.

III. REMOVING THE P AND THE C FROM THE CMA-ES

The CMA-ES pseudocode in Fig. 1 will be further trans-
formed by first multiplying (C12) with M(g) and taking (C6)
into account

M(g)s(g+1) = (1 − cs)M(g)s(g)

+
√

μeffcs
(
2 − cs

)〈
M(g)z̃(g)

〉
w

= (1 − cs)M(g)s(g) +
√

μeffcs
(
2 − cs

)〈
d̃(g)

〉
w
.

(19)

Now, compare with (C13). Provided that cp = cs, one
immediately sees that

cp = cs ⇔ M(g)s(g) = p(g) ⇒ M(g)s(g+1) = p(g+1).

(20)

Provided that M(g+1) � M(g) asymptotically holds for N →
∞, (C13) can be dropped. Under that assumption (C13)
is asymptotically a linear transformation of (C12). This is
ensured by (24) as long as cs → 0 for N → ∞. Yet,
the question remains whether the assumptions cp = cs and
M(g+1) � M(g) are admissible in practice (N < ∞). In order
to check how strongly cp deviates from cs the quotient cp/cs

versus the search space dimensionality N is displayed in Fig. 2.
The calculation is based on the standard parameter settings
provided in [5]7

λ = 4 + 3 ln N�, μ =
⌊

λ

2

⌋
(21)

μeff = 1∑μ
m=1 w2

m
(22)

7In [5], cp has been labeled as cc and cs as cσ . We use the indices p and
s to refer to the corresponding path vectors in (C12) and (C13).
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Fig. 2. cp/cs ratio depending on the search space dimension N assuming the
strategy parameter choice given by (22)–(24), using the standard population
sizing rule (21).

cp = μeff/N + 4

2μeff/N + N + 4
(23)

cs = μeff + 2

μeff + N + 5
. (24)

As one can see, the cp/cs ratio is only a slightly decreas-
ing function of N that does not deviate too much from
1. Therefore, one would not expect a much pronounced
influence on the performance of the CMA-ES. Similarly,
a replacement of M(g) by M(g+1) on the RHS of (20)
should only result in small deviations. This will be confirmed
in Section IV.

As a next step, line (C14) will be investigated. Applying (2)
for g and g+1, respectively, and using (13) and (C6) one gets

M(g+1)
(

M(g+1)
)T

= (1 − c1 − cw)M(g)
(

M(g)
)T

+ c1M(g)s(g+1)
(

M(g)s(g+1)
)T

+ cw

μ∑
m=1

wmM(g)z̃(g)

m;λ
(

M(g)z̃(g)

m;λ
)T

= (1 − c1 − cw)M(g)
(

M(g)
)T

+ c1M(g)s(g+1)
(

s(g+1)
)T(

M(g)
)T

+ cw

μ∑
m=1

wmM(g)z̃(g)

m;λ
(

z̃(g)

m;λ
)T(

M(g)
)T

= (1 − c1 − cw)M(g)
(

M(g)
)T

+ c1M(g)s(g+1)
(

s(g+1)
)T(

M(g)
)T

+ cwM(g)
〈
z̃(g)

(
z̃(g)

)T〉
w

(
M(g)

)T

= M(g)
(

M(g)
)T

+ c1

(
M(g)s(g+1)

(
s(g+1)

)T(
M(g)

)T − M(g)
(

M(g)
)T)

+ cw

(
M(g)

〈
z̃(g)

(
z̃(g)

)T〉
w

(
M(g)

)T − M(g)
(

M(g)
)T)

.

(25)

Pulling out the M(g) on the RHS of (25) one finally obtains

M(g+1)
(

M(g+1)
)T = M(g)

[
I + c1

(
s(g+1)

(
s(g+1)

)T − I
)

+ cw

(〈
z̃(g)

(
z̃(g)

)T〉
w

− I
)](

M(g)
)T

.

(26)

This is a very remarkable result that paves the way for getting
rid of the covariance matrix update. Instead of considering C
one can directly evolve the M matrix if one finds an approach
that connects M(g+1) with M(g). Technically, one has to per-
form some kind of square root operation on (26). Noting
that (26) is of the form

AAT = M[I + B]MT (27)

where B is a symmetrical matrix, this suggests to expand A
into a matrix power series

A = M
∞∑

k=0

γkBk. (28)

As can be easily shown by direct calculation

A = M
(

I + 1

2
B − 1

8
B2 + . . .

)
(29)

does satisfy (27) up to the power of two in B. Provided that
the matrix norm ‖B‖ is sufficiently small, one even can break
off after the linear B-term yielding

M(g+1) = M(g)
[
I + c1

2

(
s(g+1)

(
s(g+1)

)T − I
)

+ cw

2

(〈
z̃(g)

(
z̃(g)

)T〉
w

− I
)

+ . . .
]
. (30)

Using (30) as an approximation for M(g+1) works especially
well if c1 and cw are sufficiently small. Actually, using the
suggested formulas in [5]8

c1 = αcov

(N + 1.3)2 + μeff
(31)

and

cw = min

(
1 − c1, αcov

μeff + 1/μeff − 2

(N + 2)2 + αcovμeff/2

)
(32)

it becomes clear that, given the population sizing (21), it holds

c1 = O
(

1

N2

)
and cw = O

(
ln N

N2

)
. (33)

That is, at least for sufficiently large search space dimension-
alities N, (30) should yield a similar behavior as the original
C-matrix update (C14).

Given the new update (30) we can outline the new sim-
plified CMA-ES without covariance matrix and p-path. The
new ES may be called MA-ES and is depicted in Fig. 3.
The calculation of 〈z̃(g)(z̃(g))T〉w in (M11) is done analogously
to (3)

〈
z̃(g)

(
z̃(g)

)T〉
w

:=
μ∑

m=1

wmz̃(g)

m;λ
(

z̃(g)

m;λ
)T

. (34)

8According to [5], 0 < αcov ≤ 2. Throughout this paper it is assumed that
αcov = 2.
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Fig. 3. Pseudocode of the MA-ES.

For the damping constant dσ in (M12) and (C15), the recom-
mended expression in [5]

dσ = 1 + cs + 2 max

(
0,

√
μeff − 1

N + 1
− 1

)
(35)

is used in the empirical investigations of this paper.
Comparing the MA-ES algorithm in Fig. 3 with that of

the original CMA-ES (Fig. 1), one sees that this pseudocode
is not only shorter, but more importantly, it is less numeri-
cally demanding. Since there is no explicit covariance matrix
update/evolution, there is also no matrix square root calcu-
lation. The numerical operations to be performed are only
matrix-matrix and matrix-vector multiplications. It is to be
mentioned here that there exists related work aiming at cir-
cumventing the covariance matrix operations. In [2], a (1 +
1)-CMA-ES was proposed that evolves the Cholesky-matrix.
This approach has been extended to a multi-parent ES in [19].
Alternatively, considering the field of NESs, the xNES [6]
evolves a normalized transformation matrix. While the lat-
ter approach shares some similarities with the MA-ES update
in line (M11), most notably the multiplicative change of the
transformation matrix, xNES does not incorporate and evolve
an evolution path (M10). Furthermore, a similar multiplicative
C-update for the CMA-ES has been proposed in [20].

The MA-ES allows for a novel interpretation of the M
matrix learning process by considering line (M11). The driving
force for the change of the M matrix is given by the devia-
tions of the matrices s(g+1)(s(g+1))T and 〈z̃(g)(z̃(g))T〉w from
the identity matrix I. If the resulting matrix is similar to the
identity matrix, then M is simply scaled by a scalar factor.

Furthermore, if the selected z̃ vectors are standard normally
distributed, the expected value of M does not change since in
that case it can be easily shown that

E
[
s(g+1)

(
s(g+1)

)T] = I and E
[〈

z̃(g)
(

z̃(g)
)T〉

w

]
= I (36)

does hold. That is, provided that the M matrix has evolved in
such a manner that the components of the selected z̃ vectors are
(nearly) standard normally distributed, the evolution of M has
reached a steady state. Of course, such a stationary behavior
can only exist for static quadratic fitness landscapes (i.e., f -
functions with a constant Hessian) and more general functions
obtained from those quadratic functions by strictly increasing
f -transformations (conserving ellipsoidal level sets).

IV. PERFORMANCE COMPARISON MA-ES
VERSUS CMA-ES

The performance of the MA-ES has been extensively tested
and compared with the CMA-ES. These investigations are
intended to show that the MA-ES exhibits similar performance
behaviors as the CMA-ES. To this end, not only standard pop-
ulation sizings (λ < N) have been considered, but also cases
where λ = O(N2) since large population sizes are needed
in global optimization cases as they are commonly encoun-
tered when using the CMA-ES as search engine in BiPop
settings. The comparisons presented consider the evolution
dynamics as well as the aggregated statistics in terms of the
expected runtime (ERT). ERT is measured as the average
number of function evaluations needed to reach a predefined
objective function target ftarget. In the following, some of the
experiments performed are presented. The complete collec-
tion of experimental results are to found in the supplementary
material.

A. Using Standard Population Sizing According to (21)

According to the derivation presented, the MA-ES should
perform nearly equally well as the CMA-ES. We will inves-
tigate the performance on the set of test functions given in
Table I. All runs have been initialized with a mutation strength
σ (0) = 1 and y(0) = (1, . . . , 1)T . For the first tests, the stan-
dard strategy parameter choice given by (21)–(24) together
with the recombination weights (5) have been used.

In addition to the test functions in Table I, the 24 test func-
tions from the BBOB test environment [12] have been used
to evaluated the MA-ES in the BiPop-setting in Section V-B.

1) Mean Value Dynamics: In Fig. 4, the dynamics of the
CMA-ES and the MA-ES are compared on the test functions
sphere, cigar, tablet, ellipsoid, ParabolicRidge, SharpRidge,
Rosenbrock, and DifferentPowers for search space dimension-
alities N = 3 and N = 30. The curves displayed are the result
of an averaging over a number of independent single runs.
Thus, they are an estimate of the mean value dynamics.

As one can see, using the standard strategy parameter set-
ting both CMA-ES and MA-ES perform very similarly on
the N = 30 test instances. Even in the case N = 3 this
behavior is observed except the SharpRidge where the MA-
ES exhibits premature convergence while the CMA-ES is able
to follow the ridge exponentially fast. However, increasing
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Fig. 4. σ - and f - or |f |-dynamics of CMA-ES and MA-ES on the test functions of Table I for N = 3 and N = 30. The f -dynamics of the CMA-ES are in
black and those of the MA-ES are in red. The σ -dynamics of the CMA-ES are in cyan and those of the MA-ES are in magenta. The curves are the averages
of 20 independent ES runs (except the SharpRidge N = 3 case where 200 runs have been averaged and the Rosenbrock N = 3 case where 100 runs have
been averaged). Note that the MA-ES exhibits premature convergence on the SharpRidge while the CMA-ES shows this behavior for N = 30.

N slightly, also the CMA-ES will fail on the SharpRidge. If
one wants to improve the behavior on the SharpRidge (while
keeping the basic CMA-ES algorithm), the population siz-
ing rule (21) must be changed and much larger λ values
must be used. As a general observation it is to be noted that
the N = 3 case produces rather rugged single run dynam-
ics. Regarding the Rosenbrock function, only those runs have
been used for averaging that converged to the global minimum
(there is a second, but local minimum that sometimes attracts
the ES).

2) Expected Runtime: In order to compare the N scal-
ing behavior, ERT experiments have been performed. Since
a converging ES does not always reach a predefined objec-
tive function target value ftarget, but may end up in a local
optimizer, a reasonable ERT definition must take into account
unsuccessful runs. Therefore, the formula

ERT =
(

1
Ps

− 1
)

E[ru] + E[rs] (37)

derived in [15] has been used for the calculation of the ERT.
For E[ru] the empirical estimate of the runtime for unsuccess-
ful runs has been determined. Likewise, the mean value of the
runtime of the successful runs serves as an empirical estimate
for E[rs] and Ps is to be estimated as empirical success prob-
ability. Similarly, one can determine the variance of the run
length, the formula reads9

Var[r] =
(

1
Ps

− 1
)

Var[ru] + Var[rs] +
(

1−Ps
P2

s

)
E[ru]2. (38)

The ERT experiments performed regard search space dimen-
sionalities N = 4, 8, 16, 32, 64, and 128. These investigations
exclude the SharpRidge since both CMA-ES and MA-ES
exhibit premature convergence for moderately large N (for
CMA-ES: N > 16 experiments exhibit premature conver-
gence). The results of these experiments are displayed in
Fig. 5. Instead of the expected number of generations, the

9Note, in [15] a wrong formula has been presented. This is the correct one.
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TABLE I
TEST FUNCTIONS AND STOPPING CRITERION FOR THE EMPIRICAL

PERFORMANCE EVALUATION. THE INITIAL CONDITIONS ARE

Y(0) = (1, . . . , 1)T AND σ (0) = 1

number of function evaluations are displayed versus the search
space dimensionality N. The number of function evaluations is
simply the product of the ERT measured in generations needed
(to reach a predefined ftarget) times the offspring population
size λ.

As one can see in Fig. 5, both strategies exhibit nearly
the same ERT performance. Only for the Rosenbrock func-
tion there are certain differences. These are mainly due to
the effect of occasional convergence of the ES to the local
optimizer. This is also the reason for the comparatively large
standard deviations

√
Var[r] observed.

B. Considering λ = 4N Population Sizing

It is well known that the standard population sizing accord-
ing to (21) is not well suited for multimodal and noisy
optimization. First, the case λ = 4N, μ = λ/2 will be
considered. In the next section, the λ = 4N2 case will be inves-
tigated. Since relevant differences in the dynamics [compared
to the dynamics of the standard population sizing rule (21) in
Fig. 4] can only be observed for the ridge (and to a certain
extend for the cigar), the graphs are presented in the sup-
plementary material. Regarding the ParabolicRidge and the
cigar one observes a certain performance loss for the MA-
ES. Having a closer look at the ERT graphs in Fig. 6 one
sees that these differences appear more pronounced at larger
search space dimensionalities on peculiar ellipsoid models like
the cigar and the “degenerated cigar”—the ParabolicRidge. In
those test cases the CMA-ES seems to benefit from the sec-
ond evolution path: there is a dominating major principal axis
in these test functions (being constant in its direction in the
search space) in which the mutations should be predominantly

Fig. 5. ERT (in terms of # of function evaluations) and its standard deviation
of the CMA-ES, displayed by black data points (and error bars) and of the
MA-ES, displayed by red data points (and error bars). The population size
λ is given by (21). Data points have been obtained for N = 4, 8, 16, 32, 64,

and 128. As for the initial conditions and ftarget (see Table I). For comparison
purposes, dashed blue lines are displayed in order to represent linear (smaller
slope) and quadratic (larger slope) runtime growth behavior. Note, regarding
Rosenbrock especially for small N, the standard deviation of the runtime is
rather large and only displayed as a horizontal bar above the respective data
point.

directed. It seems that such a direction can be somewhat faster
identified using a second evolution path.

C. Considering λ = 4N2 Population Sizing

The mean value dynamics of the CMA-ES and the MA-ES
with population sizes proportional to the square of the search
space dimensionality N are mainly presented in the supple-
mentary material. The f -dynamics of CMA-ES and MA-ES
do not deviate markedly and are similar to those of the other
population sizings. Some of the experimental results regarding
sphere, ellipsoid, and Rosenbrock are also displayed in Fig. 7.
The curves are the result of an averaging over a number of
independent single runs. As one can see, there is a certain
performance loss for the MA-ES except for Rosenbrock at
N = 30 where MA excels.

The mutation strength dynamics of the two ES algorithms
on Rosenbrock are interesting on its own. In the case of
N = 30, σ increases even exponentially fast. Since both
CMA-ES and MA-ES converge to the optimizer, shrinking
the mutation step-size (note, this is not σ as often wrongly
stated) is predominantly done by the covariance matrix or the
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Fig. 6. ERT (in terms of # of function evaluations) and its standard devia-
tion of the CMA-ES, displayed by black data points (and error bars) and of
the MA-ES, displayed by red data points (and error bars). The λ = 4N,
μ = 2N case has been investigated. Data points have been obtained for
N = 4, 8, 16, 32, 64, and 128. As for the initial conditions and ftarget, see
Table I. For comparison purposes, dashed blue lines are displayed in order to
represent linear (smaller slope) and quadratic (larger slope) runtime growth
behavior. Note, regarding Rosenbrock for N = 4 the standard deviation of
the runtime is rather large and only displayed as a horizontal bar above the
respective data point.

M matrix (in the case of the MA-ES). This can be easily
confirmed by considering the dynamics of the maximal and
minimal eigenvalues of C (in the case of the CMA-ES) and
MMT (in the case of the MA-ES), respectively. Therefore, it
is a general observation for the large population size λ = 4N2

case that adaptation of the step-size is mainly done by the
update of M and C, respectively, and not by σ . This even
holds for the sphere model as shown in Fig. 8. Next, let us
consider the ERT curves in the interval N = 4 to N = 128
in Fig. 910. Having a closer look at the ERT graphs, one sees
that—apart from the ParabolicRidge and the SharpRidge—
both CMA-ES and MA-ES exhibit a larger slope than the
dotted straight lines ∝ N2. That is, ERT as a function of
N exhibits a super-quadratic runtime. As for Rosenbrock this
might be partially attributed to the change of the local topol-
ogy that requires a permanent change of the covariance matrix
during the evolution. Regarding the ellipsoid-like models such
as sphere, cigar, tablet, and ellipsoid this might indicate that

10Unlike the λ scaling law (21), choosing λ = 4N2 prevents the CMA-ES
and the MA-ES from premature convergence on the SharpRidge. That is why,
the ERT curves are displayed for this test function as well.

Fig. 7. σ - and f -dynamics of CMA-ES and MA-ES with λ = 4N2 on
sphere, ellipsoid, and Rosenbrock for N = 3 (left) and N = 30 (right). The
f -dynamics of the CMA-ES are in black and those of the MA-ES are in red.
The σ -dynamics of the CMA-ES are in cyan and those of the MA-ES are in
magenta. The curves are the averages of 20 independent ES runs (except the
Rosenbrock N = 3 case where 100 runs have been averaged).

Fig. 8. Left: on the evolution of the minimal and the maximal eigenvalues of
C (black curves) and MMT (red curves) for a (1800/1800I , 3600)-CMA-ES
and (1800/1800I , 3600)-MA-ES, respectively, on the N = 30-dimensional
sphere model. Right: corresponding condition number dynamics.

CMA- and MA-ES do not work optimally with large popula-
tion sizes. This suspicion is also formed by the nondecreasing
behavior of the mutation strength σ in Fig. 7 for N = 30 indi-
cating a possible failure of the σ -control rule. This raises the
research question as to the reasons for this observed behavior
and whether one can improve the scaling behavior.

V. PERFORMANCE OF THE MA-ES AS BUILDING

BLOCK IN BIPOP-ES

A. BiPop-Algorithm

In order to solve multimodal optimization problems,
the CMA-ES should be used in a restart setting with
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Fig. 9. ERT and its standard deviation of the CMA-ES, displayed by black
data points (and error bars) and of the MA-ES, displayed by red data points
(and error bars). The λ = 4N2, μ = 2N2 case has been investigated. Data
points have been obtained for N = 4, 8, 16, 32, 64, and 128. As for the initial
conditions and ftarget, see Table I. For comparison purposes, dashed blue lines
are displayed in order to represent linear (smaller slope) and quadratic (larger
slope) runtime growth behavior.

increasing population sizes and/or different initial muta-
tion strengths [16]. An implementation of such a multistart
approach was proposed in terms of the BiPop-CMA-ES [11].
Its pseudocode is presented in Fig. 10.11 It is the aim of
this section to show that replacing the basic version of the
CMA-ES given in Fig. 1 by the MA-ES (Fig. 3) does not
significantly deteriorate the performance of the BiPop-CMA-
ES. The BiPop-CMA-ES uses the (C)MA-ESs12 as “search
engine” in lines B3, B15, and B19, respectively. In order to

11Since a pseudocode of the BiPop-CMA-ES [11] has not been published,
it has been derived here from the verbal description given in [11] and [17]
and private communications with Ilya Loshchilov.

12(C)MA-ES is used as an abbreviation to refer to both classical CMA-ES
and MA-ES.

TC

TC

TC

Fig. 10. Pseudocode of the BiPop-CMA-ES and the BiPop-MA-ES.

utilize the (C)MA-ESs, it is important that these strategies do
not waste too many function evaluations b (refers to “bud-
get”) in the case of local convergence. That is, the overall
performance is also influenced by the termination conditions
(TCs) used in the (C)MA-ESs. In the original BiPop-CMA-ES
paper [11] various TCs have been used in order to get good
benchmark results. Since we want to keep the (C)MA-ESs
conceptually generic, we use only four TCs in the empirical
evaluations.

1) Maximum number of generations g ≥ gstop.
2) Parental f -value smaller than predefined fstop, i.e., f (g) <

fstop (f -minimization considered).
3) Distance change of parent y(g) in search space smaller

than a predefined step length �, i.e., ‖y(g+1) − y(g)‖ <

�stop, this can be checked by calculating the Euclidean

norm of σ (g)〈d̃(g)〉w in (C11) (Fig. 1) and (M9) (Fig. 3).



756 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 5, OCTOBER 2017

4) Stagnation of the parental f -values, termination if for
g > G : f (y(g)) ≈ f (y(g−G)).13

The BiPop-ES has two TCs in (B25). One regards the best
f value fmin, i.e., if it drops below fstop the strategy stops. The
other criterion terminates the BiPop-ES if the total number
of function evaluations is greater or equal to the predefined
stop budget bstop. The total function evaluation budget bstop
is the sum of function evaluations consumed by the first
(C)MA-ES run in (B3), being b1, and the cumulated function
evaluations in (B15), being bsmall, and in (B19), being blarge.
Depending on the number of function evaluations already con-
sumed by (B15) and (B19), the Then-branch (B12–B17) or
the Else-branch (B19, B20) is performed. Within the Then-
branch (B12)–(B17) the BiPop-ES runs an ES with a randomly
derived small population size λsmall (compared to λ) and also a
randomly decreased initial σsInit. Here the probabilistic choices
are introduced by random numbers u being uniformly dis-
tributed in the interval [0, 1]. As a result of the transformation
in (B12) the probability density of σsInit is proportional to
(1/σsInit). Similarly, one can show that λsmall obeys a prob-
ability density proportional to (1/λsmall

√
ln λsmall). That is,

the random choices of σsInit and λsmall are drawn with a
strong tendency toward smaller values. That is, together with
(B10) (see below), this initiates basically local searches. The
Else-branch (B19 and B20) is performed with (exponentially)
increasing population sizes λ the size of which is determined
in (B9), thus performing a rather global search.14 The criterion
bsmall < blarge in (B11) ensures that the total function evalua-
tion budget is approximately evenly devoted to both ESs with
small population sizes and the ES with large population size.
As a result, the Then-branch (small population sizes) is more
often performed than the Else-branch (with large population
size). Each (C)MA-ES run is started with an uniformly ran-
dom initialized y in the box interval predefined by the vectors
ylower and yupper.

B. Performance Evaluation Using the COCO-Framework

The performance evaluation is realized by the COCO soft-
ware version v15.03 [12]15 using the test functions given
in Table II. We especially present the empirical cumulative
performance graphs that compare the overall performance of
the CMA-ES and the MA-ES as search engine in the BiPop-ES
framework. Additionally, we compare with Hansen’s CMA-ES
production code version 3.61.beta or 3.62.beta, respectively
(last change: April, 2012).16 This production code contains
ad hoc solutions to improve the performance of the generic

13In the benchmark experiments, g > 10 and G = 10 were used. The
implementation of “≈” regards real numbers as approximately equal if these
numbers differ only in the two least significant digits.

14A deeper, scientifically satisfactory explanation of the details in (B9) and
(B12)–(B14) cannot be given here. Even the original publication [11] does
not provide deeper insights and it seems that this is rather an ad hoc choice
that meets the needs without a derivation from first principles.

15Software and documentation have been obtained from:
http://coco.gforge.inria.fr.

16Source code downloaded from: https://www.lri.fr/∼hansen/
count-cmaes-m.php?Down=cmaes.m. There is an ambiguity with respect to
the version number in the code where one can find both version numbers
3.61.beta and 3.62.beta in the same code.

TABLE II
TEST FUNCTIONS OF THE BBOB TEST BED,

DESCRIPTION TAKEN FROM [18]

CMA-ES. It is expected that this should be visible by better
empirical benchmark results compared to the CMA and
MA versions. However, extensive tests have shown that the
performance advantages in terms of better ERTs—while being
statistically significant on some test functions—are rather
small (see supplementary material).

The benchmark experiments were performed with a stop
budget of bstop = 1000N2 function evaluations. The actual
number of function evaluations until leaving the Repeat-Until-
loop in Fig. 10 will exceed this value by a certain extent
[because of simplicity reasons, no additional budget-driven
stopping criterion has been incorporated into the set of TCs
within the (C)MA-ESs]. The initial offspring population size
is determined by (21). The initial mutation strength has been
chosen as σinit = 10/

√
N, the minimum parental step length

was �stop = 10−7. The initial parental y has been chosen uni-
formly at random in a box interval yinit ∈ [−5, 5]N . The lag
for stagnation detection in f -space was G = 10.

The benchmark experiments use the standard settings and
testbed described in [12]. The goals of these experiments are
as follows.

1) To show that exchanging the classical CMA-ES search
engine (Fig. 1) by the MA-ES (Fig. 3) does not severely
affect the overall performance of the BiPop-ES.
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Fig. 11. Accumulated performance profiles of the BiPop-CMA(-ES), the
BiPop-MA(-ES), and the production code CMAv3.61 on the set comprising
all 24 test functions of Table II.

2) To compare the performance with the BiPop-CMA-ES
production code version 3.61 to get a feeling how much
can be gained by a sophisticatedly tuned CMA-ES.

In the standard BBOB setting, the performance of each algo-
rithm is evaluated on 15 independent (randomly transformed
and perturbed) instantiations of each test function. Based on
the observed run lengths, empirical cumulative distribution
function (ECDF) graphs are generated. These graphs show
the percentages of f target values ftarget reached for a given
function value budget b per search space dimensionality N (in
the plots, D is used to indicate the dimensionality). The stan-
dard BBOB f -target values used are ftarget = min [ f ] + 10k,
k ∈ {−8, . . . , 2}.

Aggregated performance profiles over the whole test func-
tion set f1–f24 (Table II) are presented in Fig. 11 and in a
detailed manner in the supplementary material. The ECDF
graphs are displayed for search space dimensionalities N =
2, 3, 5, 10, 20, and 40 (in the graphics labeled as <N>-D).
The horizontal axes display the logarithm of b/N (where b is
labeled as “# f-evals” and N is the “dimension”). Simulation
runs are performed up to a function budget b marked by the
colored ×-crosses (values exceeding this b were obtained by
a so-called bootstrap technique, see [12]). Additionally, the
“utopia” ECDF profile of the best BBOB 2009 results17 is dis-
played. As one can see, up to the respective function budget

17This utopia profile represents the best performance results taken from all
algorithms benchmarked in the 2009 GECCO competition.

of about bstop = 1000N2 all strategies perform very simi-
larly.18 With respect to the ECDF plots there is not a clear
“winner” and the CMAv3.61-ES production code does not
consistently perform better than the much simpler generic
(C)MA-ES implementations. This basically transfers also to
the BBOB COCO ERT investigations (detailed results are to
be found in the supplementary material, for a short discussion
see below). In the following, we will summarize the main
observations regarding ECDF results on the different function
classes without presenting the graphs (these can be found in
the supplementary material).

Regarding the ECDF performance of the problem class f1–f5
one finds performance differences between BiPop-CMA and
BiPop-MA mainly for dimensionality N = 3 and less pro-
nounced for N = 5. A detailed view (not presented here) on
the single function ECDFs reveals that in the N = 3 case the
f4 function (Rastrigin-Bueche) is responsible for these differ-
ences. This function seems hard for all CMA-versions in the
BBOB test if the dimension gets greater than N = 3.

As for the low or moderate condition test functions f6–f9 vir-
tually no remarkable differences between the performance of
the BiPop-CMA-ES, the BiPop-MA-ES, and the CMAv3.61-
ES production code have been found. This statement holds
also well for the subset of test functions with high condition
f10–f14.

On the subset of multimodal functions f15–f19, BiPop-
CMA-ES and BiPop-MA-ES perform nearly equally well. The
CMAv3.61-ES performs a bit better than BiPop-CMA-ES and
BiPop-MA-ES. This is due to a certain performance advantage
of the CMAv3.61-ES on Schaffer’s F7 function f17 and f18,
which permanently reaches higher ECDF values (about 10%
in all dimensions). The reasons for this performance advantage
remain unclear.

For the multimodal test functions with weak global struc-
ture, f20–f24, one can observe performance differences between
BiPop-CMA-ES and BiPop-MA-ES with a performance
advantage of the former. Having a look into the single func-
tion ECDF graphs (not shown here), however, does not reveal
a clear picture. There are also cases where BiPop-CMA-ES
and BiPop-MA-ES perform equally well. Even more astonish-
ing, regarding ECDF the production code CMAv3.61 performs
in most of the cases inferior to the BiPop-MA-ES and the
BiPop-CMA-ES.

Summarizing the findings of these BBOB ECDF evalu-
ations, with respect to the ECDF performance profiles, the
newly derived MA-ES does not exhibit a severe performance
degradation compared to the CMA-ES. Sometimes, it even
performs a bit better than CMA-ES.

Alternatively, one can evaluate and compare the
performance of the algorithms using the ERT graphs
[as for the definition of ERT, see (37)]. BBOB COCO
performance analysis have been done for the precision target
ftarget = min [f ] + 10−8. One finds for BiPop-CMA-ES
and BiPop-MA-ES similar performance behaviors. There

18Since these graphs are aggregated performance plots, this does not
exclude that the strategies perform differently on individual instances.
However, a close scrutiny of the single performance plots did not reveal
markable differences.
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is a certain performance advantage of the CMAv3.61-ES
production code being statistically significant on some of the
24 test functions and search space dimensionalities (especially
for the sphere, discus, and attractive sector function). It seems
that CMAv3.61-ES has been “tuned” for the sphere and
SharpRidge. Interestingly, BiPop-CMA-ES and BiPop-MA-
ES seems to excel on Gallagher for higher dimensions,
however, the Wilcoxon rank sum test implemented in BBOB
did not report statistical significance. Note, there are some
test functions where no ES version was able to get sufficiently
close to the global optimizer: (skew) Rastrigin, Schaffer F7,
Griewank-Rosenbrock, Schwefel, Katsuuras, and Lunacek
bi-Rastrigin. However, except of Bent Cigar and SharpRidge
all three BiPop-ES versions performed rather similarly. Thus,
justifying the statement that one can switch to the MA-ES
also from viewpoint of ERT.

VI. CONCLUSION

Based on a theoretical analysis of the CMA-ES, Fig. 1, it
has been shown under the assumption of equal cumulation
time constants 1/cp and 1/cs that one can remove the p-path
(line C13). Additionally it has been shown that one can also
bypass the evolution of the covariance matrix, thus removing
the “C” from the CMA-ES yielding the MA-ES, Fig. 3. The
latter step is accompanied by an approximation assumption,
which is increasingly violated for increasing population sizes
since cw → 1 in (32) for N = const. < ∞. In spite of that, this
algorithmic change (line M11, Fig. 3) does not severely affect
the performance on population sizes as large as λ = 4N2 as
has been shown in Section IV-C. Moreover, using the MA-
ES in the BiPop-ES as search engine does not significantly
deteriorate the BiPop-CMA-ES performance on the standard
BBOB COCO test bed.

The novel MA-ES does not evolve a covariance matrix.
Thus, a matrix square root operation in terms of Cholesky
or spectral value decomposition is not needed. Only matrix-
vector and matrix-matrix operations are to be performed
numerically (for example, complex eigenvalues due to numer-
ical imprecision cannot appear). This allows potentially for
a more stable working ES. Furthermore, taking advantage of
GPUs to speed-up calculations should be easy to accomplish.

Besides the increased algorithmic simplicity, the new matrix
update rule, line M11 in Fig. 3 and (30), allows also for a novel
interpretation of the C-matrix adaptation via the M-matrix
adaptation, because C = MMT : the change and adaptation
of the M-matrix is driven by contributions of the following.

1) The deviation of the selected isotropically generated
zzT matrix from the isotropy matrix (being the identity
matrix).

2) The deviation of the evolution path matrix ssT from
isotropy (i.e., spherical symmetry).19

Thus, both contributions measure the departure of the ES-
system (comprising the fitness function and the transformation
in M5) from the sphere model as seen from the mutations
generated in line M4. In other words, from viewpoint of the

19These deviations must be seen in the sense of an average deviation over
time.

z-mutations in M4, the (C)MA-ES seeks to transform a func-
tion f with general ellipsoidal f -level sets into a function with
spherical level sets.

Finally, the novel MA-ES might also be more attractive for
a theoretical analysis due to a simpler pseudocode compared
to the CMA-ES. There is only one evolution path and the
M-matrix update bypasses the C evolution and its square root
operation. This might pave the way for a theoretical analysis
of the dynamics of the ES system, yet a challenge for future
research.
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