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Situation-specific learning for ego-vehicle behavior prediction systems

Michaël Garcia Ortiz, Jens Schmüdderich, Franz Kummert and Alexander Gepperth

Abstract— We present a system able to predict the future
behavior of the ego-vehicle in an inner-city environment. Our
system learns the mapping between the current perceived scene
(information about the ego-vehicle and the preceding vehicle,
as well as information about the possible traffic lights) and
the future driving behavior of the ego-vehicle. We improve the
prediction accuracy by estimating the prediction confidence and
by discarding unconfident samples. The behavior of the driver is
represented as a sequence of elementary states termed behavior
primitives. These behavior primitives are abstractions from the
raw actuator states. Behavior prediction is therefore considered
to be a multi-class learning problem.

In this contribution, we explore the possibilities of situation-
specific learning. We show that decomposing the perceived
complex situation into a combination of simpler ones, each of
them with a dedicated prediction, allows the system to reach a
performance equivalent to a system without situation-specificity.
We believe that this is advantageous for the scalability of the
approach to the number of possible situations that the driver
will encounter. The system is tested on a real world scenario,
using streams recorded in inner-city scenes. The prediction is
evaluated for a prediction horizon of 3s into the future, and
the quality of the prediction is measured using established
evaluation methods.

I. INTRODUCTION

The perception of the environment has improved tremen-

dously in the past few years: sensors are of better quality and

advanced sensory processing techniques in inner-city driving

can emerge. As systems are now able to perceive (to a certain

extent) their environment, we focus our work on how to use

the information extracted from the scene in order to predict

the future behavior of the driver.

In this contribution, we compare several behavior predic-

tion systems based on learning from experience. The first

system is trained using all the information available, the

second system trains one subsystem per specific situation,

and the third system is an extension of the second system,

where the behavior prediction is also applied to other traffic

participants in order to improve the quality of the prediction.

We show that learning the prediction for complex scenes

is not needed: decomposing these scenes and predicting the

behavior for simpler situations is sufficient. We can reach

the same quality, given that the system is correctly designed.

We believe that situation-specificity can guarantee scalability,

because low-dimension situations are easier to learn and the

system is faster to converge compared to higher-dimension
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complex situations. Moreover, it becomes possible to predict

a situation that has not been encountered by combining

already learned simpler situations. In addition to showing the

validity of situation-specific learning, we demonstrate that

the knowledge acquired by the ego-vehicle can be applied to

predict the future behavior of other traffic participants.

II. RELATED WORK

Recent developments in the area of behavior prediction

for Advanced Driving Assistant Systems (ADAS) show that

more and more approaches go in the direction of using

learning techniques ([1], [2] and [3]). One reason for this

is the achieved reduction of design effort, especially when

scaling systems to inherently complex scenarios such as

inner-city traffic. The price to pay for this is an increase in

initial design effort for setting up of learning methods and

collecting training data. In the context of driver behavior

prediction, several systems circumvent the learning issue by

using designed models to estimate the behavior or trajectory

of the ego-vehicle ([4], [5]). We believe that for behavior

prediction, learning approaches must be used at some point

because the number of situations or behaviors in complex

environments will become too big to cope with manually. It

is our conviction that learning will cope with the complexity

of the task, and also greatly reduce the overall design effort.

Our approach has some similarities to other systems

already proposed. In [6], complex behaviors are segmented

into a sequence of basic elements, and this abstraction from

raw actuator states is presented as a necessary feature for

driver behavior prediction. In [7], the traffic situations are

decomposed into analyzable subsets called Situation Aspects.

The situation-specific learning approach can be compared to

this situation-aspect decomposition.

In [1], the authors derive an estimate of driver intent,

which amounts to predicting the probability of an imminent

lane change. In contrast to our approach, inputs to the

learning algorithms are high-dimensional, since they include

present and past positions and speeds of the ego-vehicle.

Furthermore, an explicit measure of driver state using face

monitoring is used, which is not done in the present study.

Results show that ego-vehicle lane changes on highways

can be predicted up to 3s in advance with good accuracy.

Our approach differs in the sense that we limit our input

space to dimensions that are also observable in other traffic

participants (speed, acceleration, distances between traffic

participants), in order to apply what has been learned for

the ego-vehicle to other vehicles.
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III. SCENARIO

We put our focus on the inner-city traffic, and in this study

we restrict the situations to:

• “traffic light situation” : the ego-vehicle is approaching

a traffic light

• “preceding vehicle situation”: the ego-vehicle is follow-

ing a vehicle driving in the same direction

As can be seen in Fig. 1, these situations can overlap

(the ego-vehicle can follow the preceding vehicle which

approaches a traffic light).

Fig. 1. Example of inner-city traffic light approach scene: the ego-vehicle
behavior can be a reaction to the traffic light or to the preceding vehicle.

IV. DATA USED FOR BEHAVIOR PREDICTION

A. Segmentation into behavior primitives

We consider that raw actuator states or even trajectories of

the ego-vehicle are not easily predictable. They depend on

multiple factors that are not always determinable (like, e.g.,

the characteristics of the car or the stress level of the driver).

Two different drivers performing the same behavior can have

different trajectories. As an example, two drivers approaching

a red traffic light will both brake, but their exact trajectories

will differ. Thus, predicting the exact actuator states even

considering high error margins is a very difficult task.

Therefore, we describe the driver behavior by abstracting

from these driver-specific quantities, using a set of standard

elementary behaviors that we call behavior primitives.

The decomposition of the sequence of vehicle states (e.g.,

speed, acceleration, pedal status) in a sequence of behavior

primitives is done using heuristics, segmenting portions of

trajectories over time using data coming from the CAN-bus.

Since this contribution focuses on the behavior on straight

roads, we limit the behavior primitives to the longitudinal

dimension: “accelerating”, “decelerating”, “keeping speed”

and “stopped”.

In order to extract the behavior primitives that describe

the behavior at time t0, we measure the mean acceleration

Âcc(t0) using a temporal window ∆T around t0:

Âcc∆T (t0) =
1

∆T

∫ t0+
∆T

2

t0−
∆T

2

Acc(t)dt (1)

where Acc(t) is the acceleration of the vehicle at time t. We

then use this measure in order to determine the Behavior

Primitive at time t0:

• “accelerating” corresponds to Âcc∆T (t0) > τacc
• “decelerating” corresponds to Âcc∆T (t0) < τdec
• “stopped” corresponds to a speed V (t) < Vstopped

• “keeping speed” corresponds to the default case, when

the behavior is none of the three others.

This approach allows us to filter the small variations in

acceleration and to consider them as a “keeping speed”

behavior. In this study, we use: ∆T = 1s, τacc = 0.03
m · s−2,τdec = −0.05 m · s−2 and Vstopped = 1 m · s−1.

B. Extraction of the preceding vehicle using laser data

Our experimental vehicle uses two ibeoLUX sensors

mounted left and right under the front bumper of the ex-

perimental vehicle. Data from the sensors are integrated into

a binary, metric “laser image” where filled pixels indicate the

presence of a laser target (i.e., an obstacle). We use a simple

template-based detection approach for horizontal segments in

the metric laser image in order to detect vehicles. Tracking

is used to stabilize detections and to determine the relative

speed of detected vehicles. Parked vehicles are excluded by

computing the absolute speed relative to the road, using the

known speed of the ego-vehicle. Vehicles coming from the

opposite direction are detected, by extracting objects with a

negative speed, but they are not used in this work.

C. Encoding of the situation and behavior representation

The input data for the prediction are restricted to speed

and acceleration of the ego-vehicle, distance and status of

the possible traffic light, distance and speed of the possible

preceding vehicle, and distance between the preceding vehi-

cle and the traffic light, when both are present in the scene.

We compute the behavior primitive for each sample of

this dataset in an offline fashion according to the procedure

described in Sec. IV-A. It is encoded as a 4-element binary

array, one element for each possible behavior primitive.

As we have not yet implemented robust algorithms for

detecting traffic lights, we manually annotated the presence

and the status (green, yellow, or red) of traffic lights based

on the image data. In order to estimate the distance to the

traffic light, we extract the moment when the ego-vehicle

crosses the traffic light, the distance is then 0. We then

calculate past distances to the traffic light by integrating the

speed of the ego-vehicle, obtained from the CAN bus. We

compute the distance to the traffic light and the status of the

traffic light for each sample of the dataset. The distance is

encoded in a single real number, whereas the status of the

traffic light is encoded into a 3-dimensional binary array,

each element corresponding to one possible status of the

traffic light (green, yellow, red).

The speed and distance of the preceding vehicle is ob-

tained processing laser data (see Sec. IV-B). They are en-

coded in two real numbers. When possible, the distance

between the traffic light and the preceding vehicle is com-

puted using the distance between the traffic light and the

ego-vehicle, and the distance between the preceding vehicle

and the ego-vehicle. An estimate of the acceleration of the

preceding vehicle is obtained by differentiating its speed.
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V. METHODS

We predict the future behavior primitives ahead in time

depending on the current ego-vehicle status (speed and

acceleration), and the scene representation (preceding vehicle

and traffic light).

A. Learning and Prediction strategy

The behavior prediction system performs a mapping be-

tween the situation representation at time t, and the future

behavior primitive at time t + Tpred. Our mid-term goal is

to perform learning and prediction in a running system. This

would imply that we train a learning algorithm, for a given

time t and a time scale Tpred, to represent the relationship

between the situation at t−Tpred and the behavior primitive

at t, since we cannot look into the future. After convergence,

the trained algorithm is used to predict the behavior primitive

at time t + Tpred using the situation representation at time

t. This process is illustrated in Fig. 2.

For our current evaluation, we perform the learning and the

prediction in an offline fashion where data is stored prior to

training and evaluation. As “looking into the future” is thus

possible, we do not need to manage a memory of the events,

which simplifies the learning task while not influencing the

performance of the system. For the online implementation,

the system would have to wait for the convergence of the

learning before performing behavior prediction.

Fig. 2. Learning paradigm: the learning mechanism maps the past situation
representation (at time t−Tpred) to the present behavior primitive (at time
t). Then it predicts the future behavior primitive (at time t+ Tpred) using
the present situation representation (at time t).

B. Overview of the systems

In order to evaluate the quality and advantages of the

situation-specific learning, we created 4 different behavior

prediction systems that are trained according to V-A.

1) Baseline: The prediction of the baseline system uses

the dynamic characteristics of the ego-vehicle (speed and

acceleration) at time t to predict the future driver behavior

(behavior primitive) at time t+ Tpred.

2) Full learning: The Full learning system is a naive

system which uses, as an input, the speed and distance of

the possible preceding vehicle, the status and distance of

the possible traffic light, and the speed and acceleration of

the ego-vehicle. It learns the mapping between this scene

representation at time t and the future behavior primitive at

time t+ Tpred.

3) Situation-specific learning: The situation-specific

learning system presented in this contribution and illustrated

in Fig. 3 is first composed of one situation prioritization,

which analyzes the scene and triggers situation-specific

learning modules. The strategy of the situation prioritization

has been kept simple in this contribution:

• if there is a preceding vehicle and no traffic light,

then the situation-specific learning module “preceding

vehicle” is activated.

• if there is a traffic light and no preceding vehicle,

then the situation-specific learning module “traffic light

approach” is activated.

• if there is a traffic light and a preceding vehicle, then the

situation-specific learning module which corresponds to

the nearer traffic participant is activated.

• if there is no traffic light and no preceding vehicle, then

no situation-specific learning module is activated, and

no prediction is performed.

The situation-specific learning module “preceding vehicle”

uses the speed and distance of the preceding vehicle as

well as the speed and acceleration of the ego-vehicle as an

input. In the same way, the situation-specific learning module

“traffic light approach” uses the status and distance of the

traffic light and the speed and acceleration of the ego-vehicle

as an input. The triggered situation-specific module learns the

mapping between the specific scene representation at time t

and the future behavior primitive at time t+Tpred. Once the

mapping is learned, these situation-specific modules predict

the future behavior of the ego-vehicle.

Finally, one fusion of predictions module selects which

prediction is relevant depending on the scene. In this con-

tribution, the fusion of prediction is also very simple, since

two situation-specific learning modules can not be activated

together. We take the output of the activated situation-specific

module as the output of the predictions.

Fig. 3. Overview of the situation-specific learning.

4) Advanced situation-specific learning: The advanced

situation-specific learning system (see Fig. 4) follows the

same principle as the situation-specific learning presented

previously. Additionally, when the preceding vehicle is ap-

proaching a traffic light, we apply the already trained “traffic
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light approach” module to predict the future behavior of the

preceding vehicle. We use the distance between the preceding

vehicle and the traffic light, the status of the traffic light, and

the speed and acceleration of the preceding vehicle to obtain

an estimate of the preceding vehicle future behavior at time

t+Tpred. The result of this prediction is used as an additional

input for the “preceding vehicle” module, which then uses

the predicted behavior of the preceding vehicle, the distance

and speed of the preceding vehicle, and the acceleration and

speed of the ego-vehicle at time t, in order to predict the

behavior of the driver at time t+ Tpred.

Fig. 4. Overview of the advanced situation-specific learning.

C. Multilayer Perceptron for Behavior Prediction

In order to learn the mapping between the current situation

representation and the future behavior primitives, we use a

multi-layer perceptron (MLP). MLP is a generic and simple

method, which can scale to a wide range of problems,

and can be adapted for online learning. The MLP model

[8] is a standard nonparametric regression method using

gradient-based learning. It is a rather simple neural model,

the only free parameters being the number and size of

hidden layers. For network training, we employ the back-

propagation algorithm with weight-decay and a momentum

term (see, e.g., [9]). We configure the MLP to produce four

real-valued outputs Astopped, Adecelerating , Aaccelerating

and Akeepingspeed corresponding to the predicted behavior

primitives. In order to compensate the different amount of

training samples for the four behaviors, we normalize these

activations over time to have the same mean and same

variance for the evaluation of the quality of the prediction.

As we are using offline learning and prediction on recorded

data, this operation does not violate causality. In an online

learning scenario, normalization would have to be performed

using a fixed time window.

We used the pyBrain-library [10] for all described MLP

experiments. The MLP training algorithm depends on the

learning rate parameter ǫMLP and the momentum parameter

νMLP. The choice of the learning technique is based on a

study of different learning techniques in [11].

VI. EVALUATION MEASURES

A. Prediction confidence assessment

As detailed in Sec. V-C, the results of behavior prediction

at time t are four normalized activations of neurons Ai. In

order to assess the reliability of the prediction, we derive

an estimate of the confidence of this prediction Cconf by

measuring its variance:

Cconf = var(Ai) (2)

We can now set a confidence threshold τ conf and determine

whether the prediction is reliable or not:

if Cconf > τ conf: the prediction is confident

else : the prediction is not confident

The variance of the {Ai} is highest when there is a single

dominant Ai∗ , which means that the result of the classifi-

cation is reliable. In contrast, variance is lowest when all

activations are similar; as behavior primitives usually are

mutually exclusive, this signals high prediction uncertainty.

This measurement of prediction confidence is important,

especially (as we plan to do in the future) when concurrently

predicting a large number of behavior primitives. We con-

sider that recognizing uncertain predictions and taking no

decisions is preferable to taking wrong decisions.

B. Decision making and error measures

The classification value for any output neuron i is obtained

by computing Cclass
i = Ai −

∑
j 6=i Aj . For example:

Cclass
decelerating = Adecelerating −Aaccelerating

−Akeepingspeed −Astopped (3)

We can set a classification threshold τ class, and make a

classification decision for each prediction which of course

also depends on the prediction confidence measure Cconf

described in Sec. VI-A:

if Cclass
i > τclass and Cconf > τ conf :

behavior primitive is predicted

if Cclass
i ≤ τclass and Cconf > τ conf :

absence of behavior primitive is predicted

if Cconf ≤ τ conf :

unreliable prediction is rejected

For each pair of the thresholds τ class, τ conf and for each

output neuron i, we compute the detection rate νcorrect
i , the

false positive rate ν incorrect
i and the rejection rate ν

reject
i , which

are defined as:

νcorrect
i =

#(reliable correct classifications)

#(reliable positive examples)

ν incorrect
i =

#(reliable incorrect classifications)

#(reliable negative examples)

ν
reject
i =

#(rejected examples)

#(all examples)

By varying the classification threshold τ class, a receiver-

operator-characteristic (ROC) can be generated. This perfor-

mance measure is a standard tool in machine learning and

has been used to evaluate behavior prediction systems (see,

e.g., [12]). In the presented ROCs, we plot the detection

rate against the false positive rate, for a fixed value of τ conf.
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C. Evaluation procedure

We employ N-fold cross-validation to assess prediction

results, splitting the dataset into N subsets, each containing

an equal amount of successive samples. We train the system

using N-1 subsets and we present the samples from the

remaining subset to the trained prediction system. We obtain

a sequence of activations for the four output neurons, which

we normalize according to Sec. V-C.

We then use the activations from the N evaluation subsets,

obtained from the N possible combinations of training and

evaluation subsets, in order to evaluate the quality of the

prediction over the whole dataset.

VII. EXPERIMENTAL SETUP

We created a dataset containing 80 scenes, for a total

of 50000 samples (image and data) of inner-city driving

(see Fig. 1). Approximately 14000 samples are a “preced-

ing vehicle situation”, 25000 are a “traffic light situation”,

and 11000 are a situation including both traffic light and

preceding vehicle. As the videos are recorded at 20Hz, this

corresponds to 40 minutes of driving. We split this dataset

into 6 subsets of roughly 8000 samples, in order to evaluate

our systems as described in VI-C, and we train the MLPs

configured accordingly to the descriptions in V.

All MLPs have one hidden layer of size 30, and we

verified that the results obtained were equivalent from 20

to 50 hidden units. They have 4 output neurons, applying

a sigmoid non-linearity for hidden layer and output neurons

and a bias neuron for the hidden layer and the output layer.

Standard training of the MLP requires 4 rounds (gradient

steps) before early-stopping [9] occurs (one round is one

iteration over the whole dataset). We work with ǫMLP = 0.01.

VIII. EXPERIMENTS AND RESULTS

For the following experiments, we set the threshold τ conf

to 0. We chose not to discard unconfident prediction, in order

to have a fair comparison between the different systems.

We verified that the results presented in [13] are still valid:

discarding 10% of the most unconfident samples increases

the probability of correct detection by 5% on average, for a

given probability of false detection of 0.05.

We displayed ROCs for a probability of false detection up

to 20%, because probability of false detection higher than

20% is not realistic for real inner-city applications.

The results presented in this section, except for the base-

line, were obtained for a prediction horizon of 3s. We verified

that the conclusions are also valid for 1s and 2s.

A. Baseline

In order to evaluate the quality of the prediction, we

perform a simple prediction from the vehicle state at time

t to the behavior primitive at time t + Tpred. As can be

seen in Fig. 5, the quality of the prediction is high for an

instantaneous prediction (0s), and it decreases depending on

the timescale of prediction.
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Fig. 5. Results for the baseline.

B. Behavior prediction for the traffic light situation

We first evaluated the situation-specific learning for the

traffic light situation. In order to have a fair comparison

between the systems, we trained the Full learning system

regardless of the situation, and evaluated it only on traffic

light situations.

The evaluations of the different systems can be observed

in Fig. 6, where ROCs for a timescale of prediction of 3s are

displayed. As can be seen, the prediction using all features

(Full learning) and the prediction using only features related

to the traffic light (situation-specific learning) are equivalent.
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Fig. 6. Result for the “traffic light approach” situation, Tpred =3s.

C. Behavior prediction for the “preceding vehicle” situation

We evaluated the situation-specific module for the “pre-

ceding vehicle situation”, as well as the advanced situation-

specific module, which uses the predicted behavior of the

preceding vehicle as an additional input. The traffic light

module used to predict the future behavior of the preceding

vehicle was trained beforehand. We trained the Full learning

system regardless of the situation, and evaluated it only on

preceding vehicle situation.

The evaluations can be seen in Fig. 7, where ROCs

for a timescale of prediction of 3s are displayed. We can

observe that the results for the situation-specific module

1241



and the baseline are equivalent. We verified that a learning

system using only information about the preceding vehicle,

without information about the ego-vehicle, reaches the same

result. This means that the behavior of the driver in the car-

following situation in inner-city is reactive and instantaneous

most of the time. We verified this hypothesis by observing

the speed and acceleration curves of the preceding and ego-

vehicle over time. The comparison between the Full learning

and the Advanced situation-specific learning shows that

taking into account the prediction of the preceding vehicle

behavior (advanced situation-specific learning) improves the

prediction quality, which becomes equivalent to the quality

of the prediction using all features.
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IX. CONCLUSION

In this contribution, we proposed several architectures

for behavior prediction in the inner-city environment. We

showed that it is possible to predict the future behavior of

the driver using the current scene information. We presented

a system that uses the decomposition of a complex situation

into simpler situations: the situation-specific learning.

The complexity of the scene in inner-city traffic can grow

very large, because of the number of traffic participants

possibly interacting with each other, and influencing the ego-

vehicle driver behavior. A system which encounters new sit-

uation is not trained to interpret them and thus to predict the

future behavior of the driver. However, if we can represent

this complex situation with a composition of several simpler

situations which have already been encountered, we believe it

becomes possible to predict the future behavior of the driver.

We showed on a simple scenario that a complex situations

can be decomposed into a set of simpler situations without

loss of prediction quality. The scalability to more complex

situations will have to be demonstrated.

Moreover, we showed that we could use what has been

learned from the point of view of the ego-vehicle, and apply

it to other traffic participants. This can be applied for scene

understanding, and for more advanced predictions. If we

can predict what other traffic participants will do, it stands

to reason that this will improve the ego-vehicle behavior

prediction.

X. FUTURE WORKS

As a future research topic, we want to apply the presented

system to highway scenarios. We will investigate whether

our approach can be easily transferred to different driving

environments. The definition of behavior primitives might

have to change, in order to take into account lateral move-

ments for example. We also want to investigate techniques

to autonomously extract these behavior primitives.

The benefits of situation-specific learning regarding the

scalability will have to be demonstrated by applying this

concept to more complex situations.

A further improvement of the current method will be to ac-

tively exploit the presence of multiple prediction timescales,

which might be used for stabilizing the prediction. We also

plan to add to the current system, which predicts behavior

primitives (i.e., states), the prediction of changes of states,

in order to improve the overall prediction quality.

Concerning the possible applications of such a behavior

prediction system, knowledge about the future behavior of

the driver can be used to detect a dangerous behavior.

Another possible application is the use of this prediction to

anticipate and start early braking of the car. We expect such

a system to help reduce energy consumption.
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