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Abstract—Most developmental representations for design opti-
mization with evolutionary computation that have been described
in the literature are graph-based mimicking the interactions
observed in biological gene regulatory networks. Alternative
methods that directly manipulate the dynamical control system
for developmental processes have been termed Vector Field
Embryogeny (VFE) and have been applied successfully to cell
differentiation. In this paper, we compare the evolvability of
graph-based and vector field representations for controlling
developmental processes. Inspired by the notion of strong
causality in evolutionary strategies, we measure the covariance
between genotype and phenotype changes for both representa-
tions. Furthermore, we propose a measure to characterize the
representational power of both methods. If we compare VFE
and graph-based representations with similar representational
power, we notice that the covariance measure and therefore, the
expected evolvability of VFE is higher. We also observe that the
representational power of both methods decreases with increasing
degree of freedom. We speculate that the reason for this could
be the increased probability of the occurrence of strong point
attractors.

I. INTRODUCTION

Artificial Development (AD) finds increasing interest in the
scientific community of evolutionary computation, which is
mainly due to its promise to achieve scalability in automated
design [1]. AD systems can be characterized by the lack of
a direct mapping from genotype to phenotype. Instead, these
approaches use a simulated developmental process to translate
genotypic information into the phenotype. This means that the
dimensionality of the genotype space is decoupled from the
complexity of the phenotype and in general can be smaller
than the dimensionality of the phenotype space. By exploiting
regularities in both the structure and the organization of
the process, relatively short genotypes can result in complex
phenotypes.

To achieve this structural “unfolding”, usually an incremen-
tal, time dependent generative process is simulated (e.g., [2],
[3], [4], [5], [6], [7], [8]). Due to this time dependency, a
dynamical system is necessary to control the process. Several
formal representations of such a dynamical system are con-
ceivable. In this contribution, we will focus on two models
for the dynamical control of development.

Most models that are used for the simulation of the dynam-
ics of the developmental process in evolutionary computation
are graph based. Of course, this is mainly due to the inspiration

taken from biology where this process is governed by the
interaction of genes in regulatory networks. As a representative
graph formulation, we choose continuous time recurrent neural
networks (CTRNNs). This representation has been frequently
studied in the literature and it is conceptually very close to
gene regulatory networks.

More recently, an alternative model for the developmental
process has been suggested that uses a more direct phase space
representation of the dynamics to describe complex systems.
This model has been termed Vector Field Embryogeny and has
been shown to offer some advantages over graph-based models
both with respect to the explicit role of time [9] as well as to
the evolutionary success on some simple cell differentiation
tasks [10].

In general, the field of artificial development has not yet
fulfilled the aforementioned high expectations with regard
to solving the scalability problem in system design. One
reason seems to be that simulated developmental processes
are difficult to evolve and so far success has been limited to
mostly simple systems. Therefore, it is our aim to analyze the
evolvability of developmental representations exemplary for
CTRNN and VFE, since they represent structurally different
approaches to the problem of evolving dynamic control.

In general, an evolvable representation must enable the
evolutionary algorithm to stabilize successful mutations and
thereby to enhance the system quality with respect to the
selection criteria step by step during the generations. In the
context of evolutionary strategies this includes the capability
to adapt the strategy parameters of the mutation distribution
to the topology of the search space. One criterion to quantify
the evolvability of a certain representation for evolutionary
strategies is strong causality [11] and the measurement of
correlations between changes in the genotype and phenotype
space [12].

In more detail, our approach can be outlined as follows:
firstly, we take a large sample of randomly generated geno-
types. Secondly, we mutate each sample several times and
monitor the effect of the mutations. Thirdly, we observe the
resulting dynamics of the original and the mutated genotypes
for both representations (CTRNN and VFE) individually. We
define a phenotypic distance for dynamical control systems,
and investigate the covariance between genotypic and pheno-
typic changes for each representation. Finally, we compare the



covariances in graph and VFE representations. Furthermore,
we propose a measure of representational power, i.e., the
capability to represent different dynamics in the light of
developmental control. This will enable us to fairly compare
both representations.

The paper is structured as follows: in Section II, we outline
the two representations (CTRNN and VFE) that we analyze
in this paper. Section III introduces strong causality as a
prerequisite for the success of the optimization with an evolu-
tionary strategy. Then, section IV defines a general phenotype
for dynamical systems that can be employed to monitor the
phenotypic effect of mutations. In Section V, the experiments
and results are described for both representations separately
and in Section VI our observations are discussed for both
CTRNN and VFE. We conclude the paper in the final section.

II. GRAPH- AND VECTOR FIELD EMBRYOGENY-BASED
DYNAMICS REPRESENTATION

A. Artificial Neural Networks as Models for GRNs

Graph representations in artificial developmental systems
are usually inspired by natural gene regulatory networks
(GRNs), and control a multi-cellular development. For sim-
plicity reasons, only single-cell systems are simulated in our
analysis. Since the simulated cell has no neighbors, there is
no need to simulate interactions e.g. by using a diffusion
process. Note, that our approach could be easily extended to
multi-cellular systems (see section VII). At the same time, in
this contribution this simplification allows us to regard GRN
models as pure graphs, which can be described by a con-
nection matrix and nonlinear activation functions. The effect
of diffusion in a single cell simulation could be incorporated
by introducing a negative auto-regulation at each node, if the
calculation domain can be expected to have large size or open
boundary conditions. With these simplifications in mind, we
replace the GRN formalism with the widely used structure of
continuous time recurrent neural networks (CTRNNs). In these
neural network models, the activation ai of the i-th neuron is
calculated by ai = 1

1+e−s , where s is the weighted sum of the
inputs to this neuron. Weights are in the range [−1, 1].

B. Vector Field Embryogeny

Vector field embryogeny shifts the representational focus
directly to the dynamics that a network would generate,
i.e., to its phase space. Vector Field Embryogeny enables
mutation operators to directly influence a system’s phase space
(direct manipulation), instead of doing so indirectly via graph
manipulation. We will briefly outline the VFE framework, for
a more detailed introduction the reader is referred to [10].

Vector Field Embryogeny is inspired by vector field editing.
In computer graphics, the vector field editing method is
used for the creation of texture alignments and extraction of
analytical information about given graphical representations
of vector fields [13], [14], [15]. Even though this method is
extendable to D dimensions by applying the respective D-
dimensional geometric operations, the following considera-

tions are presented using a two-dimensional version of the
system for clarity and visualization purposes.

Fig. 1. An arbitrary GRN with two genes: x1 and x2 . Here, x1 and x2

are the input and the output node of the network respectively.

Consider an arbitrary simulated GRN inside a cell, with two
genes (Figure 1). We denote the state (i.e., the activation level)
of these two genes by x1 and x2, respectively; together the
activation levels form the vector X = (x1, x2). The temporal
behavior of any deterministic simulation of a regulatory net-
work containing these two genes can now be described with
respect to X by the differential equation

dX/dt = F(X, λ, t), (1)

where F is a vector field and λ is a vector of parameters.
In this paper, we will focus on isolated cells in constant
environmental conditions, such that F = F(X, λ). Hence, F
describes a time independent, two dimensional vector for each
system state X, which represents the direction and magnitude
of change in time, whenever the system reaches the state X.
F(X, λ) is a vector field, which is referred to as the phase
space of the dynamical system [16]. Vector field editing relies
on creating and changing vector fields by superposition and
adaptation of basic field elements Ei(X,λi). The vector field
for any system state X is then given by the superposition of
basic field elements:

F(X,λ) =
∑
i

Ei(X,λi). (2)

Typical elements have been proposed in [13] and [14] and
can be grouped into singular elements and regular elements.
Singular elements create a singularity in the vector field (i.e.,
a source or a sink) while regular elements in general do not.
Two examples are depicted in Figure 2.

In our framework, we adopt the regular element formulation
given in [13] and use a simplified version of singular elements.
The regular element we use is called attachment element. It
creates a flow of surrounding system states toward an attach-
ment line at the center of the phase space. The mathematical
formulation to create such an element, where the attachment
line is oriented along an arbitrary angle θ ∈ [0, 2π] is given
by



Fig. 2. Two basic field elements, which are also employed in the simulations:
a singular element is depicted on the left panel, and a regular element
(attachment element) is depicted on the right panel. Point and arrow mark
the center and center line of the elements respectively.

A(x1, x2) =

((
cos θ

sin θ

)
− cP (x1, x2)

(
− sin θ

cos θ

))
. (3)

Here, P (x1, x2) = sin θ(x1 u1) + cos θ(x2 u2) and c is a
parameter describing the speed with which the flow is attracted
to the line and U = (u1, u2) is the center position of the
element. Note, that for negative c, system states will diverge
from the line instead of converging to it. To spatially limit the
element’s influence for superposition, this attachment element
is multiplied by a Gaussian kernel B(x1, x2) of width 2σ and
center U: B(x1, x2) = e((x1u1) + (x2u2))/2σ . Therefore,
the complete formulation of the attachment element is given
by

VR = B(x1, x2) · A(x1, x2). (4)

We create a singular element by applying

VS(x1, x2) =

{
(U− X)/σ if r < σ

(2/r − 1/σ) · (U− X) if σ ≤ r < 2σ.
(5)

The variable r := ||X U||2 describes the distance of the
system state X to the center U of the singular element. The
width of the element is denoted by 2σ. A superposition of
η field elements, each weighted by a factor αi, yields an
arbitrarily complex vector field, which can be interpreted as
the system phase space:

F(x1, x2) =

η∑
i=1

αiVi(x1, x2), (6)

where αiVi(x1, x2) corresponds to Ei(X, λi) in Equation
(2), with λ consisting of all Ui ,σi ,αi of all field elements,
and additionally θi and ci of the regular elements. Thus, the
vector field described in Equation (6) constitutes the right hand
side of the differential equation

dX
dt

= F(X,λ), (7)

which is integrated from t = 0 to t = tmax to yield a
trajectory of the dynamical system. Evolving such a system
consists of representing λ in a chromosome and employing
standard evolutionary methods for the search, such as evolu-
tionary strategies (ES) [17].

III. A PREREQUISITE: STRONG CAUSALITY AND THE
GENOTYPE TO PHENOTYPE MAP

Evolvability in evolutionary strategies has been investigated
in [11]. The authors proposed that a mutation operator should
preserve the neighborhood structure in corresponding evolu-
tionary spaces, i.e., the genotype space, the phenotype space,
(and possibly the fitness space). They state that this is a
prerequisite for a successful evolutionary search, and quantify
the so-called causality condition in terms of probabilities:
∀gi, gj , gk :

‖f(gi)− f(gj)‖ < ‖f(gi)− f(gk)‖
⇔

P (gi → gj) > P (gi → gk)

(8)

Here, gi, gj , gk denote arbitrary genotypes while f(∗) is the
mapping between genotype and phenotype spaces. P (ga →
gb) is the probability for a mutation to result in a transition
from genotype ga to genotype gb. In [11], it has been shown
that for a direct genotype-phenotype mapping, evolutionary
strategies inherently possess strong causality since the mu-
tation distribution is Gaussian with zero mean. Thus, in an
evolutionary strategy with an indirect mapping to maintain
this causality, it would obviously be beneficial to have a
high covariance between changes in genotypes and changes
in phenotypes. For maximal covariance, a monotonic relation
between genotypic and phenotypic changes will allow an
evolutionary strategy to satisfy condition (8).

We will investigate the estimated change in causality of the
genotype to phenotype mapping created by both the graph
based developmental control represented by the CTRNN, as
well as the VFE based developmental control. To do so, we
will firstly define a phenotype representation for dynamical
systems, which forms a metric space, and thus allows the cal-
culation of ‖f(gi)− f(gj)‖ in condition (8). Subsequently, we
will compare the covariance of VFE and graph representations
to gain insight into the evolvability of both approaches.

IV. A PHENOTYPE FOR DYNAMICAL SYSTEMS

The way we represent the phenotype of a dynamical system
is conceptually similar to [18]. It is not straight forward to
define a general “phenotype” on the meta-level of dynamics.
However, as we have seen in the context of development, the
dynamics of a system are used to control cellular growth.
Depending on the interpretation of dynamical features, system
transients or trajectory endpoints (i.e. stable attractors) seem
suitable for a representation of the phenotype. Since in the
majority of biological organisms, thresholds in the genetic reg-
ulation of cellular processes combined with transient behavior
are used to control development, we believe that the phenotype
representation should take this into account and should be able
to capture transient-related features and changes thereof. In
the following, we will introduce discrete fields, as possible
phenotype for dynamical systems.



A. Discrete Fields

Evaluating the vector field in the general dynamical systems
Equation (1) at n regular grid points in all m cardinal direc-
tions yields nm vectors vl, l ∈ {1, ..., nm} that approximate
the dynamical system in a discretized way. A change in any
of the vectors vl can be seen as a change in parts of the
transients of the system, since it represents a local change in
phase space, which does not necessarily result in a change
of stable attractors. Note, that this discrete representation can
easily be computed for both CTRNNs and VFE. In Vector
Field Embryogeny, the right hand side of Equation (2) gives
vl directly when evaluated at the nm points. For graphs, ini-
tializing the nodes with the same nm discretization points, and
subsequent iteration of graph dynamics for one step yields the
necessary data. The difference between each of the nm system
states after iteration and the corresponding initialization values
yields a local derivative, which corresponds to the vectors vl.

B. Field Difference

The field difference FD(A,B) between two dynamical
systems A and B, represented by discrete fields vAl and vBl
is given by the normalized sum of the Euclidean distances
between corresponding vectors:

FD(A,B) =
1

nm

nm∑
l=1

∥∥vAl − vBl
∥∥
2

(9)

In the following, we will use the field difference to determine
‖f(gi)− f(gj)‖ in Equation (8), i.e., the phenotype difference
of the two individuals i and j.

V. EXPERIMENTS

A. Causality and Covariance in Graph Based Modeling

For the calculation of the field difference, three nodes of
the CTRNN are selected randomly. Thus, the observed phase
space is 3-dimensional, independent from the actual network
size. Note, that this choice is arbitrary and will not change
the general process. Reducing the observation of a network to
a smaller number of nodes represents an investigation in the
light of a developmental model, since usually not all nodes in
a graph control development directly, but only a small subset
is responsible for the interface to the cellular model. Each of
the three dimensions is sampled with n = 20 discretization
steps as points for the calculation of vl, thus, 8000 vectors
represent each phase space. The initial activation value of all
other neurons is drawn from a uniform random distribution in
the range [0, 1].

Firstly, we will visualize the characteristics of the different
genotype to phenotype maps. To this end, we want to intro-
duce ∆G∆P -plots, which display the phenotypic change ∆P
resulting from a number of genotypic changes ∆G. The left
panel of Figure 3 shows a sample representation of a ∆G∆P -
plot, which is created in the following way1:

1All of the experiments in this paper are based on the statistical analysis
of samples. The sample size is chosen as a trade-off between computational
complexity and statistical variation, which is indicated in most figures.

Fig. 3. An example for the ∆G∆P plots. The right panel shows the data
sample that is used to create the plot in the left panel. The sample is taken
from an experiment using simple neural networks with three nodes. Only one
of the 100 ∆G∆P plots which are created for each experiment is shown.

1) Sample the genotype space with 100 random points
g0i , i ∈ {1, ..., 100}.

2) Create the discrete fields vl for these 100 points, and
denote them as phenotypes p0i , i ∈ {1, ..., 100}.

3) Mutate each g0i 1000 times by adding uniformly dis-
tributed random variables in the range [-0.1,0.1] to
receive genotypes gji , j ∈ {1, ..., 1000}. This way the
genotype neighborhood in the 100 genotype locations is
sampled.

4) Then, calculate new phenotypes pji , j ∈ {1, ..., 1000}.
5) For each of these, calculate the genotype distance

∆Gji = 1
N

∥∥∥g0i − gji ∥∥∥
2
, where N is the number of

entries in the genotype vectors. Note, that for evolu-
tionary strategies, this genotype distance correlates with
the probability of transition from g0i to gji .

6) Calculate the phenotype distance as field difference
∆P ji = FD(p0i , p

j
i ).

7) The resulting pairs ∆P ji ∆Gji can be visualized in a
histogram fashion to characterize the mapping. These
plots are constructed as a 2D histogram, where the
widths of the 20× 20 bins are chosen to span over the
range [mini,j(∆G

j
i ),maxi,j(∆G

j
i )] along the ∆G-axis,

and over the range [0,maxi,j(∆P
j
i )] along the ∆P -

axis. In such plots, bin columns contain all ∆P -values
that result from a fixed ∆G-range. Each bin column is
normalized individually, such that, for each column, the
highest bin has value 1. This accounts for a possibly
uneven distribution of mutations along the ∆G axis.

Such plots give first information on the mutational behavior
of the genotype to phenotype map. Also, because of the
sampling of the genotype space, we can infer homogeneity
of the mutational behavior of the genotype to phenotype
map. As an example, Figures 3 and 4 show representative
plots for the mutations of one point g0i , for graphs of size 3
and 20, respectively. The 20 nodes setup exhibits cloud-like
distributions of ∆G∆P pairs. Independent of the mutation
strength, both small and large changes in the genotype can
be achieved. Note, that this behavior can be observed for all
sampled g0i (data not shown).

From the plots alone, we can observe that the covariance
between ∆G and ∆P is higher for graphs with a low number



Fig. 4. A second example for the ∆G∆P plots. The figure shows a
representative plot for neural networks with 20 nodes.

of nodes than for larger graphs. Remember that for a mapping
to maintain causality in ES, a distribution in the ∆G∆P
plots that rises monotonically would be ideal; this would
correspond to a high covariance in the data points. Therefore,
we choose the covariance between ∆G and ∆P for different
representations to estimate the strong causality. For a system-
atic comparison, we subtract the mean and normalize the data
for each of the 100 sets of data points that define the ∆G∆P
plots to [−1, 1]. Note, that normalization is sensible, since ES
self-adapts mutational step sizes, such that the qualitative, and
not the quantitative relation between ∆G and ∆P values are
important.

Figure 5 gives the distributions of the covariances for the
100 g0i , evaluated in differently sized networks. The plot
verifies the observations above: the covariance rises with
smaller network sizes. Thus, for evolutionary strategies, we
could expect that only very simple graph structures can be
evolved efficiently for developmental control.

Fig. 5. The plot shows the distributions of covariances for graph setups with
different numbers of nodes. Each box represents the data of 100 genotype
positions g0i .

B. Causality and Covariance in Vector Field Embryogeny
Based Modeling

The same investigations can now be performed for the
Vector Field Embryogeny representation. Similar to the graph

experiment, Figure 6 shows a representative ∆G∆P plot for
VFE, which employs 6 basic field elements. We can observe a

Fig. 6. A representative ∆G∆P plot for a Vector Field Embryogeny
representation with 6 basic field elements is shown.

slightly positive slope of the distribution. Again, Figure 7 gives
the distributions of the covariances for the 100 g0i , evaluated
for different numbers of basic field elements. We can see

Fig. 7. The plot shows the distributions of covariances for VFE with different
numbers of nodes. Each box represents the data of 100 genotype positions
g0i .

a similar trend as for the graph representations: covariances
decrease for larger systems.

VI. COMPARISON OF CTRNN AND VFE
REPRESENTATIONS

To be able to compare the two approaches for developmental
control, causality and covariance only represent the capability
for evolutionary computation to advance via stabilized mu-
tations. However, it is also necessary to compare systems
that have the same representational power, i.e., the same
capabilities to represent different dynamics.

Typical features of dynamical systems such as the number
of attractors and the basins of attraction are interesting for the
analysis of stable system states, but neglect most of the tran-
sient features. At the same time, evaluating transients yields
highly variable, system dependent information. An illustrative
example is the comparison of two similar phase spaces, except



that the one is scaled by a factor of two, i.e. the system is
twice as fast. For the attractor based investigations, both would
obviously yield the same results, while for a transient based
investigation, they would be different. Therefore, we need to
decide whether for our purpose the transient or the attractor
based view is most appropriate.

We are looking for a measure of representational power that
is adapted to the use of dynamical systems for controlling de-
velopment. In developmental models the transient often works
as a switch, e.g. cell division is triggered if the concentration
of a certain chemical (transcription factor) exceeds a threshold.
Therefore, the transient behavior of the control system is
important for our investigations. Furthermore, as mentioned
above, not all state variables of a dynamical system directly
influence the cellular behavior in developmental modeling.
Therefore, we will assume that the transients of only a
restricted number of state variables of the dynamical system
is of interest for determining the representational power. The
aforementioned thresholds are usually specified in the genome
during the evolutionary process. Since they are individually
defined for single chemicals they can be regarded as divisions
of the phase-space, perpendicularly to its cardinal directions.
If a trajectory of a system state crosses such a threshold, an
action is triggered. When a threshold exists for each cardinal
direction, it is possible to constrain a cellular function to an
arbitrary rectangular subvolume of the phase space. Therefore,
the ability of a dynamical system to reach these subvolumes
during the transient behavior is closely linked to its ability
to represent rich differential cellular activity patterns. Thus,
we measure the representational power of a dynamical control
system for development by the fraction of the phase space it
can reach during the transient behavior. Note, that this measure
intentionally ignores the attractor structure of the dynamical
system. In the following, we will investigate the covered phase
space, i.e., the area in the phase space that can be reached by
the dynamical system from predefined starting points.

The experiments are structured as follows: We initialize
nine system starting states Xi = (xi, yi, zi), i ∈ {1, ..., 9}
in a three dimensional phase space at xi ∈ {0, 0.5, 1} and
yi ∈ {0, 0.5, 1}, where all zi = 0.5. From a developmental
point of view, this could represent the system state of nine un-
differentiated cells with distinct maternal gradient information.
Here the initial states of genes x and y are determined by the
system configuration, e.g. maternal gradients and the state of
gene z would represent a cellular differentiation variable. The
dynamical system is initialized with a random chromosome,
and from each of these starting points, state space trajectories
are iterated for 100 time steps. All 9·100 phase space positions
visited by the system states are recorded. Then, the procedure
is repeated 999 times with a new random chromosome. In this
way, the resulting point-cloud of all transient system states of
the 1000 random samples from the genotype space gives an
estimate of the phase-space coverage of the representation. In
order to calculate the fraction of the covered phase space, we
have to discretize the space and check for each sub-volume
whether it has been visited by a transient or not. Therefore,

we subdivide the phase space into 10× 10× 10 equally sized
sub-volumes, and check for each if they contain at least one
of the previously recorded system states. Then, we can count
these sub-volumes and get an estimate of the representational
power of the dynamical system.

For Vector Field Embryogeny, Figure 8(a) gives a plot of
the fraction of the covered phase space over the number of
basic field elements, i.e., the degrees of freedom employed.
Note, that we chose half of the number of basic field elements
to be singular, and the other half to be regular elements,
similar to the other VFE-setups in this paper. We can see that
phase space coverage is 100% for lower degrees of freedom.
Interestingly, the phase space coverage decreases steadily with
higher numbers of basic elements. While at first this seems
counter-intuitive, we can expect that for a large number of
basic field elements, it is likely that a strong attractor is
close to the starting point of the system states. In this case,
the trajectory will quickly converge to the attractor state and
phase space coverage will be small. This is supported by the
observation that the covered phase space in these cases is
located exclusively in the vicinity of the starting points (data
not shown).

Figure 8(b) gives a plot of the fraction of covered phase
space over different graph sizes for the CTRNN representation.
We can see that for a low number of nodes, less than half of the
phase space is covered by the point cloud. With an increasing
number of nodes, phase space coverage increases to over 87%
since the representation represents richer dynamics. However,
for larger graphs, the phase space coverage decreases, where
the largest network of 96 nodes covers only 30%. This decreas-
ing phase space coverage with increasing degree of freedom
of the dynamical system has equally been observed for the
VFE framework. We argued that this effect could be due to
attractors lying close to the starting points. Tt is conceivable
that a similar effect occurs for graph-based representations,
however, this remains to be investigated in more detail.

The two plots in Figure 8 allow us to assess representational
power of the two approaches and give us a basis for a fair
comparison of evolvability. As an example, we choose a graph
with 20 nodes (400 degrees of freedom), which gives a phase
space coverage of 87% (represented by the circle in Figure
8(b)). From the circles shown in Figure 8(a), we can see that
a Vector Field Embryogeny representation using 12 basic field
elements (78 degrees of freedom) clearly has a higher phase-
space coverage, while a VFE using 24 basic field elements
(156 degrees of freedom) clearly has a lower phase space
coverage than the chosen graph sample.

Figure 9 shows the ∆G∆P covariance values for these
three cases: a CTRNN graph with 20 nodes, a Vector Field
Embryogeny representation with 24 basic elements, and one
with 12 basic elements. We can see that covariance values are
low in general, but are significantly higher for both Vector
Field Embryogeny representations.



(a)

(b)

Fig. 8. The fraction of phase space coverage of VFE (panel (a)) and CTRNN
(panel (b)) Note, the abscissa values, giving the dimensionality of the search
space: in (b), for a fully connected graph, the number of nodes is squared to
determine the number of free parameters. In (a), the number of basic field
elements is multiplied by the number of parameters that encode each element.
Highlighted by circles are the three setups that are used for comparison (see
text for more details).

VII. DISCUSSION

Developmental representations in evolutionary computation
have the potential to enable the optimization of complex
systems. At the same time, indirect representations make
evolutionary algorithms more difficult to analyze, e.g. the
mutational effect on the phenotype level, which is important
for guiding the search process and the self-adaptation of
parameters in particular for evolutionary strategies, is neither
easy to determine nor to control.

The ∆G∆P plots introduced in this paper provide a visual
cue on the mutational effect and the covariance between
changes on the genotype and the phenotype space. In evo-
lutionary strategies, the covariance of the ∆G∆P data can
be used as an indicator of evolvability. The experiments have

Fig. 9. Covariance values for CTRNN graph and vector field representations
against numbers of nodes and basic field elements. Each box represents the
data of 100 genotype positions g0i .

shown that for CTRNN graphs, covariance decreases with
increasing number of nodes. For Vector Field Embryogeny,
this trend can also be observed. This strongly motivates the
use of an incremental approach toward more complex systems,
where starting from a small graph or from a vector field
representation with only a few basic field elements, evolution
has the ability to add nodes or field elements when progress
stagnates. NEAT [19] is such an approach for graphs; similar
ideas could be envisioned for vector fields.

When comparing the evolvability of different representa-
tions, we have to take their respective representational power
into account. As a first approximation we have chosen to
estimate the number of cellular functions that could be repre-
sented by the fraction of discretized phase space volume which
sensibly initialized trajectories could reach. This provides us
not only with a basis for a fair comparison but also gives us
additional insight into the dynamical control system that is
represented by vector field and graph-based models.

At first sight it has been surprising that the proposed mea-
sure for the representational power decreased with increasing
degree of freedom for both the graph and the vector field
based models. In VFE, basic flow field features such point
attractors are directly manipulated and it seems likely that by
increasing the number of point attractors in a phase space of
restricted size, trajectories will become shorter and the covered
phase space volume smaller. For the continuous time recurrent
neural networks, an increase of the number of nodes cannot
be directly associated with an increase of point attractors and
therefore, the results are more difficult to interpret. Further-
more, Figure 8(b) shows that the representational power does
not monotonously decrease but reaches a maximum at around
250 degrees of freedom. Although it is known that larger
graphs potentially have a higher number of attractors [20], it
remains to be investigated whether this can explain our results
in general.



For VFE, this finding would again motivate an incremental
approach, with careful introduction of new basic field ele-
ments. For example, a new random element could be added
with zero weight initialization such that it does not change the
phase space at first. Evolution could then tune the weight and
thereby increase the complexity of the representation incre-
mentally. Such adaptive representations with neutral mutations
to increase the degree of freedom of the representation without
changing the search space have been successfully employed
in design optimization [21].

When we choose a graph and a vector field representation
with similar phase space coverage, we find that Vector Field
Embryogeny has a higher covariance between phenotypic
changes and genotypic changes leading to a higher degree of
causality than CTRNN. For evolutionary strategies, this corre-
lates with a higher success rate of Vector Field Embryogeny in
solving cellular differentiation tasks. The observed covariance
values are low in general. We expect to find other features that
distinguish the two dynamics representations and additionally
account for the observed higher evolvability of VFE. In future,
we will try to alter VFE and graph representations to increase
covariances in both without reducing representational power.
This will allow us to assess covariance of ∆G∆P as useful
evolvability measure in evolutionary strategy frameworks.

Another interesting fact from an evolutionary perspective is
the dimensionality of the genotype space for such matched
representations: while the genotype space grows quadratically
with the number of nodes in a fully connected graph, it grows
only linearly with the number of basic field elements in Vector
Field Embryogeny. This could naturally alleviate the search
process in more complex domains.

Our analysis can be extended to dynamical systems that
represent coupled cellular states, such as diffusion based multi-
cellular systems. Performing the described process in parallel
for each cell of an individual would yield n phase spaces and
field differences for n cells which would simply increase the
sample for statistics.

The investigations above have been performed using simple
basic field elements for VFE only. We think that one of the
strengths of VFE lies in the possibility to modularly choose
more advanced, non-trivial basic field elements for a problem-
adapted search space. Apart from a posteriori analysis, the
causality considerations in this paper could also be used as
an a priori benchmark to assess evolvability of more complex
basic field elements.
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