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Abstract—In this paper we propose an approach for identifica-
tion of high-level object manipulation operations within a contin-
uous multimodal time-series. We focus on multimodal approach
for robust recognition of action primitive data. Our procedure
combines an unsupervised Bayesian multimodal segmentation
with a supervised machine learning approach. We briefly outline
(1) the unsupervised segmentation and selection of uni- and bi-
manual manipulation primitives developed in our previous work.
We show (2) an application of the ordered means models to
classification of estimated segments. To assess the performance
of our approach, we compare the computed labels to the ground
truth acquired during the data recording. In our experiments we
examined the robustness of the procedure on two different sets
of segments: full length (≈ 95% overlap with the ground truth
on average), partial length (≈ 10% overlap with ground truth
on average). We have achieved a cross validation rate of ≈ 0.95
and recognition accuracy of ≈ 0.97 for full length and ≈ 0.84
for partial length test sets.

I. INTRODUCTION

An important objective of today’s robotics research is to
enable robots to interact and learn from humans. In order
to participate in a simple interaction scenario, a robot needs
the ability to autonomously single out relevant parts of the
movement executed by a human. It also needs a mechanism
of representation and identification of these parts.

Object manipulations constitute a large amount of human’s
interaction with the environment. In this paper we focus on
multimodal identification of high-level uni- and bi-manual
object manipulations in a continuous sequence. Our multi-
modal approach is inspired by the fact that during interactions
different information sources (e.g. hearing, haptics and pro-
prioception) are available to humans. The modalities of the
recorded action sequences are: joint-angles of the hand and
palm, force feedback of the fingers for both hands and the
audio signal accompanying the object manipulation.

Learning and representation of action primitives and mod-
eling of action sequences has been a popular research topic.
Hidden Markov models [1] , finite state automata [2], stochas-
tic context-free grammars [3], [4] and manifold learning [5]
constitute a large part of the successfully used methods. A
review of different techniques can be found in [6]. Successful
approaches to sensor fusion for action and activity recognition
have been showed in [7], [8], [9]. A recent overview of action
recognition research can be found in [10].

However, in real-world applications, observations are in-
complete or fragmented, sensor channels are noisy or com-
pletely missing. Thus, such scenario requires an approach with
temporal and structural robustness that is able to provide a high
degree of flexibility and applicability.

Fig. 1. Experimental setup: a human demonstrator wearing pressure and
joint angle sensors performs manipulation operations with a (instrumented)
plastic bottle provided with a contact microphone.

Our approach combines unsupervised Bayesian segmenta-
tion for multimodal time series [11], [12] and supervised learn-
ing with ordered means models (OMMs, [13]), a novel tech-
nique to machine learning of time series. An approach towards
unsupervised segmentation of the multimodal time series of
object manipulations has been developed in our previous
work [11]. Our segmentation procedure applies Fearnhead’s
method for unsupervised changepoint detection for unknown
number and location of changepoints [12]. Ordered means
models (OMMs) have been successfully used to model mul-
tivariate sequential data [14], [15]. In this paper we introduce
a two-staged learning procedure. It (1) estimates high-level
segmentations and (2) learns OMM representations based on
the results of (1). In the evaluation, we assess the performance
of OMM-based classification and show the importance of
multimodal approach to learning. We examine the following
uni- and bi-manual operations: picking up, holding, shaking,
putting down, screwing and unscrewing the cap, pouring.

The text is organized as follows: in Section II we describe
the experimental setup and the recorded data; in Section III
and IV we outline the segmentation method and the classifica-
tion with OMMs; in Section V we present the data experiments
followed by a discussion of the results in Section VI; we give
a conclusion as well as a brief outlook of our future work in
Section VII.



II. SCENARIO AND SETUP

In our scenario, a human demonstrator performs sequences
of simple object manipulations with one and both hands. The
object of these manipulations is a gravel-filled plastic bottle.1

The instrumented bottle can be seen in Fig. 1. In the following
we provide a brief overview of the data acquisition previously
described in [11].

We use the following sensors to record multimodal time-
series of the performed action sequences:

• 1 contact microphone attached to the bottle. The contact
microphone focuses on in-object generated sound, ignor-
ing most environmental noise.

• 2 × 24 joint-angles calculated from the measurements of
two Immersion Cyberglove devices describe the individ-
ual postures of both hands.

• 2 × 5 FSR pressure sensors attached to the fingertips of
each CyberGlove record the contact forces.

This collection of sensors yields a 29-dimensional (24 + 5)
representation for each hand in addition to a scalar audio
signal. The human demonstrator was told to perform a se-
quence of basic manipulation actions in the fixed order showed
in the following enumeration. To achieve a rich variance of
timing between trials, we added Gaussian noise to the nominal
duration of the action primitives as specified in parentheses:

1) pick up the bottle with both hands (2 s + η1 )
2) shake the bottle with both hands (.7 s + η2 )
3) put down the bottle (1 s)
4) pause (1 s)
5) unscrew the cap with both hands (1.2 s + η3 )
6) pause (1 s)
7) pick up the bottle with right hand (2 s + η4 )
8) pour with right hand (1 s + η5 + 1 s + η5 )
9) put down the bottle (1 s)

10) fasten the cap with both hands (1.2 s + η6 )
The random variables ηi ∼ N (0, .5 s) denote the randomized
timing of subsequences. The overall length of the time series
of a trial accumulates to approximately 30 seconds.

III. SEGMENTATION

The recorded time series of multiple sensor modalities
capture complex and high-dimensional descriptions of action
sequences. Based on the tactile and audio modalities, our two-
stage segmentation identifies and selects relevant multimodal
low-level data. In the following paragraphs we briefly outline
the two-stage procedure developed in our previous work [11].

The tactile modality is used to obtain a preliminary rough
split of the sequence into sub-sequences of “object interaction”
and “no object interaction”. Sub-sequences that have been
recognized as “object interaction” are further analyzed in detail
w.r.t. qualitative changes of the audio signal in order to refine
the rough segmentation. In this subordinate segmentation step,
all “object interaction” segments produced in the previous step

1The use of gravel instead of liquid is due the necessity of a distinct audio
signal and also safety concerns.

are sub-segmented. The sub-segmentation is formed by select-
ing segments that exhibit homogeneous oscillatory properties
within the audio modality.

In both stages, the segmentation is performed by applying
Fearnhead’s method for unsupervised detection of multiple
changepoints in time series [12]. Within this probabilistic
framework, the optimal segmentation is obtained by maximiz-
ing the posterior distribution of the number and location of
the changepoints. The segmentation is controlled by a set of
local models and a prior for distribution of segment lengths.
The estimated changepoints are optimal in the sense that the
probability of all sub-sequences to originate from applied data
models is maximized.

The resulting segmentation is characterized by constant
contact topology in respect to overall hand activity as well as
homogeneous characteristics of the audio signal. The outlined
approach is robust against noise and delivers a segmentation
that has a high degree of temporal and structural accuracy.

Fig. 2 illustrates segmentation determined on the basis of
tactile modality. Contact assignments identify parts of the time
series that are directly associated with object interactions. The
sub-segmentation using the audio channel is showed in the
Fig. 3. In this figure the segments “shake”, “hold“ and “put
down” (2,3 and 4 resp.) as well as “grasp”, “pour”, “hold” (9,
10, 11 resp.) are generated from the “interaction segments” 1
and 5 (see Fig. 2) by subordinate segmentation of the audio
modality. In this case six segments have been generated for six
semantic descriptions of action primitives. Here, the overlap
with ground truth is large. In the other case the recorded
audio data provides for finer segmentation within one semantic
category. Two segments (6 and 7) have been generated for
one semantic description of the action primitive “unscrew”.
This is due to the change of acoustic signal accompanying the
grasping of the bottle lid, being part of the action execution
for “unscrew”. Fig. 3 shows the corresponding peek in the
level of the audio signal within the segment 6. For segment 6
the overlap with ground truth is poor.

Fig. 4 presents a histogram of the generated action primi-
tives i.r.w. their overlap with the ground truth. The right side
of each histogram shows the number of generated segments
that have a high overlap (e.g. “shake”). These action primitives
correspond the first case described above. The left side of each
histogram presents the number of generated segments having
a low overlap with the ground truth (second case).

As described above, the multimodal data representing an
action primitive may contain more than one semantic sub-
structure. Due to this fact, for a semantic action primitive
description we receive segments with different degree of
ground truth overlap. In order to realize learning of semantic
categories (“hold”, “shake”, “pour” etc.), we use a model that
is able to robustly represent partial multimodal sequential data.

IV. ORDERED MEANS MODELS

In order to classify the segments, we use a specialized
generative model, which we refer to as ordered means mod-
els (OMMs). To use generative models for classification of



Fig. 2. Initial segmentation of a multimodal time series. First row: preprocessed joint-angle trajectories for both hands and the audio signal; second row:
tactile signal for both hands. The black frames indicate the ground truth. The segmentation is estimated by applying Fearnhead’s method to the tactile data
of both hands.

Fig. 3. Sub-segmentation for a multimodal time series. First row: preprocessed joint-angle trajectories for both hands and the audio signal; second row:
tactile signal for both hands. The black frames indicate the ground truth. The segmentation is a refinement of the segmentation in the Fig 2, it is estimated
by applying Fearnhead’s method to the audio signal.

Fig. 4. Histogram of the segment distribution w.r.t. their overlap with
ground truth. The leftmost column shows the number of undetected segments
per action primitive.

Fig. 5. This figure illustrates the design of an ordered means model with three
states. The grey circles represent the model states, the blue arrows represent
the emissions from the state, and black and red arrows emphasize the allowed
state transitions. The red arrows represents exemplarily one particular path:
the state sequence 1, 1, 2, 3.

unseen time series, one firstly estimate a model for each class
by means of labeled examples, i.e. examples that are assigned
to a particular class. An unseen example is then classified to
the class which model is most likely responsible for generating
the example in question.

In case of the generated segment data, especially robust
modeling in terms of incomplete and missing data is re-
quired. Even though approaches as hidden Markov models
reach excellent results for complete data, they might not be
the optimal choice for scenarios with unexpected gaps or
time series with missing beginnings or endings. In particular,
HMMs’ implicit modeling of segments length distributions in
terms of transition probabilities could lead to an inadequate
representation for missing or fragmented data. Here, as a
major difference in the overall model design, OMMs do
not incorporate any transition probabilities; instead, all paths,
i.e. all valid sequences of model states, are equally likely. This
yields a model structure that also allows unlikely paths, which,
e.g., correspond to time series with unexpected gaps.

In general, ordered means models (OMMs) are, similar to
HMMs, generative state space models that emit a sequence
of observation vectors O = [o1, . . . ,oT ] out of K hidden
states. Figure 5 illustrates a OMM with three states. OMMs
incorporate a number of design decisions:

• Path probabilities: In OMMs each path, i.e. each valid
sequence of states, is equally likely (e.g. the violet
marked path in Fig. 5. Note that such a design differs
fundamentally from modeling transition probabilities in
HMMs. There is no equivalent realization in terms of
transition probabilities.

• Emission densities: The emissions of each state are mod-
eled as probability distributions bk(·) and are assumed to



be Gaussian with bk(ot) = N (ot;µl, σ). The standard
deviation parameter σ is identical for all states and is
used as a global hyperparameter.

• Model topology: OMMs only allow transitions to states
with equal or higher indices as compared to the current
state, i.e. the network of model states follows a left-to-
right topology (cf. 5).

• Length distribution: In principle, OMMs require the
definition of an explicit length distribution either by
domain knowledge or by estimation from the observed
lengths in the training data. This, however, may not be
possible due to missing knowledge or non-representative
lengths of the observations. To circumvent the definition
and estimation of a length model we assume a flat
distribution in terms of an improper prior according to
equally probable lengths.

With regard to these design decisions, an OMM Ω is com-
pletely defined by an ordered sequence of reference vectors
Ω = [µ1, . . . ,µK ], i.e. the expectation values of emission
densities.

A. Parameter estimation
In order to estimate particular model parameters

Ω = [µ1, . . . ,µK ] by a set of observations O = {O1, .., ON}
we maximize the log-likelihood L =

∑N
i=1 ln p(Oi|Ω) with

respect to the mean vectors µk. To solve this optimization
problem, we use an iterative expectation maximization
algorithm, similar to the well-known Baum-Welch algorithm
from HMMs but without transition probabilities.

V. EXPERIMENTS

In our evaluation we operate on a data pool containing 30
sequences of object manipulations captured as described in
Sec. II. This data was recorded with one human demonstrator
during one session. In principle, the structure of all these
trials should be identical except the execution timing. During
data recording we also acquire ground truth by requesting the
subject to start or end subsequences at signalled points in time
(cf. [11]). The recorded ground truth timestamps mark the start
or the end of the action primitives within the time series. We
then selected and labeled the automatically generated segments
by means of the recorded ground truth. This set of action
primitive segments constitute our data pool for training and
testing.

In our experimental work we investigate the following
research questions:

1) How does the choice of hyperparameters influences the
generalization properties of an OMM classifier?

2) Does the use of multiple modalities improve the recog-
nition performance?

3) Do OMM classifiers provide robustness towards partial
action primitives segments?

In order to investigate the first question, we carried out five-
fold cross validation training on a set of hyperparameters pairs
chosen from

H := {(K,σ)|K ∈ {2, . . . , 130}, σ ∈ {0.1, . . . , 1.5}},

Fig. 6. This figure illustrates the partitions we used for data evaluation.
The green color indicates the full length segment data set that was further
divided into a training and a testing data set. The red colored square contains
partial length data that was used for testing. For cross validation, we used all
available segments.

where K denotes the number of OMM states and σ the
variance of the corresponding emission distributions.

In addition, to address the second question, we conducted
cross validation experiments with all modality combinations:
tactile, joints, audio, joints & tactile, joints & audio, tactile
& audio, joints & tactile & audio2.

To analyze the robustness properties of OMM classifiers
with regard to the generated action primitives, we selected
two types of data segments according to overlap with ground
truth. For the examples of the first set the overlap with ground
truth is on average ≈ 10%. This highly partial length segments
correspond to a small region in the beginning of an action
primitive. In contrast, the second set contains segments with
≈ 95% overlap with ground truth. These segments correspond
to almost full length action primitives. In the following, we
refer to first selection as partial length data and to the second
data set as full length data. For each modality combination, we
randomly divided the full length data in training and test sets.
We then trained OMM classifiers with the training data sets. In
these experiments, we chose the optimal hyperparameter pairs
(K∗, σ∗) yielded in cross validation. We obtained the final
test set accuracy values by applying the resulting classifiers to
both, the full length and the partial length test data set. See
Figure 6 for an illustration of the data partitions.

We applied short-time Fourier transformation to the raw au-
dio signal and used the absolute values of the first ten Fourier
coefficients as audio modality feature. The data streams from
the tactile and joint angle sensors were used without any
feature extraction. All data was normalized to zero mean and
unit variance.

VI. RESULTS AND DISCUSSION

Figure 7 illustrates the dependency between the hyperpa-
rameters (K, σ) and the cross validation accuracy for the
tactile & joints & audio and audio sets, respectively. This
figure clearly demonstrate that with an increasing number
of states K and a growing value of emission distribution
parameter σ the accuracy remains stable.

2In the following we will use the italic font to refer to data set containing the
corresponding modalities, e.g. joints & audio & tactile stands for all available
modality data, joints & tactile is the data set in which the audio data channel
is omitted.



Fig. 7. Dependency between the number of OMM states K, emission
distribution parameter σ and the classification rate; tactile & joints & audio
audio data.

Hyperparameters

Sensors K∗ σ∗

tactile 28 1.2
joints 4 0.9
audio 16 0.4

joints & tactile 4 1.0
joints & audio 8 0.5
tactile & audio 8 0.3

joints & tactile & audio 8 0.7

TABLE I
THIS TABLE SHOWS THE BEST HYPERPARAMETERS FOR ALL SENSOR

COMBINATIONS THAT WERE FOUND IN GRID SEARCH.

For σ > 0.3 OMM classifiers trained with tactile & joints
& audio reach an average accuracy of ≈ 0.87 with a standard
deviation of ≈ 0.02. Classifiers trained with audio data only
yield an average cross validation performance of ≈ 0.74 with
the same standard deviation of ≈ 0.02. These results indicate
that OMM classifiers are able to provide good classification
results for the evaluated set of action primitives almost in-
dependently of the chosen hyperparameters. In particular, a

Accuracy

Sensors cross validation full length partial length

tactile ≈ 0.64 ≈ 0.76 ≈ 0.64
joints ≈ 0.69 ≈ 0.84 ≈ 0.62
audio ≈ 0.79 ≈ 0.91 ≈ 0.70

joints & tactile ≈ 0.69 ≈ 0.89 ≈ 0.60
joints & audio ≈ 0.93 ≈ 0.89 ≈ 0.79
tactile & audio ≈ 0.89 ≈ 0.97 ≈ 0.83

joints & tactile & audio ≈ 0.95 ≈ 0.97 ≈ 0.84

TABLE II
THIS TABLE SHOWS THE CLASSIFICATION ACCURACY FOR ALL SENSOR
COMBINATIONS. THE SECOND ROW DENOTES THE CROSS VALIDATION
ACCURACY FOR THE COMPETE DATA SET, THE THIRD ROW SHOWS THE

ACCURACY FOR THE TEST SET THAT CONTAINS THE SUFFICIENT
SEGMENTS, AND THE FOURTH ROW SHOWS THE CORRESPONDING

CLASSIFICATION ACCURACY FOR THE TEST SET WITH INSUFFICIENT
SEGMENTATION EXAMPLES.

varying number of model states K does not lead to substantial
variations in classification performances. Additionally, OMM
classifiers are generally robust according to changes in the
variance parameter σ. In case of tactile & joints & audio
small σ values result in loss of cross validation performance.
However, for 0.3 < σ < 1.5 the accuracy stabilizes on a high
level.

The second column of the Table II presents the best re-
sults of cross validation accuracy for all evaluated modality
combinations with each row containing the highest reached
accuracy value. These results indicate that combinations of
modalities provide superior representations for action prim-
itives. Two out of three single modalities reach substantially
lower classification rates in cross validation as compared to the
modality combinations. Only in experiments with separated
audio modality OMM classifiers outperform classifiers that
make use of joints & tactile by ≈ 0.1. The highest cross
validation performance of≈ 0.95 yielded OMM classifiers that
used all available data joints & tactile & audio with K = 8
model states and σ = 0.7. In addition, these results underline
the importance of the audio modality. Classifiers trained with
the single audio signal reach the highest cross validation
accuracy of ≈ 0.79. The classifier with combinations of audio
and other modalities yield substantially higher classification
rates of ≈ 0.89 (joints & audio) and ≈ 0.93 (tactile & audio)
as compared to joints & tactile with ≈ 69.

The results in the Table II demonstrate that incorporating
additional modalities improves classification in most cases.
E.g., adding audio modality to the joint or the tactile modality
increases the recognition rate by over 20 percentage points. For
single modality, the highest rate of 0.79 have been achieved
for the audio modality.

The third and fourth rows of the Table II illustrate the test set
accuracies that has been achieved in classification experiments
for full length and partial length segments, respectively. In
these experiments, classifiers with full length segments that
use all available modalities reach a recognition rate of ≈ 0.97.
Here, the classification performance for full length segments
is between ≈ 0.12 (tactile) and ≈ 0.29 (joints&tactile) higher
as compared to results from partial length segments. However,
OMM classifiers for partial length segments still reach good
accuracy levels of up to ≈ 0.84. These results indicate that
OMM classifier provide robustness towards highly partial data
segments, in particular if all modalities are used.

VII. CONCLUSIONS AND OUTLOOK

In this paper we proposed a robust multimodal approach
towards learning of object manipulation operation in a con-
tinuous sequence. Our approach combines unsupervised seg-
mentation of action sequences and supervised learning with
ordered means models.

In our experiments we examined a set of uni- and bi-
manual operations: picking up, holding, shaking, putting down,
screwing and unscrewing the cap, pouring. The recorded
modalities were: joint-angles of the hand and palm, force



feedback of the fingers and the audio signal accompanying
the object manipulation.

All experiments showed strong benefits of using multiple
modalities for supervised recognition with ordered means
models. Incorporation of additional modalities improved clas-
sification performance in almost all cases. In all experiments
the highest recognition has been achieved for the combination
of all modalities tactile & Fourier & audio. Cross validation
on the complete data set yielded the highest recognition rate
of ≈ 0.95. Two experiment have been conducted in order to
evaluate the robustness of our approach w.r.t. segments overlap
with ground truth. For this purpose two sets of segments have
been selected: partial length segment set (≈ 10% overlap with
ground truth on average) and full length segments (≈ 95%
overlap with ground truth on average). For the partial length
segment set we achieved the highest recognition rate of 0.84;
full length set yielded the recognition rate of ≈ 97%.

Our future work will be concerned with unsupervised and
on-line classification of action primitives based on a larger
data pool and a wider range of actions.
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[1] D. Kulić, W. Takano, and Y. Nakamura, “Incremental learning, clustering
and hierarchy formation of whole body motion patterns using adaptive
hidden markov chains,” The International Journal of Robotics Research,
vol. 27, no. 7, p. 761, 2008.

[2] J. Park, S. Park, and J. Aggarwal, “Model-based human motion track-
ing and behavior recognition using hierarchical finite state automata,”
Computational Science and Its Applications-ICCSA 2004, pp. 311–320,
2004.

[3] A. Ogale, A. Karapurkar, and Y. Aloimonos, “View-invariant modeling
and recognition of human actions using grammars,” in Workshop on
Dynamical Vision at ICCV, vol. 5. Springer, 2005.

[4] Y. A. Ivanov and A. F. Bobick, “Recognition of visual activities
and interactions by stochastic parsing,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, pp. 852–872, 2000.

[5] J. Steffen, M. Pardowitz, and H. Ritter, “A manifold representation
as common basis for action production and recognition,” in 32nd
German Conference on Artificial Intelligence (KI-2009), Springer Berlin
Heidelberg. Paderborn, Germany: Springer Berlin Heidelberg, 09/2009
2009, pp. 607 – 614.

[6] P. Turaga, R. Chellappa, V. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 18, no. 11, pp. 1473–
1488, 2008.

[7] K. Bernardin, K. Ogawara, K. Ikeuchi, and R. Dillmann, “A sensor
fusion approach for recognizing continuous human grasping sequences
using hidden markov models,” Robotics, IEEE Transactions on, vol. 21,
no. 1, pp. 47–57, 2005.

[8] G. Ogris, T. Stiefmeier, P. Lukowicz, and G. Troster, “Using a complex
multi-modal on-body sensor system for activity spotting,” Wearable
Computers, IEEE International Symposium, pp. 55–62, 2008.

[9] T. Stiefmeier, G. Ogris, H. Junker, P. Lukowicz, and G. Troster,
“Combining motion sensors and ultrasonic hands tracking for continuous
activity recognition in a maintenance scenario,” Wearable Computers,
IEEE International Symposium, pp. 97–104, 2006.

[10] V. Krüger, D. Kragic, A. Ude, and C. Geib, “The Meaning of Action: A
Review on action recognition and mapping,” Advanced Robotics, vol. 21,
no. 13, pp. 1473–1501, 2007.

[11] A. Barchunova, J. Moringen, U. Großekathöfer, R. Haschke,
S. Wachsmuth, H. Janssen, and H. Ritter, “Unsupervised identification
of object manipulation operations from multimodal input (submitted),”
in International Conference on Intelligent Robots and Systems, 2011.

[12] P. Fearnhead, “Exact and efficient bayesian inference for multiple
changepoint problems,” Statistics and Computing, vol. 16, pp. 203–213,
June 2006.

[13] U. Großekathöfer, T. Lingner, H. Ritter, and P. Meinicke, “Ordered
means models for analysis and classification of time series,” 2011
(submitted).

[14] N. Wöhler, U. Großekathöfer, A. Dierker, M. Hanheide, S. Kopp, and
T. Hermann, “A calibration-free head gesture recognition system with
online capability,” in International Conference on Pattern Recognition.
IEEE Computer Society, 2010, pp. 3814–3817.

[15] T. Großhauser, U. Großekathöfer, and T. Hermann, “New Sensors and
Pattern Recognition Techniques for String Instruments,” in International
Conference on New Interfaces for Musical Expression, 2010.


