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Abstract

Biological development is governed by gene regulatory net-
works (GRNs), although detailed genetic and cellular mech-
anisms underlying biological development remain unclear. It
is believed that some GRN motifs have played an important
role in the evolution of biological development by means of
analyzing biological data. In this work, we investigate in a
computational model for development to verify if these mo-
tifs can also be evolved as in biology, which can not only
help understand biological development and improve simu-
lated evolution as well. The goal of the evolution is to evolve
an elongated body plan using a cellular developmental model
controlled by a GRN. We count the number of network mo-
tifs during the evolution and try to relate the changes of these
network motifs to the fitness profile of the evolution. We find
for the number of most motifs an increase in the beginning of
the evolution and a decrease again as the evolution proceeds.
We hypothesize that at the beginning a high number different
motifs is helpful for the evolution, however, motifs that are
not used for the targeted development, i.e., an elongated body
morphology in this work, will get lost later on. In addition,
we also examine two individuals before and after a fitness
jump to analyze which genetic changes have contributed to
the large fitness improvement.

Introduction
Recent advances in computational systems biology suggest
that computational models for development may help us to
gain more insights into the genetic and cellular mechanisms
underlying biological development. Among other research
efforts, analysis of small, frequently occurred network struc-
tures, often known as network motifs, have attracted much
interest as described by Alon (2007, 2006). Analysis of bi-
ological data revealed that such motifs can widely be identi-
fied in bacteria and yeast, see e.g., Babu et al. (2004). Most
recently, it has been found that some motifs may have played
an essential role in evolution. For instance, Kwon and Cho
(2008) analyzed the role of feedback loops and found that
more positive feedback loops and less negative feedback
loops contribute to the robustness of the regulatory system.

∗The work was conducted while Yaochu Jin was with the
Honda Research Institute Europe.

However, the analysis of motifs on an evolutionary scale re-
quires the data of many individuals at different evolutionary
stages. This data is (currently) not available in biology, we
analyze it using a computational model which is computa-
tionally expensive.

Few computational models for artificial development have
been proposed (see Harding and Banzhaf (2008)) based on
various computational models of GRNs (de Jong 2002). In
models of artificial development, one or a few single cells
divide and proliferate in a 2D or 3D environment. These
cells interact with each other, developing into a pattern, a
structure or a shape.

One major concern in cell-based developmental models
under the control of GRNs is a self-stabilizing cell growth
and the ability to self-heal after a damage. The French flag
problem is a popular benchmark used in artificial develop-
ment, see e.g., Joachimczak and Wròbel (2009); Wolpert
(2004). Andersen et al. (2009) managed to evolve a sta-
ble development and show a capacity of self-repair using a
GRN based on cellular automata. In their model, cells are
fixed on a grid and contact inhibition is adopted, i.e., if a
cell is surrounded by other cells, it will not divide any more.

In this work, we used a cellular growth model described
by Steiner et al. (2007), which was inspired by an artificial
development model suggested by Eggenberger Hotz et al.
(2003). We use a GRN network model that defines the ac-
tions of the cells. The cells interact with each other through
diffusion of external transcription factors. In contrast to
other work, our cells are not fixed on a grid and can move via
cell-cell physical interactions. In addition, cells can divide
as long as the gene for cell division is active. This model
has been employed for simulating neural development in a
hydra-like animat (Jin et al. 2008). Stable cell growth has
also evolved in a co-evolution of morphology and control of
swimming animats (Schramm et al. 2009). Additionally, sta-
ble and lightweight structures have evolved in (Steiner et al.
2009) using this cellular model.

In (Steiner et al. 2007), the authors showed that the emer-
gence of a negative feedback motif helps to enhance the mu-
tational robustness. In this paper, we analyze the motifs of



Figure 1: An example chromosome for the development.

the GRNs in the best individuals of the whole evolution-
ary run to see how various network motifs have contributed
to the evolution of cellular development. We examine the
change in the number of motifs during evolution. Addition-
ally, we analyze the difference in the structure of the GRNs
of two related individuals before and after a fitness jump.

We describe our model in the next section followed by
an introduction to the widely studied network motifs. Then
we present the experimental results of the evolutionary runs
together with the number of motifs during the evolution. We
conclude the paper with an analysis of two individuals, a
summary and an outlook.

The Computational Model for Morphological
Development

The morphological development starts with a single cell that
can perform a few cellular behaviors, e.g. cell division or cell
death. The cell is placed in the center of a two-dimensional
computation area of size100 × 80, the cells are not fixed
on a grid and can be at all positions inside the computation
area. The cells interact physically with each other and can
produce transcription factors (TFs) that are used for cell-cell
communication. A gene regulatory network (GRN) defines
the behavior of the cells.

The genes of the virtual DNA in each cell consist of reg-
ulatory units (RUs) and structural units (SUs), see Schramm
et al. (2009) for details, as illustrated in Figure 1. The SUs
of a gene define the cellular behaviors, in this paper cell di-
vision, cell death or the production of TFs. The RUs define
whether a gene is activated (expressed). All RUs have an
activation level depending on the TF concentrations inside
and outside of a cell. The activation of a gene is defined by a
sum of the activation levels of its RUs, which can be activat-
ing (RU+) or inhibiting (RU−). If the difference between
the affinity values of a TF and a RU is smaller than a pre-
defined thresholdǫ (in this workǫ is set to0.2), the TF can
bind to the RU to regulate the gene activation. The affinity
similarity (γi,j) between thei-th TF andj-th RU is defined
by:

γi,j = max
(

ǫ−
∣

∣affTFi − affRUj
∣

∣ , 0
)

. (1)

If γi,j is greater than zero, then the concentrationci of the
i-th TF is checked whether it is above a thresholdϑj defined

in thej-th RU:

bi,j =

{

max(ci − ϑj , 0) if γi,j > 0
0 else

. (2)

Thus, the activation level contributed by thej-th RU (de-
noted byaj , j = 1, ..., N ) can be calculated as follows:

aj =

M
∑

i=1

bi,j , (3)

whereM is the number of TFs that bind to thej-th RU. As-
sume thek-th gene is regulated byN RUs, the expression
level of the gene can be defined by a summation of the acti-
vations of all RUs

αk = 100

N
∑

j=1

hjaj(2sj − 1), sj ∈ (0, 1). (4)

2sj −1 denotes the sign (positive for activating and negative
for repressive) of thej-th RU andhj is a parameter repre-
senting the strength of thej-th RU.Thek-th gene is activated
if αk > 0 and its corresponding behaviors coded in the SUs
are performed.

The SU for cell division (SUdiv) encodes where the new
cell is placed in comparison to the mother cell. A cell
with an activated SU for cell death dies at the developmen-
tal timestep which it is activated. When SUs for both cell
death and cell division are simultaneously active, the cell
dies without division. Two additional SUs are reserved for
other possible behaviors, which are not used in this work. As
a result, it can happen that some genes perform no action.

An SU that produces a TF (SUTF) also encodes all param-
eters related to the TF, such as the affinity value, the decay
rateDc

i , the diffusion rateDf
i , as well as the amountAi of

the TFi to be produced:

Ai(αk) =

{

β
(

2
1+e−20·f·αk

− 1
)

if αk > 0

0 otherwise
, (5)

wheref andβ are both encoded in the SUTF. Which TFi is
produced is defined in terms of the affinity value.

A TF produced by an SU can be partly internal and partly
external. To determine how much of a produced TF is ex-
ternal, a percentage (pext

∈ (0, 1)) is also encoded in the
corresponding gene. Thus,∆cext

i = pext
· Ai is the amount

of external TF to be produced and∆cint
i = (1− pext) · Ai is

that of the internal TF.
External TFs are put on four grid points around the center

of the cell. They undergo first a diffusion and then a decay
process:

Diffusion: u
∗

i (t)=ui(t−1) + 0.1Df
i ·(G·ui(t−1)),(6)

Decay: ui(t) =((1− 0.1Dc
i )u

∗

i (t)), (7)



Figure 2: Concentrations of the prediffused TFs.
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Figure 3: Network motifs (adapted from Alon (2006)).

whereui is a vector of the concentrations of thei-th TF at all
grid points and the matrixG defines which grid points are
adjoining. The internal TFs underlie only a decay process:

cint
i (t) = (1− 0.1 ·Dc

i ) c
int
i (t− 1). (8)

All internal and external concentrations of TFs are limited
to an interval of[0, 1].

In our experiments, we put two prediffused, external TFs
without decay and diffusion in the computation area. The
first TF (preTF00) has a constant gradient in they-direction
and the second (preTF01) inx-direction (see Figure 2 and
Figure 13).

Static and Dynamic Network Motifs
Network motifs are sub-networks that occur more often in
biological gene regulatory networks than expected at ran-
dom. In this work, we analyze the occurrence of differ-
ent types of regulatory motifs, such as autoregulation, feed-
forward-loops and single input modules, see Figure 3. In the
following, we describe the function of a few network motifs,
as described in Alon (2006, 2007):

• Negative autoregulation (NAR) defines a gene whose
product directly inhibits its own expression. Such motifs
can speed up the response time compared to a gene with-
out NAR with the same steady state. It leads to steady
states with a rapid rise and a sudden saturation. NAR also
promotes robustness.

• The positive autoregulation (PAR) slows down the re-
sponse time and can lead to bi-stability.

• Thecoherent feed-forward loop 1 (C1-FFL) results in a
fast convergence to a steady state but a slow decrease of
the concentration.

• The incoherent feed forward loop 1 (I1-FFL) can act
as a pulse generator. It can turn a concentration very fast
on with an overshoot, and then it converges to its steady
state.

• TheSingle input module (SIM) consists of one gene reg-
ulating many other genes. Temporally sequential cellular
events can be controlled with a SIM.

There are a lot of different FFLs, among which C1-FFL and
I1-FFL are the most frequent ones in E. coli and yeast. The
functional analysis described above is performed on isolated
motifs, and therefore their behavior in a whole network can
be very different.

All possible connections of a network define thestatic
network. Therefore, thestatic network motifsare all pos-
sible network motifs in a network. In this paper, we want
to analyze only the network connections that are really used
during development, thedynamic networkand their motifs,
thedynamic network motifs. When we count a dynamic mo-
tif, all connections have been activated (above the threshold)
in at least one cell anytime during the development. There
are by definition more static motifs than dynamic ones. We
only consider the dynamic motifs, because this are the mo-
tifs that are used during development and therefore impor-
tant to analyze.

Experimental Settings
We use an extended evolution strategy, (µ, λ)-ES with
elitism for evolving the developmental model, whereµ and
λ are parent and offspring population size, respectively
(Beyer and Schwefel (2002)). In this work,µ = 30,
λ = 200, and3 elitists are adopted. The strategy param-
eterσ is set toσ = 10−4 in our work.

Additionally to mutation, we use gene duplication, gene
transposition and gene deletion as genetic variations. Gene
duplication randomly copies a sequence of RUs and SUs in
the chromosome and then inserts it, again randomly, into the
chromosome. In the case of gene transposition or deletion,
this randomly picked out sequence of RUs and SUs is moved
to another randomly chosen site on the chromosome, or sim-
ply removed.

Mutation is always performed, while gene duplication,
transposition and deletion are exclusive, i.e., only one of
them can be performed to the same chromosome in one gen-
eration. The probability values of gene duplicationpdup =
0.05, gene transpositionptrans = 0.02, and gene deletion
pdel = 0.03 are suitable and used in this experiments.

The goal of the evolution is to obtain an elongated shape
resulting from the cell growth process controlled by the
GRN. To this end, we define a target shape, as described
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Figure 4: The target shape for the cellular growth model.

in Figure 4. The target shape has an approximated width-
to-height ratio ofa : b, which in the experiment, we set
amax = 10, bmin = 60 andbmax = 80. Thus, the fitness
function can be defined as follows:

f = p1 − p2 −min
{

min
i

{

x
i(1)

}

,−
amax

2

}

+max
{

max
i

{

x
i(1)

}

,
amax

2

}

, (9)

wherexi represents the position of the i-th cell and

p1=











70+mini
{

x
i(0)

}

if mini
{

x
i(0)

}

< −
bmax

2

−30 if− bmax

2 <mini
{

x
i(0)

}

<−
bmin

2

mini
{

x
i(0)

}

otherwise
(10)

and

p2=











70+maxi
{

x
i(0)

}

if maxi
{

x
i(0)

}

> bmax

2

30 if bmax

2 >maxi
{

x
i(0)

}

> bmin

2

maxi
{

x
i(0)

}

otherwise

.

(11)
To achieve a computationally tractable size of the body

morphology, the number of cells (nc) is constrained between
10 and500. A penalty of600−nc is applied ifnc < 10 and
a penalty ofnc if nc > 500. If the cells in the developed
morphology are not fully connected, this means there exists
one or several cells with a high distance to all other cells, a
fitness of50 is assigned.

Experimental Results
The best and mean fitness curves of an evolutionary run are
presented in Figure 5. We can observe two fitness jumps
around generations350 and800 during the whole evolution.
The resulting shape of the best individual in the last genera-
tion is shown in Figure 6. In Figure 7 the number of genes
is shown. The number of genes is nearly constant, there is
only one huge jump at the end of the evolution.

Dynamic Network Motifs
We count the different network motifs for all selected indi-
viduals every 5th generation. The motifs of the best individ-
ual and the mean of the parent generation are presented in
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Figure 5: Fitness curves of the analyzed evolutionary run.
Solid line: mean of the generation. Dotted line: best indi-
vidual.
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Figure 7: Number of genes of the best individual and the
mean of the generation.
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(a) Positive autoregulation (PAR)
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(b) Negative autoregulation (NAR)

Figure 8: Number of autoregulations (AR).

Figures 8 - 11. Our algorithm counts all occurrences of one
gene activating two others as one SIM (which is then a three
node motif). When there is one gene activating more than
two other genes, the algorithm counts more SIMs, accord-

ing to the combinatorial possibilities

(

N

2

)

. E.g. for4 genes

our algorithm counts 4!
2!(4−2)! = 6 SIMs. This masks on the

one hand the number of SIMs, but on the other hand the size
of the SIM is taken into account.

Regarding the number of most motifs, we find an increase
in the beginning of the evolution and a decrease in later gen-
erations. An increase in the number of motifs is observed
often between generation300 and500, while a considerable
decrease of most motifs is observed around generation800.
The number of some motifs, e.g., I1-FFL, I1-FFL with NAR
and SIM with NAR, increases again in the last generations,
which can be explained with the increase in the number of
genes (see Figure 7). The two large changes in the number
of motifs correlate with two large fitness jumps. A change
in the number of genes is not the reason, though the number
of genes is nearly constant (see Figure 7). We hypothesize
that on the one hand, evolution attempts to increase the num-
ber of motifs to perform better, whereas on the other hand,
motifs that are not helpful are lost in later generations.

In the following, we discuss in greater detail the change
of the number of the motifs:

• PAR: One PAR exists in the best individual until genera-
tion 800, then the PAR is lost. On average over the gener-
ations, the number of PAR increases between generation
300 and400 from about one to between one and two and
becomes zero around generation800. PAR seems to be
important during evolution but is lost in later generations.
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(a) C1-FFL
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(b) C1-FFL with PAR
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(c) C1-FFL with NAR

Figure 9: Number of coherent feed-forward loops (C1-FFL)
with only activating connections.

• NAR: The number of NARs is very low throughout the
evolution. It starts from one, goes up to two at about gen-
eration450 and falls back to one again at generation800.

• The number ofC1-FFLis high during the evolution com-
pared to that of the PARs and NARs. There is a con-
siderable increase of this motif between generation300
and400 and a decrease around generation800. The num-
bers ofC1-FFL with PAR andC1-FFL with NAR are
smaller but have a similar trend asC1-FFL.

• The number ofI1-FFL is very low at the beginning and
also increases between generation300 and400 to about
10 and decreases again around generation800. At the end
of the evolution, there is again an increase in the number
of this motif. The number ofI1-FFL with PAR andI1-
FFL with NAR is much lower than that of theI1-FFL.

• The number ofSIMs andSIMs with NAR is much higher
than that of the other motifs. Note that we count all three-
node SIMs, and consequently the larger the SIM, the more
three node SIMs are counted. The change of SIMs dur-
ing the evolution is comparable to that of the I1-FFL. The
SIM with PAR is the only motif that decreases between
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(a) I1-FFL
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(b) I1-FFL with PAR
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(c) I1-FFL with NAR

Figure 10: Number of incoherent feed-forward loops (I1-
FFL) with one negative connection from B to C.

generation300 and400, and reaches zero at generation
800 (because the PARs decrease to zero).

To relate the changes in the number of motifs to the oc-
currences of the genetic operators during evolution, includ-
ing duplication, deletion or transposition, we traced backthe
ancestors of the best individual in the final generation and
analyzed which genetic operators are selected over the gen-
erations. The results are given in Figure 12.

The gene deletion selected in generation800 correlates
with a strong fitness increase and a decrease of a lot of mo-
tifs. To better understand what happened during these gen-
erations, we analyze the best individual in generation750 at
the fitness plateau before the deletion and the best individual
in generation820 after the deletion in the next section.

Detailed analysis of two individuals

The genes and their activations of the best individual in gen-
eration750 and820 are presented in Figure 13 and 14.

Note that only the dynamic activations are shown, and
there are much more static activations.

The deleted regulatory and structural units belong to
genes 9 and 10 of the best individual of generation 750. The
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(a) SIM
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(b) SIM with PAR
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(c) SIM with NAR

Figure 11: Number of single input modules (SIM) during
the evolution. We count three nodes SIMs, so that larger
SIMs result in a higher number of SIMs.
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Figure 12: The fitness of the ancestors of the best individual
in the last generation. Symbol ’+’ denotes a gene duplica-
tion, ’*’ a deletion and a triangle a gene transposition.



Figure 13: The genes and their used connections of the best
individual in generation750. The circles represent the dif-
ferent genes. Genes that are active during development are
denoted with black (solid) circles. Red (dashed) circles in-
dicate genes that are never active. The arrows represent the
interactions between the genes, where blue represents an ac-
tivating, red an inhibiting and magenta both an activating
and inhibiting connections. The two diamonds represent the
predefined TFs.

Figure 14: The genes and their used connections of the best
individual 820. Notation as in Figure 13. The genes are
numbered, and number 10 is skipped for an easier compar-
ison betwen the two individuals of generation750 and820,
because gene 10 was deleted in between.

(a) Individual 7500

(b) Individual 8200

Figure 15: The activating relations of the different genes.
Genes for cell division are marked with a circle, genes for
cell death with a triangle. Only some important activating
effects are shown, inactivated genes and inhibiting connec-
tions are omitted.

SU for cell division of gene 9 and the complete gene 10 are
deleted. We skipped gene number 10 in the second individ-
ual to ease the comparison of the two individuals. Another
difference is that the SU of gene 20 of the best individual
in generation 750 changes from TF production to an unused
SU through mutation. Though gene 10 of the best individ-
ual in 750 has no further influence on the development (no
arrows starting from this gene in Figure 13), the more impor-
tant change seems to be the mutation of gene 20. Figure 15
shows the activations of the different genes in temporal hi-
erarchies. The inhibitions are not shown and the inactivated
genes are omitted. There are only temporal hierarchies and
one feedback loop. The mutation to gene 20 resulted in a
deletion of the whole sub-tree. The deletion of gene 9 has
no further effect on the development. Gene 20 in the best in-
dividual of generation750 has a lot of connections to other
genes and is a member of a lot of motifs. Interestingly, the
loss of gene 20 resulted in an increase in fitness from gener-
ation750 to generation820.



Summary and Conclusion
In this work, we analyzed the change in the number of net-
work motifs in the GRN during evolution of a cell growth
model for an elongated body morphology. A general trend
is that the number of all motifs increases significantly at the
beginning of evolution. Except for motif PAR, the number
of other motifs including I1-FFL and SIM has increased at
the end of evolution compared to that in the first genera-
tion. From these observations, we hypothesize that a large
number of all motifs is created in the evolution to enrich the
genetic materials for creating fitter individuals. On the other
hand, motifs that have no influence on the development can
get lost later on in the evolution. The genome length does
not change significantly during evolution, so this causes not
the changes in the number of motifs. This suggests that a
motif might only be important during a certain time window
during the evolution and becomes less important in others.

There are two major fitness increases during the evolution,
both correlate with a genetic variation (duplication, trans-
position, deletion). We analyzed the genetic changes that
contributed to the fitness jump around generation800. We
compared the genes of two individuals before and after the
genetic change and found that the gene deletion has little
effect. There is one mutation that changes a gene from pro-
ducing an important TF to a gene without function. This ex-
plains the lower number of network motifs afterwards, but
results in a considerable increase in fitness.

The observations regarding the change of motifs during
evolution are made from the results of one evolutionary run.
This limitation is mainly due to the extremely high com-
putational time required for such analysis. To make our
observations more convincing, it would also be helpful to
compare the number of network motifs with that of random
networks. However, a comparison regarding the number of
random network motifs may be problematic since counting
the number of random networks in a dynamic network is
problematic. If the development of random networks stops
after a few steps (often after the 1st step) because no cell
survived, only few connections can be counted. That takes
place in a lot of random networks, so few dynamic motifs
can be found. A possible solution to this difficulty is to com-
pare the static networks of our results and random networks
instead of a dynamic networks.
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