
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Multiple Sequence Alignment Based
Bootstrapping for Improved Incremental Word
Learning

Irene Clemente, Martin Heckmann, Gerhard Sagerer,
Frank Joublin

2010

Preprint:

This is an accepted article published in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). The final authenticated version is
available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


MULTIPLE SEQUENCE ALIGNMENT BASED BOOTSTRAPPING FOR IMPROVED
INCREMENTAL WORD LEARNING

Irene Ayllón Clemente1,2, Martin Heckmann2, Gerhard Sagerer1, Frank Joublin2

1Research Institute for Cognition and Robotics 2 Honda Research Institute Europe GmbH
Bielefeld D-33615, Germany Offenbach D-63073, Germany

{iayllon,sagerer}@cor-lab.uni-bielefeld.de {firstname.lastname}@honda-ri.de

ABSTRACT

We investigate incremental word learning with few training exam-

ples in a Hidden Markov Model (HMM) framework suitable for an

interactive learning scenario with little prior knowledge. When using

only a few training examples the initialization of the models is a cru-

cial step. In the bootstrapping approach proposed, an unsupervised

initialization of the parameters is performed, followed by the retrain-

ing and construction of a new HMM using multiple sequence align-

ment (MSA). Finally we analyze discriminative training techniques

to increase the separability of the classes using minimum classifica-

tion error (MCE). Recognition results are reported on isolated digits

taken from the TIDIGITS database.

Index Terms— Speech recognition, Hidden Markov models,

training, sequence estimation

1. INTRODUCTION

Current speech recognition systems are trained offline with large

databases. However, children learn language in the interaction with

their caregivers and the environment. Our goal is to model this pro-

cess via an interactive learning scenario where a human tutor teaches

a robot.

Most automatic speech recognition systems (ASR) use Hidden

Markov Models. With conventional training techniques, a large

amount of labelled training data is needed to estimate an optimal

set of parameters. Unfortunately, it is very difficult to obtain this in

interactive learning; hence researchers aim either to train the system

in an unsupervised manner or to train it with a smaller number of

training data. In both cases, the efficiency of the procedure strongly

depends on the initialization of the parameters. In these condi-

tions, a bootstrapping phase is required to get a good set of model

parameters.

Different approaches for initializing Hidden Markov Model pa-

rameters exist. In the standard approach, proposed in [1], each train-

ing segment is considered as the output of the HMM whose param-

eters are to be estimated. Hence, if the state that generated each

frame or observation vector in the training segment was known, then

the means and variances of the model could be computed by aver-

aging all the vectors associated with each state. This is achieved by

segmenting the training data frames into states. This segmentation is

performed via K-means clustering and Viterbi decoding. The initial-

ization of the Hidden Markov Model parameters in HTK [2], HINIT,

is based on this technique. The procedure is realized in a supervised

way requiring labelled training data. Nevertheless, this kind of ap-

proach only ensures optimal convergence if many labelled training

samples are available, which is not the case in incremental learning.

Fig. 1. Incremental discriminative training system. ML stands for

Maximum Likelihood estimation.

Similar supervised initialization techniques to the ones described

above can be found in the literature (see [3] as example). In con-

trast to this, several authors have been focused on unsupervised and

online learning in interactive environments. As illustration, an unsu-

pervised phone model acquisition procedure is proposed in [4] and

[5]. This technique, based also on K-means clustering and Viterbi

decoding, enables the initialization of syllable models in an online

word learning system [6] using the previously estimated phone mod-

els. Both methods are also able to work with few samples.

In this paper we propose an incremental word learning frame-

work with few training data as depicted in Figure 1. This technique

consists of three main steps. First, a novel model bootstrapping

method initializes the parameters of the Hidden Markov Models. It

consists of the combination of unsupervised and supervised training,

where a transformation of an ergodic HMM into a left-to-right HMM

takes place. This transformation is performed by means of a novel

multiple sequence alignment procedure. This first step is the main

contribution of this paper and allows to estimate a good initial set of

HMM parameters, which are trained by the Baum Welch algorithm

[1] in the next phase. Minimum classification error (MCE) training

refines the estimates of the parameters computed in the step before.

It reduces the classification error in the training data, allowing a bet-

ter separation of the classes.

The rest of the paper is organized as follow. In Section 2 we give

an overview of our model bootstrapping, describing in more detail

the different phases in consecutive subsections. The discriminative

training technique used is presented in Section 3. In Section 4 we

report results for our approach on an isolated digit recognition task

and compare them to standard approaches. Finally, in Section 5 we

discuss the results and give an outlook on future work.



Fig. 2. Overview of the proposed model bootstrapping system to ini-

tialize the HMMs. It consists of three main parts and nine processing

steps. Part I is explained in section 2.1, part II in section 2.2 and part

III in section 2.3.

2. MODEL BOOTSTRAPPING

Hidden Markov Models are usually trained by means of the Baum-

Welch algorithm [1], which is based on the maximum likelihood

(ML) criterion. Unfortunately, the Baum-Welch algorithm easily

gets stuck in local minima. Thus, it is essential to have a model boot-

strapping which provides an adequate initialization for the HMM pa-

rameters to obtain good convergence.

The proposed model bootstrapping system is shown in Figure

2. This algorithm comprises three main stages: the unsupervised

training of a generic HMM (very similar to [4]), in which a common

HMM initialization model is constructed without using any labelled

training data. Next, training of the previously obtained HMM us-

ing the Baum-Welch algorithm [1] and labelled training data is per-

formed. This yields ergodic word-level HMMs. The topology of the

HMM obtained is transformed into a Bakis, i.e. left-to-right, con-

figuration by means of a novel multiple sequence alignment. These

steps form the basis for the construction of a new word-level HMM.

2.1. Unsupervised training of a generic HMM

The top of the scheme displayed in Figure 2 as part I is based on

the approach proposed in [4] and [5]. To initialize the procedure,

a few minutes of input speech are recorded. Acoustic features are

extracted and clustered by the K-Means algorithm. In [4] the re-

sulting K clusters are used to train single-state continuous HMMs.

However, in our approach an ergodic Hidden Markov Model with K

hidden states is trained instead of K single-state HMMs. In the pro-

cess described, training is performed in a completely unsupervised

manner and it is only executed once. The resulting HMM is stored

to be used as pre-initialization for each new model to create.

2.2. Training of the word model

Next, the ergodic HMM is retrained by means of the Baum-Welch al-

gorithm using a labelled training data set. In our bootstrapping tech-

nique, we use a predefined number of states. Hence, a state pruning

similar to the one described in [6] is performed. A Viterbi decod-

ing of the training segments is realized and then the least occupied

states are pruned. The observation estimates of the states are not

changed, and the transition matrix is constructed by eliminating the

rows and columns belonging to the pruned states. A further Baum-

Welch training refines the estimates.

2.3. Multiple sequence alignment

For isolated word recognition, the configuration of states has to be

changed into a Bakis, i.e. left-to-right, topology. The idea behind

the Bakis-topology is that transitions between states are only for-

wards, i.e. from left to the right. Hence it is advisable to perform a

Viterbi decoding of the training segments to obtain the most likely

state-sequence generating the data. This results in N optimal path

sequences one for each of the N training samples per word. Each se-

quence contains information about a possible underlying configura-

tion of states in a left-to-right topology for its corresponding training

segment. Thus, all sequences have to be merged into one sequence

which codes the information contained in the Viterbi decoding se-

quences. This is performed via a multiple sequence alignment algo-

rithm.

The term sequence alignment is used in Bioinformatics to de-

fine a way of arranging different biological sequences to identify

similar regions that may be an indication for some kind of relation-

ship between the sequences. Over the last decades, several efficient

algorithms have been developed in order to align protein and gene

sequences [7], [8]. The goal of these algorithms is to find an align-

ment, which is optimal under a scoring function. In most cases, the

scoring function is provided with a similarity matrix. This matrix

assigns costs for the replacement of one element by a different one.

The scoring function is built in a way such that the best alignment is

only to be expected if both sequences are the same.

Our goal is to merge all the sequences in a succession of states

representing the best alignment between the sequences. The align-

ment of multiple sequences has also been studied in Bioinformatics

(see [9]). The multiple sequence alignment method we propose is

displayed in Figure 3, which consists of three main building blocks:

The first block is the calculation of a cost matrix D assigning

different costs to the permutation of state transitions in the observed

state sequences. This cost matrix is analogous to the similarity ma-

trix used in Bioinformatics. However, they differ in the computation

of the probability coded in each element of the matrix. Each element

of the cost matrix represents the probability of an element to be fol-

lowed by another, different, element. The element D(i, j) of the



Fig. 3. Multiple sequence merging procedure.

cost matrix D is calculated based on the frequency of the sequence

j → i in the sequences following the Viterbi decoding (see Equation

1). This differs from approaches in Bioinformatics where similarity

matrices represent the probability of a character to be aligned by an-

other one.

D(i, j) ∼

∑

seq
δj→i

∑

i

∑

seq
δj→i

(1)

The second main building block is the calculation of the dis-

tances between all sequences, captured by the comparison matrix C .

The distances between two sequences are computed by means of a

special weighted edit distance using dynamic programming. This is

computed as a result of the construction of a distance matrix S (see

Equation 2) which can be considered as a modified fusion of the H-

Matrix of the algorithm proposed in [8] and the matrix proposed in

[7], often referred to as F-Matrix. In Equation 2, c(i, j) is a value

depending on the alignment of the elements i and j of the sequences

to compare v and t and the cost matrix D (see Equation 3).

S(1, j) = 0 ; S(i, 1) = 0
S(i, j) = max[S(i, j − 1), S(i − 1, j − 1)] + c(i, j)

(2)

a = v(i − 1)
b = t(j − 1)

c(i, j) =

{

1 if a = b

D(b, a) if a 6= b

(3)

Finally, in the third block different sequences are merged based

on their similarity measure until only one sequence is left. In our

approach we start merging the least similar sequences. The merging

procedure is a forward decoding of the matrix S, used to compute the

weighted edit distance referred to before. This merging procedure is

similar to the backtracing proposed in [8]. However, in our approach

the walk is forwards. After merging all sequences, we obtain one

optimal sequence.

Once the succession of states is computed, the new HMM with

Bakis topology is constructed. The Gaussian mixture parameters are

conserved from the previous steps, however the transition matrix of

this new HMM with Bakis topology is initialized with the values

calculated by the cost matrix D.

3. DISCRIMINATIVE TRAINING

As referred to in section 1, HMMs are usually trained via the Baum-

Welch algorithm [1] in a ML fashion. This estimation method tries to

fit the statistical models (HMMs) best to the training data. However,

the resulting distributions generally differ from the true distribution

of the speech segments and with few training examples it is not pos-

sible to get a reliable estimation. Hence the theoretical minimum

classification error, also called Bayes error, can not be achieved.

Instead of ML estimation, discriminative training (DT) has also

been widely studied for HMMs in ASR [10],[11]. The DT meth-

ods aim to directly minimize or reduce classification errors in train-

ing data as model estimation criterion. Minimum classification error

(MCE) is currently one of the prominent DT approaches. In our sys-

tem, the minimum classification error estimation using the extended

Baum-Welch (EBW) algorithm proposed in [12] is performed.

As shown in Figure 1 after training the HMMs by ML, an incre-

mental minimum classification error technique referenced in Figure

1 by item 3 is realized. To model incremental word learning, we start

the MCE optimization with only one class. When a new word model

is trained the previously constructed models are used to increase the

separation between them by means of computing the MCE technique

described in [12]. Here only the new word model is updated. In the

previous ML based steps there is no difference between incremental

and batch learning.

4. EXPERIMENTS

4.1. Experimental procedure

We have evaluated our incremental word learning system using

a subset of the TIDIGITS corpus [13]. The subset of the cor-

pus selected contains utterances from 112 men collected from 21

regions of the United States. There are a total of eleven words

(digits) in the corpus vocabulary (digits of “1” to “9”, plus “oh”

and “zero”). Each utterance is an isolated-digit string. The test set

contains 112 samples for each digit and the training set up to 10

repetitions for each digit, each segment being uttered by a different

speaker. In our experiments, all data is sampled at a rate of 16 KHz.

The 45-dimensional acoustic feature vectors are composed of 15

RASTA-PLP coefficients [14] and their first and second order time

derivatives. The models used in our experiments are continuous

density HMMs (CDHMMs) with a fixed number of 3 Gaussian mix-

ture models for each state; the number of states is fixed to 16. The

models are trained first using the model bootstrapping explained in

section 2. The baseline system used is a Hidden Markov Models

framework implemented as in [1] using a statistical Matlab Toolbox

called NETLAB [15].

First we compare the proposed bootstrapping with a conven-

tional initialization as described in [1], the baseline system. Next,

we want to compare our multiple sequence alignment (MSA) based

bootstrapping with a simpler bootstrapping approach. In [6] an ap-

proach we want to refer to as best Viterbi alignment (BVA) is pro-

posed. It is based on a very similar bootstrapping as our approach

followed by a Viterbi decoding for all training samples (compare

Figure 2 step 7). In BVA instead of aligning and merging all se-

quences the state sequence with the highest probability for all train-

ing data is chosen. As we set the number of states for each HMM

to 16 also in this model, a pruning of the least occupied states is

realized.



No. Baseline MSA BVA

data Mean Min Max Mean Min Max Mean Min Max

10 1.1 0.3 2.3 0.4 0.1 1.0 0.4 0.1 0.8

9 1.6 1.0 2.8 0.7 0.6 1.2 0.5 0.3 0.8

8 2.3 1.2 4.4 1.0 0.6 1.4 0.9 0.6 1.1

7 3.0 1.2 6.4 1.3 0.9 1.9 1.3 0.7 1.7

6 4.3 2.3 7.6 1.8 1.1 3.4 1.9 0.9 3.3

5 6.9 4.1 12.3 2.9 1.5 4.8 3.3 2.0 5.1

4 9.3 4.9 14.7 4.5 1.8 6.7 5.2 2.9 7.4

3 12.9 7.9 18.3 6.4 3.3 9.8 7.6 5.4 10.9

2 16.7 12.7 21.3 8.6 6.8 11.5 10.7 8.2 16.5

1 23.9 16.1 32.9 14.3 10.1 25.2 14.3 10.1 25.2

Table 1. Word Error Rates (WER %) of the different model boot-

strapping methods compared to the baseline system. For each

method, the WER value of the first column represents the mean of

a 10-fold speaker-independent cross-validation on the training data

set. The second and third column are the minimum and maximum of

the cross validation respectively. MSA stands for the here proposed

multiple sequence alignment bootstrapping method and BVA for the

best Viterbi alignment approach proposed in [6].

4.2. Experimental results

In comparison to the baseline system the BVA approach in [6] and

our proposed MSA bootstrapping method described in section 2 dis-

tinctly reduce the word error rates (WER) (compare Table 1). Fur-

thermore, our model bootstrapping technique MSA achieves similar

or better results compared to BVA. Especially, for a very small num-

ber of training samples (2-6) MSA is superior to BVA. When only

one training segment is used, the recognition results obtained in our

approach and in [6] are the same. In this case the multiple sequence

alignment algorithm described in section 2.3 is not executed, because

only one training segment is sampled by Viterbi decoding. At this

point our technique and [6] have a very similar behaviour.

The execution of the incremental minimum classification error

technique did not further improve the recognition results of the sys-

tem.

5. DISCUSSION & SUMMARY

We have proposed an incremental word learning system improved

by a new model bootstrapping approach. The key concepts of our

approach include the combination of unsupervised and supervised

training and the incorporation of a novel multiple sequence align-

ment technique initially applied in Bioinformatics. We have eval-

uated our method in an isolated digit recognition task using a sub-

set of the TIDIGITS database. This is a very simple task. Hence,

the model bootstrapping technique that we have developed to ini-

tialize the HMM parameters needs to be validated with more com-

plex tasks in order to verify our approach. However, we have shown

very promising results for training with very few samples. We could

demonstrate (see Table 1) that our system is able to outperform a

baseline system and a previously presented incremental word learn-

ing approach [6] when a very small number (2-6) of training seg-

ments is used. In interactive learning, it is not desirable that a human

tutor needs more than 3-4 repetitions to teach a word to a robot.

Thus, the proposed model bootstrapping system provides encourag-

ing results for our targeted application. Moreover, it is a substan-

tial improvement that using only two training samples the recogni-

tion error is reduced to 8.6 % WER in a speaker-independent task.

The application of incremental MCE training was not beneficial be-

cause of the very small number of training data used. In this case,

after ML training all training samples were already classified cor-

rectly. Hence, our efforts are currently focused on integrating large-

margin minimum classification error techniques, which would im-

prove recognition results also when no training errors occur.
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