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Abstract.

In the brain, both neural processing dynamics as well as the perceptual

interpretation of a stimulus can depend on sensory history. The underlying

principle is a sensory adaptation to the statistics of the input collected over

a certain amount of time, allowing the system to tune its detectors, e.g. by

improving the sampling of the input space. Here we show how a generative

formulation for the problem of visual motion estimation leads to an online

adaptation of velocity tuning that is compatible with physiological sensory

adaptation and observed perceptual effects.

1 Introduction

Biological sensory systems adapt to the history of the sensory input over a
variety of timescales and several types of modalities. The adaptation is especially
prominent after prolongued exposure to visual stimuli of a particular type, like
orientation, texture, contrast or motion, and leads to a systematic bias in the
perception or the estimation of the stimulus variables.

The function of this adaptation has been studied for a long time. In many
cases, it leads to illusory aftereffects that come along with an increased discrim-
ination performance, like in the cases of the orientation tilt illusion [2] or the
waterfall illusion [1]. In [4], it is discussed to which extent the findings are con-
sistent with a decoding state after the adapting sensory units that is aware / is
not aware of the sensory adaptation, with the conclusion that a fixed, “unaware”
decoder can account for the measured effects. However, this does not explain
how and why the detectors adapt, but only the influence of an adaptation on a
subsequent internal evaluation.

In this paper, we directly look at a functional explanation for the adaptation
dynamics of the sensory units. We assume that the benefits of the adaptation
would be a temporarily improved sampling of the sensory input space. In a
generative setting, the target of the system is to maximize the probability of
explaining the input. In the particular case of motion estimation, this optimiza-
tion leads in a straightforward way to a sensory adaptation that concentrates a
set of motion detectors on the relevant velocities of a scene, i.e., on the statistics
of the current stimulus. This idea is visualized in Fig. 1. In consequence, this



leads to attracting shifts in the speed and direction tuning of motion detectors
on a short timescale, similar to those found experimentally [5], [6].

Fig. 1: (A) Set of velocity-tuned neurons with speed tuning curves densely
sampling the entire velocity space. (B) Velocity preferences coarsely distributed
in velocity space but (C) being smartly adaptive to be able to cluster around
some relevant velocities (adapted from [3]). See text for further details.

2 The Probabilistic Filter Model for Motion Estimation

As a basis for our model, we use a modification of a probabilistic filter approach
for motion estimation presented in [7]. We assume that the overall system de-
scribes a moving input by using velocity distributions P (vt

x
) at retinal positions

x for velocities v in a continuous velocity space. However, the velocity distri-
butions are approximated by a limited number of discrete velocity samples at
the sampling points h ∈ H. (In a sense, the motion field is sampled by a set of
motion detectors each characterized by a fixed position x and a tuning velocity
h ∈ H.)

For a generative model that takes advantage of the sensory history, we express
the posterior of the entire estimated velocity field in form of a probabilistic filter
model. In a Bayesian manner, we take the last velocity estimation (the previous
posterior from time t) P (Vt|Y1:t;H) to calculate the next expected velocity
estimation (the predictive prior at time t′ = t + ∆t) P (Vt′ |Y1:t;H). This is
combined with the likelihood that the current sensory input Y

t := {It′ , It}
(with the future and the current input images I

t′ and I
t) can be explained given

a velocity estimation, to gain the next posterior via

P (Vt′ |Y1:t′ ;H) ∝ P (Yt′ |Vt′ ;H)P (Vt′ |Y1:t;H) (1)



The likelihood can be expressed via

P (Yt|Vt;H) =
∏

x

ℓ(Yt,vt
x;H)

ℓ(Yt,vt
x;H) =

∑

h∈H

δ(vt
x − h)ℓ(Yt,vt

x)

ℓ(Yt,vt
x) = fℓ(I

t′

x+vt

x

, It
x; θℓ) (2)

with likelihood-specific fixed parameters θℓ. In other words, a) the overall like-
lihood factorizes into position-specific likelihoods, with, b) the velocity param-
eterization at each position being restricted to the sampling velocities h ∈ H,
and c) the local likelihood is gained by the patchwise comparison of the cur-
rent and the future input images around positions compatible with the velocity
hypothesis v

t
x
.

The transition to get the predictive prior is done by

P (Vt′ |Y1:t;H) =
∑

Vt

P (Vt′ |Vt;H)P (Vt|Y1:t;H) (3)

P (Vt′ |Vt;H) =
∏

x

φ(vt′

x
,Vt;H)

φ(vt′

x
,Vt;H) =

∑

h∈H

δ(vt′

x
− h)φ(vt′

x
,Vt)

φ(vt′

x
,Vt) =

∑

x′

fx(x′,x − v
t′

x
∆t; θx)ft(v

t′

x
,vt

x′ ; θt) (4)

with prediction-specific parameters θx, θt. Here, we have again assumed that
the predictive prior factorizes spatially and that only the sampling velocities
h ∈ H are allowed. The functions fx and ft express the “lateral” propagation
of information from the last to the current timestep (see [7] for more detailed
information).

Inserting 3 into 1 leads to the posterior

P (Vt′ |Y1:t′ ;H) ∝ P (Yt′ |Vt′ ;H)
∑

Vt

P (Vt′ |Vt;H)P (Vt|Y1:t;H) (5)

which factorizes spatially, so that using 2 and 4 we get

P (Vt′ |Y1:t′ ;H) =
∏

x

P (vt′

x |Y
1:t′ ;H)

P (vt′

x
|Y1:t′ ;H) ∝

∑

h′∈H

δ(vt′

x
− h

′)ℓ(Yt′ ,vt′

x
)
∑

x′

fx(x′,x − v
t′

x
∆t; θx) ×

∑

h∈H

δ(vt
x′ − h)

∑

vt

x
′

ft(v
t′

x
,vt

x′ ; θt)P (vt
x′ |Y1:t) (6)

Eq. 6 is the probabilistic filter description for the transition t → t′ of the
velocity field distribution based on a common, discrete set of velocity samples
h ∈ H used at all positions x.



3 Online Adaptation of the Velocity Tuning

Now we consider the velocity sampling points h to be adaptive at every time step.
They are considered as parameters of the velocity estimation process, that can
be optimized via an approximate Expectation-Maximization (EM) mechanism.

In the EM of our system, the target is to maximize the log probability
lnP (Y1:t|H) of the data Y

1:t given the parameters H. W.l.o.g. and for deriva-
tion purposes, in the following we will assume that the same velocity sampling
points h are used over the entire visual field. With

P (Y1:t|H) =
∑

Vt

P (Y1:t|Vt;H)P (Vt|H) (7)

and the EM formalism that we obtain successive parameters H
t (i.e., the set of

sampling points in velocity space that maximizes the probability of the data) by
maximizing

QHt(H) =
∑

Vt

P (Vt|Y1:t;Ht) lnP (Vt,Y1:t|H) (8)

in the way
H

t′ = argmax
H

QHt(H) . (9)

Using the probabilistic filter results 5 and 6 in 8, then calculating the derivative
with respect to H and setting it to zero for finding the maximum according to
9, we get

h
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α = P (vt
x = h

t|Y1:t) (10)

for the velocity sampling points h
t′ ∈ H

t′ .
To arrive at eqs. 10, we have linearized the input images. The Ix,x, Iy,x

and It,x denote spatial (in x-direction), spatial (in y-direction) and temporal
derivatives, respectively, taken at position x.

With 10, we have gained an explicit iterative description for the calculation
of the next optimal sampling points H

t′ given the current ones H
t. It takes

into account the spatial statistics (
∑

x
...) of the current posterior distribution

P (vt
x

= h
t|Y1:t) to adapt the velocity tuning h

t′ of the veclocity detection units.
What is the effect of this adaptation? Consider the probabilistic filter from

6 without velocity tuning, i.e., keeping the H fixed. In this case, it is sensible
to choose the h to densely sample the entire velocity space, so that we have a
set of velocity-detecting units / neurons with tuning curves which regularly and
completely cover the possible range of inputs. With the adaptation according to
10, the tuning curves of the veclocity-detecting units cluster around the relevant
velocities available in the input image, providing a finer sampling around these



velocities. Fig. 1 exhibits this idea. The bottom line is that the system will adjust
its tuning curves as soon as relevant velocities are measured, e.g. concentrating
around the velocity of a target object that appears in the visual field.

Fig. 2: Velocity estimation results of the system with adaptive velocity tuning.
Within about 10 frames, the system adapts its velocity detectors to the input
statistics. See text for further details.

The results of our system are shown in Fig. 2. We compared a system with a
fixed array of 81 (9×9) velocity detectors at each position x densely covering the
velocity space with an adaptive system of only 25 velocity detectors. The fixed
system improves its velocity estimation by spatiotemporal filtering over consec-
utive video frames (here shown: the first 13 frames). In the upper row, we show
the adaptive system, which exhibits very similar spatiotemporal filtering prop-
erties, shown for the Yosemite sequence in the color-coded inlets representing
the motion flow. The adaptive system starts with 25 velocity sampling points
equally distributed in veloctiy space (left circular plot). However, since in the
sequence the divergent flow to the bottom dominates, within a few frames the
system adapts to better cover this velocity region (right circular plot). The esti-
mated motion flow (colored images) is quantitatively comparable to that of the
81 fixed velocity sampling points, implying a considerable reduction of resources
and a concentration on the “right” velocity tunings. At the bottom right we
show the mean angular error for 3 different settings: a) the fixed velocity samp-



ing case, b) the adaptive case with equally distributed initialization and c) the
adaptive case with random initialization. It can be seen that, within about 10
frames, the system converges to small angular errors and that the results from
the adaptive system with only 25 velocity sampling points are comparable with
the fixed system with 81 sampling points.

4 Conclusions

In this work, we have presented a system that adapts the tuning of its motion
detectors based on a generative framework for patiotemporal filtering and an
EM-like optimization of the velocity sampling points that maximizes the prob-
ability that the current input can be described with the estimated motion field.
We have found that such a system is able to rapidly adjust (within a few frames)
the tuning of its velocity detectors, allowing to achieve comparable results with
much less detection units.

Evidence that this is also happening on very short (msec) [6] to short (sec)
[5] timescales comes from biological findings on the tuning of velocity-detecting
neurons. The neural response immediately adapts to motion stimuli which re-
sults in attracting shifts in neural speed and direction tuning, meaning that the
tuning curves after the adaptation are attracted towards the true target veloc-
ities. This type of adaptation is consistent with the findings presented in this
model, and would provide a functional explanation of the fast adaptation in the
sense of an optimal sampling of the velocity space based on the velocity statistics
of the past stimulus.
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