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Abstract—The computation of stereoscopic depth is an im-
portant field of computer vision. Although a large variety
of algorithms has been developed, the traditional correlation-
based versions of these algorithms are prevalent. This is mainly
due to easy implementation and handling but also to the linear
computational complexity, as compared to more elaborated
algorithms based on diffusion processes, graph-cut or bilateral
filtering. In this paper, we introduce a new two-stage matching
cost for the traditional approach: the summed normalized
cross-correlation (SNCC). This new cost function performs a
normalized cross-correlation in the first stage and aggregates
the correlation values in a second stage. We show that this new
measure can be implemented efficiently and that it leads to a
substantial improvement of the performance of the traditional
stereo approach because it is less sensitive to high contrast
outliers.

Keywords-stereoscopic depth; cost function; reduced fatten-
ing

I. INTRODUCTION AND RELATED WORK

Stereo processing is one of the most intensively re-

searched areas in computer vision. Over the last three

decades a large amount of different approaches have been

developed. Current state-of-the-art approaches are based on

belief propagation [1], [2], dynamic programming [3], [4],

bilateral filtering [5], [6] or graph-cut [7]. However, the

traditional correlation-based stereo is still a common tool,

especially in real-time systems [8], [9], [10]. One reason

for this is the computational efficiency of the traditional

approaches because they have a runtime linear in the number

of pixels and searched disparities. A major drawback of the

traditional stereo approach is that depth discontinuities are

not very precise. This effect is usually called fattening. The

degree of fattening depends on the matching cost function

used for correlating image patches.

The most common matching costs for traditional stereo

are the sum of absolute difference (SAD) and the sum of

squared difference (SSD). These measures assume a constant

intensity for corresponding pixels. For this reason they

often fail in real-world application due to lighting changes

between the two camera views. Common ways of reducing

this effect is to apply a Laplacian of Gaussian filter or

to subtract the mean intensity in each image prior to the

actual stereo computation. Furthermore, SAD and SSD can

produce bad correlation values for corresponding pixels. To

compensate for this, Birchfield and Tomasi have proposed a

sampling-insensitive calculation [11]. However, comparisons

[12] have shown that despite these countermeasures, SAD

and SSD are inferior to other matching costs that account

directly for changes in intensity.

One of the standard matching costs that accounts for

changes in intensity is the normalized cross-correlation

(NCC). It allows for a bias and a linear gain of pixel

intensities. Furthermore, NCC is optimal for compensating

Gaussian noise and the correlation values are constrained to

the interval of [-1,1], which eases the selection of a threshold

for rejecting bad matches. The main disadvantage of NCC

is the strong fattening effect compared to other matching

costs.

Two other important cost functions are rank and census

transform [13]. The main idea of the rank transform is to

replace each pixel intensity with its rank among a certain

neighborhood. This removes most of the lighting changes

that can occur between images and decreases the fattening

compared to the other cost functions. The actual rank

transform is only a preprocessing of the stereo images,

which is usually followed by a stereo computation with

SAD or SSD. In a comparison of six cost functions in [12],

rank transform was shown to be the best cost function for

correlation-based stereo with respect to several radiometric

changes. The census transform is an extension of the rank

transform which does not replace the pixels with their rank

but rather with a binary fingerprint that encodes which pixels

of the neighborhood are smaller than the anchor pixel. The

matching cost here is the hamming distance between two

such finger prints.

In this paper, we show that the fattening effect of NCC

arises from its sensitivity to high contrasts and propose a new

two-stage correlation that reduces this sensitivity. In the first

stage a normalized cross-correlation is computed followed

by a summation of the correlation coefficients in the second

stage. We demonstrate that this summed normalized cross-

correlation (SNCC) dramatically improves the results of

traditional stereo algorithms compared to plain NCC and

also the powerful rank transform.

II. TWO-STAGE CORRELATION

In this section, we will discuss why the normalized cross-

correlation (NCC) is more prone to fattening than other
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Figure 1. The left image shows the left Venus image altered by a rectangle of very high contrast. From second left to the right, mean and standard
deviation normalized images are shown using filter sizes of 9x9, 21x21, 55x55, 149x149. Especially, for the larger filter sizes the suppression of the
neighborhood of the high contrast rectangle is clearly observable.

matching costs and why the summed normalized cross-

correlation abates this problem. Furthermore, we show that

SNCC can be implemented efficiently using box filters in a

similar way like NCC.

A. Problem of Normalized Cross-Correlation

For two patches from the two camera images IL (left) and

IR (right) the normalized cross-correlation (NCC) is defined

as:

ρx =

1
|p(x)|

∑

x′∈p(x)(I
L
x′ − µL

x )(IR
x′+d − µR

x+d)

σL
x σR

x+d

, (1)

where

µx =
1

|p(x)|

∑

x′∈p(x)

Ix′ , (2)

σx =

√

√

√

√

1

|p(x)|

∑

x′∈p(x)

(Ix′ − µx)2 . (3)

In the above equations x is the pixel position of the anchor

point of the left patch, p(x) is the set of pixel coordinates
of the left image patch and p(x + d) is the set of pixel
coordinates of the right image patch, i.e. d denotes the

disparity between the left and right image patch.

As was stated above NCC exhibits a strong fattening of

depth discontinuities. It is often stated that the fattening is

caused by perspective changes between the stereo images. In

contrast, we argue that the fattening is caused by the strong

intensity contrasts that usually occur at depth discontinuities.

These high contrasts influence the correlation values of all

patches that touch such a high contrast. We further argue that

this effect arises from the normalization in the correlation

equation (1). In each patch p(x) the values are normalized
by

Inormx′ =
Ix′ − µx

σx

, where x′ ∈ p(x) . (4)

Because of this normalization the low contrast structure

in the vicinity of a high contrast edge is suppressed. To

visualize the suppression, we added a very high contrast

rectangle (value 10000) to the left Venus image of the

Middlebury stereo benchmark [14]. Then we applied the

normalization equation (4) to this image using different filter

sizes. The resulting images of the filtering are shown in

Fig. 1. They demonstrate that the high contrast rectangle

suppresses the structure in its surrounding, whose size is

defined by the filter size.

Due to this suppression effect all patches in the vicinity of

a high contrast edge favor the disparity of this edge because

it is the dominant structure. Not fitting this structure would

lead to a large error or small correlation value. In Fig. 2a a

cutout of the left image of the Venus scene is shown. The

white rectangle patch (see also Fig. 2e) is correlated with

the right image, shown in 2b, for several disparities (shifts).

Fig. 2c shows the correlation values for these disparities.

This plot shows that the best match is roughly at 13 pixel
disparities while the ground truth depth is roughly at 8 pixel
disparities (depicted by the vertical line). The patch that

corresponds to the peak is depicted as the solid rectangle in

Fig. 2b and shown in Fig. 2f. The reason for the wrong match

is the large contrast edge between the bright newspaper and

the dark background. By comparing Fig. 2e and Fig. 2f it

can be directly seen that the matching was dominated by

this strong contrast edge. Since the contrast edge itself has

the depth of the occluder (newspaper), which is roughly a

disparity of 13 pixels, all patches that encompass the border
of the newspaper will have the best correlation at 13 pixels
disparity.

In summary the above observations indicate that the

normalized cross-correlation is biased by strong contrasts.

This leads to the conclusion that NCC for stereo processing

should be used with small filter sizes. However, decreasing

the filter size would lead to noisy depth images.

B. Summed Normalized Cross-Correlation

To overcome the aforementioned dilemma of NCC fil-

tering, we propose a two-stage filtering. In the first stage

NCC is computed according to the correlation equation (1)

but using a very small filter size of 3x3 or 5x5. Then in

the second stage a summation filter is applied directly on

the result of the NCC filtering. This averages the correlation

values over the neighborhood of each pixel at each disparity.

In doing so, the fine structure of the image is preserved and

at the same time the noise in the estimation is reduced. This
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(a) Left Venus image (b) Right Venus image
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(c) NCC correlation
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(d) SNCC correlation

(e) patch in 2a (f) best NCC match (g) best SNCC match

Figure 2. a) and b) show a cutout of the left and the right stereo image
of the Venus scene. The rectangular patch in a) is correlated with the right
image for a set of disparities. c) and d) show the results for NCC and SNCC,
respectively. Correspondingly, the best matching patches are depicted in b)
by the solid rectangle for NCC and the dashed rectangle for SNCC. The
vertical line in c) and d) denotes the ground truth disparity. e-g) Left image
patch and best matches of NCC and SNCC in the right image.

means that our new cost function is defined as

ρ̄x =
1

|p′(x)|

∑

x′′∈p′(x)

ρx′′ , (5)

where ρx′′ is defined by the correlation equation (1) and

p′(x) is the set of pixel coordinates of the summation filter.
It is important to understand that the summation step in

SNCC does not lead to a fattening because the averaging is

performed on the cross-correlation values of the NCC stage

for each disparity. This is the essence of the improvement

of SNCC over NCC.

We applied this new matching cost to the patch from

Fig. 2a using a 3x3 patch size for the NCC stage. Comparing

the resulting correlation values (Fig. 2d) with the results of

the standard NCC (Fig. 2c) demonstrates the improvement.

With the new SNCC measure the influence of the strong

contrast edge is dramatically reduced, though it is still visible

by the second peak. The best matching patch for SNCC is

depicted by the dashed rectangle in Fig. 2b and shown in

Fig. 2g. Comparing the best patch with the template patch

(Fig. 2e) reveals that SNCC was not distracted by the high

contrast edge of the newspaper but concentrated on finding

a good match for most part of the patch. This can be seen

for example by the light triangular structure at the top left

of the target patch.

C. Computational Complexity

The following pseudocode summarizes the working of

SNCC for the traditional stereo processing:

SNCC Init
(1) µL = boxfilfter(L, 3x3)
(2) µR = boxfilfter(R, 3x3)

(3) σL =
√

boxfilfter(L2, 3x3) − µ2

L

(4) σR =
√

boxfilfter(R2, 3x3)− µ2

R
(5) ρmax = −1 confidence map in image size
(6) D = 0 disparity map in image size

SNCC Loop
(1) ∀ disparities d do

(1.1) ρ =
boxfilter(L∗Rd, 3x3)−µLµR

d

σLσR
d

(1.2) ρ̄ = boxfilter(ρ, averaging filtersize)
(1.3) ∀ positions x: if(ρ̄(x) > ρmax(x))

(1.3.1) ρ(x)max=ρ̄(x)
(1.3.2) D(x) = d

(2) return D

Here, we exploit the fact that the correlation equation (1)

can be reformulated to

ρx =

1
|p(x)|

∑

x′∈p(x)(I
L
x′IR

x′+d) − µL
x µR

x+d

σL
x σR

x+d

. (6)

This way the mean values can be calculated in advance and

need not to be mangled with the image for every disparity

shift. In [15] it has already been shown that NCC filtering

can be calculated in linear time with respect to the number of

pixels n and the number of disparities d, i.e. O(nd). In order

to achieve the linear runtime, a fast box filter implementation

based on integral image (summation table) is used. However,

we use the separated filtering of the box filter and not an

integral image. There are three reasons:

Firstly, the separated box filtering takes two subtractions,

two additions and one division per pixel, while integral

images take three additions (two for creating the integral

image and one for summation), three subtractions (one for

creating the integral image and two for summation) and

one division per pixel. Hence, we save one addition and

one subtraction per pixel. Secondly and more importantly,

the separated filtering is numerically less demanding. The

maximum value needed to be stored for an integral image is

n · b, where b is the encoding depth (e.g. 8-bit for standard

gray valued images). In contrast, in a separable filtering

scheme the maximum value is w·b, where w is the number of

pixels in a filter window. As usually w ≪ n we save a lot of

memory and gain speed. Third, the separable filtering spares

one additional buffer (namely the integral image). These

characteristics of separable filtering allows for a slightly

faster implementation compared to integral images.

The extension of the efficient implementation of NCC to

SNCC is straightforward, as there is only one additional
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box filter needed for the summation step. Altogether the

calculation of the matching cost of one pixel for one

disparity takes six multiplications, four additions and five

subtractions (not including the precomputation phase). Due

to the efficient box filter implementation these numbers of

operations are independent of the used filter sizes. Hence,

the runtime is O(nd).

As mentioned in the introduction, this linear runtime

makes traditional stereo approaches very appealing for real-

time applications. In contrast, other state-of-the-art algo-

rithms have a less efficient runtime [16] because they are

based on non-linear runtime algorithms. Apart from some

greedy heuristics the runtime for dynamic programming

is O(n2). Bilateral filters are not separable, which leads

to an overall runtime of O(wnd). Graph-cut is based on

the max-flow-min-cut problem which is in the order of

O(n2d2 log(nd)). Practice has shown that the actual runtime
is smaller (O(n1.2d1.3)) but still non-linear. The only ex-

ception is Semi-Global Matching (SGM) [3] whose runtime

complexity is also O(nd), however, the number of operations

is much larger compared to traditional stereo.

III. TRADITIONAL STEREO

For the evaluations in this paper, we use a traditional

stereo implementation that is similar to the approach of Fua

[17], which comprises five steps.

Firstly, the matching cost is calculated for all pixels and all

disparities. From these the best matching is selected (winner-

takes all). In a second step follows the interpolation of the

disparity to sub-pixel accuracy by fitting a quadratic curve

to the matching scores in the neighborhood of the optimum.

The third step is a left-right consistency check for detecting

occlusions and mismatches, i.e. matches that do not pass

the left-right check are considered as wrong. Furthermore,

in a fourth step small disparity segments are removed. We

consider segments with an area smaller than 200 pixels as

invalid. In the final step, invalidated pixels are filled by

interpolating from the next left and next right neighbor that

have a valid entry. One might argue that comparing stereo

cost functions without post-processing would constitute a

more direct assessment. However, as was already pointed

out in [12], [18], where the same kind of post-processing

was used for the assessment of a large set of cost functions,

the post-processing reduces the overall error. Without this

reduction the large errors impede a fair comparison, while

the post-processing increases the discrimination between the

costs. Furthermore, we use exactly the same post-processing

for all cost functions which renders the gained results

comparable.

Please note that all four post-processing steps scale lin-

early with the number of pixels. We restricted the approach

to these simple post-processing steps in order to preserve

the linear runtime.

IV. EVALUATION

A. Experimental Setup

For evaluating our newly proposed cost function, we use

the stereo data sets Venus, Tsukuba, Teddy and Cones from

the Middlebury benchmark [14]. Fig. 3 displays the left

stereo image of the four scenes. We have chosen these scenes

because the online table of the Middlebury benchmark en-

ables to compare our results to many other stereo algorithms

for different criteria. In the Middlebury benchmark, stereo

algorithms are assessed by means of the percentage of bad

pixel bp

bp =
∑

x

|Dx − GTx| > δ , (7)

where D is the disparity map computed by an algorithm,

GT is the ground truth disparity, x are the image coor-

dinates of the area of interest and δ the error threshold.

The performance assessment of the Middlebury online table

encompassed three different areas of interest (all, non-

occluded, discontinuities) and five different error thresholds

(0.5, 0.75, 1.0, 1.5, 2.0). For each scene and each of the three
areas of interest the creators of the Middlebury benchmark

have defined a binary map.

We compare our proposed summed normalized cross-

correlation (SNCC) with the standard cost functions sum

of absolute differences (SAD), normalized cross-correlation

(NCC) and rank transform (RT) [13] using the traditional

stereo explained in section III. Please note that we use

the same parameters for the stereo algorithm, for all cost

functions. Furthermore, the first stage (NCC-stage) of SNCC

is always run with a 3x3 filter size, i.e. only the second

stage summation area is varied. Similarly, we always use a

11x11 filter for the rank transform, i.e. filter sizes are only

varied for the SAD filter applied after the rank transform.

We choose an 11x11 filter because this gave the best overall

results for RT.

B. Experimental Results

In the first evaluation, we assess the performance of

traditional stereo with the four different cost functions SAD,

NCC, RT and SNCC for different filter sizes. Of course, a

good cost function should have minimum error for some

optimal filter size but in order to generalize well to different

scenes the error should degrade gracefully when deviating

from this optimum. For all four cost functions we used

squared filters of odd sizes from 3x3 to 31x31. Fig. 4

shows the error plots of the four cost functions for an error

threshold of 0.5.
The first row depicts the results for the non-occluded

area of interest, i.e. parts of the scene that are seen in both

stereo images. One can observe that SAD and NCC perform

similar on Tsukuba but for the other scenes, NCC is better

than SAD for small filter sizes. Comparing RT and SNCC

with SAD and NCC shows that the former two outperform
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Figure 3. The left stereo images of the Venus, Tsukuba, Teddy and Cones scene.
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Figure 4. The performance of the traditional stereo for the non-occluded (nonocc) and depth discontinuity (disc) areas of interest. The plots show the
percentage of bad pixels against the patch window size for the proposed two-stage matching SNCC compared to SAD, NCC and RT. The first row shows
results obtained for the non-occluded regions. The second row shows results obtained for depth discontinuities. The last row shows again the discontinuity
case but this time without any postprocessing. It can be seen that SNCC (red curves) outperforms all the other cost functions considerably.

the latter two for Venus, Teddy and Cones. It strikes that

all four cost functions perform similar for Tsukuba. One

reason could be that the Tsukuba scene is overall more

homogeneous than the other scenes. Therefore, matching

costs taking structure into account cannot extract additional

information. Another thing to note is the minor difference

between the optimal performance of RT and NCC. However,

RT degrades much more gracefully with increasing filter

size. At first glance this difference in performance for the

non-occluded area of interest seems puzzling. However,

as was shown in section II-A strong contrast edges can

influence their surrounding depending on the filter size.

This also explains why NCC has a similar performance to

RT for smaller filter sizes but gets worse for larger filter

sizes. RT and SNCC both reduce the influence of high

contrast edges on the surrounding and hence degrade much

more gracefully beyond their optimal point. Comparing the

performance of RT and SNCC reveals that SNCC and RT

are similar for scenes with few occlusions (Venus, Tsukuba)

but that SNCC is substantially better for scenes with many

occlusions (Teddy, Cones). In particular SNCC is much

better than NCC which confirms our approach.

The observations made for the non-occluded area of

interest are even more pronounced for the depth disconti-

nuity area of interest (disc) shown in the second row of

Fig. 4. The characteristics for SAD and NCC are similar to

the non-occluded area but the performance decreases more

rapidly for increasing filter sizes and seems to settle for
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Figure 5. The performance of SAD, NCC, RT and SNCC under lighting
and exposure changes. i/k denotes that the left image had lighting or
exposure i and the right image lighting or exposure k.

the largest filter sizes. Comparing again RT with SNCC

shows that SNCC is clearly better at preserving the correct

position of depth discontinuities for all scenes. Moreover,

SNCC is significantly better than NCC, which confirms our

argumentation of section II.

The last row of Fig. 4 shows the results for the depth

discontinuity area of interest (disc) of the four cost functions

without any post-processing. Indeed, the characteristics are

quite similar to the post-processing regime. However, as was

pointed out above the overall error is increased.

In a second evaluation, we investigated to which extend

SNCC keeps the illumination invariance properties of NCC.

For doing so, we used the Art, Books, Dolls, Laundry,

Moebius and Reindeer stereo images [12] of the Middlebury

database. These are stereo scenes taken under three different

lighting conditions and three different exposures. In accor-

dance to [12], we used all possible combinations of lighting

for the left and right image, i.e. nine different lighting pairs

for each scene. We did the same for exposure. Fig. 5 shows

the result for the nine lighting and nine exposure pairs

averaged over all six scenes. It demonstrates that SNCC

indeed has the same invariance properties as NCC even

though it is working with small filter sizes for the NCC-

stage.

We also submitted the results of our proposed SNCC

cost function to the online Middlebury stereo evaluation.

For this submission we used a non-square filter as it turned

out that for SNCC vertical elongated filters produce slightly

better results. The best overall results were achieved with

a 5x9 filter for the second stage but the first stage was left

untouched with a filter size of 3x3. Table I shows a small

snapshot of the online Middlebury benchmark for an error

threshold of 0.5 comparing SNCC to some selected stereo
algorithms. For a full overview, which features also other

error thresholds, please visit [19]. The small numbers next

to the percentage of bad pixel indicate the rank among the

87 algorithms that have been in the online table at the time

of our submission. For many of the criteria, our approach

is among the top ten algorithms. For the Cones scene, our

approach yields the best result for the non-occluded area

of interest. Usually, the top ranks are held by state-of-the-

Figure 6. From top to bottom these are disparity maps of the Venus,
Tsukuba, Teddy and Cones scene. The first column shows the ground truth
depth data and the second column the result of the proposed SNCC for
traditional stereo. Near pixels are bright and far pixels are dark.

art approaches based on Belief Propagation, Graph Cut,

Bilateral Filtering or Dynamic Programming. In contrast

our results highlight that by means of SNCC the traditional

stereo approach is able to get closer to the performance of

state-of-the-art approaches.

The only exception is the Tsukuba scene. Although the

traditional stereo approach with SNCC has a high ranking

for the whole scene and the non-occluded area of interest,

it has a very bad rank of 74 for the depth discontinuities.

One reason for this might be that the Tsukuba scene is

overall more homogeneous than the other test scenes. This

means that the normalized cross-correlation in the first stage

probably yields low matching values for many parts of the

scene. Here approaches based on pixel-intensity matching

are advantageous because they can relate depth discontinu-

ities to discontinuities in intensity

For a visual comparison, Fig. 6 depicts the disparity maps

(right column) that correspond to the SNCC results in Table I

together with the ground truth maps (left column). What

strikes most are the local artifacts that are mainly due to the
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Table I
A SMALL SNAPSHOT OF THE ONLINEMIDDLEBURY BENCHMARK AT THE TIME OF OUR SUBMISSION. IT GIVES A COMPARISON OF OUR APPROACH TO

BELIEF PROPAGATION (BP) [2], SEMI-GLOBALMATCHING (SGM) [3], FAST BILATERAL STEREO (FBS) [6] AND THE ADAPTIVEWEIGHT
APPROACH (AW) [5]. THE NUMBERS DENOTE THE PERCENTAGE OF BAD PIXELS (PIXELS WHOSE DISPARITY DIFFERS MORE THAN 0.5 FROM THE

GROUND TRUTH DATA) AND THE SUBSCRIPT NUMBERS DENOTE THE RANK AMONG THE 87 ALGORITHMS COMPARED IN THE ONLINE BENCHMARK AT
THE TIME OF SUBMISSION.

Venus Tsukuba Teddy Cones
cost noocc all disc noocc all disc noocc all disc noocc all disc

BP 1.596 2.347 6.945 6.214 7.967 24.564 7.782 17.310 22.53 4.732 14.622 10.71
SGM 4.5522 5.3823 15.741 13.430 14.329 20.338 11.011 18.514 26.112 4.934 12.511 13.58

FBS 5.7126 6.6630 14.937 21.553 22.454 22.955 16.240 23.342 32.146 9.1025 15.829 18.132

AW 7.7742 8.4043 15.842 18.137 18.836 18.624 17.647 23.944 34.059 14.049 19.745 20.640

SNCC 2.359 3.2310 15.440 11.320 12.318 27.574 10.69 15.24 28.624 4.711 11.14 13.26

Table II
A COMPARISON OF THE ABSOLUTE RUNTIME FOR THE TEDDY SCENE
OF SNCC AND SELECTED ALGORITHMS: SEMI-GLOBALMATCHING
(SGM), BELIEF PROPAGATION (BP), FAST BILATERAL STEREO (FBS),
GRAPH-CUT (GC) AND THE BILATERAL FILTERING APPROACH

ADAPTIVEWEIGHT (AW).

algorithm CPU speed runtime (sec)

SNCC 1x3.0 GHz 0.14

SGM [3] 1x2.8 GHz 1.3

BP [3] 1x2.8 GHz 4.2

FBS [6] 2x2.14 GHz 32

GC [3] 1x2.8 GHz 55

AW [6] 2x2.14 GHz 3226

simple fill-in mechanism we used. This is seen best in the

disparity map of the Tsukuba scene. For example, a part of

the table leg is smeared to the right. These artifacts could

be reduced by using an appearance-based fill-in that takes

the original pixel information into account. Nevertheless, the

quality of the disparity maps is already very good which

again highlights the improvements that can be achieved

using SNCC.

C. Runtime

In section II-C, we argued that linear runtime stereo

algorithms are best suited for real-time applications and

that SNCC can be implemented as such. As we did only

a coarse estimation of the theoretical runtimes of the other

algorithms, Table II compares the absolute runtimes for the

Teddy scene of our SNCC with some selected approaches.

Please note that such a comparison, although quite common,

is only a very rough one. The problem is that the actual

runtime of a piece of code depends among other things on

the CPU speed and cache, programming language, hardware

architecture and most importantly on the skill of the pro-

grammer. Nevertheless, the comparison confirms that state-

of-the-art stereo approaches cannot cope with the speed of

the traditional stereo approach.

V. SUMMARY

In this paper, we proposed the summed normalized cross-

correlation (SNCC), a new cost function for the traditional

stereo computation. It is a two-stage approach that performs

a normalized cross-correlation (NCC) with a very small

filter in the first stage and that subsequently aggregates

the resulting correlation coefficients in the second stage.

We motivated theoretically that this two-stage processing

should reduce the fattening effect which NCC is usually

prone to. These theoretical considerations were confirmed

by means of experimental results achieved using Middlebury

stereo benchmark scenes. By comparing our proposed SNCC

measure with common cost functions for the traditional

stereo approach, we could show that SNCC significantly

improves the performance and for small error thresholds

comes even close to the performance of sophisticated, yet

computational much more demanding, state-of-the-art stereo

approaches. We showed that SNCC can be implemented very

efficiently using box filters. By doing so, stereo maps are

computed in O(nd).

Our analysis still misses some important investigations

that have to be covered in future work. First, we have to

analyze the performance of SNCC in the presence of noise.

It has to be investigated how the choice of the filter sizes

of the two stages influences the performance for different

levels of noise. Second, the number of scenes used for

testing was limited. It is of particular interest, if SNCC is

really beneficial for challenging real-world scenarios. Last

but not least, we focused our comparison only to the fastest

cost functions and it would also be interesting how SNCC

performs with respect to slower but more powerful cost

functions. For example a recent comparison of 15 cost

functions [18] has shown that census transform has a better

performance than rank transform.

Our future work will cover also other domains of image

processing. We want to investigate if the SNCC measure

is able to improve the traditional optical flow algorithm

as this is closely related to stereo processing. Moreover,

the idea behind SNCC could be used in any application

that uses NCC and suffers from the fact that NCC fails in

the presence of high contrast outliers. For example, visual

tracking or object detection could also benefit from this new

cost function.
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