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Combining Auditory Preprocessing and Bayesian

Estimation for Robust Formant Tracking
Claudius Gläser, Martin Heckmann, Frank Joublin, and Christian Goerick

Abstract—We present a framework for estimating formant
trajectories. Its focus is to achieve high robustness in noisy
environments. Our approach combines a preprocessing based
on functional principles of the human auditory system and a
probabilistic tracking scheme. For enhancing the formant struc-
ture in spectrograms we use a Gammatone filterbank, a spectral
preemphasis, as well as a spectral filtering using Difference-
of-Gaussians (DoG) operators. Finally, a contrast enhancement
mimicking a competition between filter responses is applied.
The probabilistic tracking scheme adopts the mixture modeling
technique for estimating the joint distribution of formants. In
conjunction with an algorithm for adaptive frequency range seg-
mentation as well as Bayesian smoothing an efficient framework
for estimating formant trajectories is derived. Comprehensive
evaluations of our method on the VTR–Formant database em-
phasize its high precision and robustness. We obtained superior
performance compared to existing approaches for clean as well as
echoic noisy speech. Finally, an implementation of the framework
within the scope of an online system using instantaneous feature-
based resynthesis demonstrates its applicability to real-world
scenarios.

Index Terms—Speech analysis, Bayes procedures, Tracking,
Adaptive estimation, Dynamic programming, Speech synthesis

I. INTRODUCTION

HUMAN speech perception relies to a large extend on

vocal tract resonance frequencies and their variation in

time [1]. These resonance frequencies manifest themselves

as energy concentrations in the spectro-temporal domain and

are referred to as formants. Despite their expected advantages

only very few automatic speech recognition systems try to use

formant trajectories. The main reason is that common methods

for their extraction lack in precision, robustness, or compu-

tational efficiency. Formant extraction becomes particularly

difficult for speech degraded by large speaker-microphone

distances and background noise. In contrast, humans perform

marvelously well under such conditions [2]. Consequently, de-

signing a system based on functional principles of the human

auditory system is expected to overcome these problems.

Traditional approaches for extracting formants are charac-

terized by a segregation into two processing stages: formant

candidate estimation and a subsequent selection and allocation

of candidates to the vocal tract resonance frequencies. In its

simplest form this is achieved by performing spectral analysis

based on cross-channel correlation [3] or linear predictive

coding (LPC) [4] followed by peak picking in the resulting

spectrogram. However, such approaches are error-prone, espe-

cially for speech degraded by noise. Consequently, they are

not applicable for real-world scenarios.
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Strasse 30, 63073 Offenbach, Germany, phone: +49-69-89011-702, fax: +49-
69-89011-749, e-mail: {firstname.lastname}@honda-ri.de.

Methods targeting the improvement of spectral analysis

techniques for the estimation of formant candidates are rare

[5], [6]. In contrast, there has been considerable effort in

developing more sophisticated algorithms for selecting candi-

dates to obtain formant trajectories. Aspects covered by these

methods vary from restricting formant extraction to certain

frequency ranges [7], [8], [9], through imposing continuity

constraints [10], [11], to incorporating contextual information

[12], [13], [14]. In recent years, probabilistic techniques for

estimating formant trajectories have become popular, resulting

in numerous methods relying on Bayesian filtering [15], [16],

[17], [18], [19] or Hidden Markov Models (HMM) [17], [20],

[21], [22], [23].

In this paper we present our framework for the extraction of

formant trajectories [24]. It differs in many aspects from com-

mon algorithms. First, with the aim of achieving higher robust-

ness against speech degradations compared to the commonly

used LPC analysis we use an auditory-inspired preprocessing

for enhancing the formant structure in spectrograms. Thereby,

we follow the spirit of [6], but contrary we do not rely on

Fast Fourier Transformation (FFT) to mimic auditory filters.

Rather the application of a Gammatone filterbank transforms

the speech signal into the spectro-temporal domain in which

we compensate for the spectral tilt. Next, spectral filtering

using Difference-of-Gaussians (DoG) operators and a contrast

sharpening mimicking a competition between filter responses

enhance formants in spectrograms.

Second, we perform formant tracking by using Bayesian

estimation. In contrast to previous approaches, we estimate the

joint distribution of formants by adopting the mixture tracking

technique [25] to the problem of tracking formants and apply it

in conjunction with an algorithm for adaptive frequency range

segmentation. Therewith, we solve the problem of tracking

multiple formants neither by using single tracker instances

for each formant separately [18] nor by extending the state

space [15], two commonly used techniques for multi-target

tracking. We rather model the joint distribution of formants via

a mixture of component distributions sharing the same state

space and let them evolve in a data-driven adaptive manner.

Within the mixture tracking framework a component-specific

probabilistic modeling of formant dynamics can be used by

which differences in dynamic behavior or even correlations

between formants [26] can be taken into account. Additionally,

we do not assume Gaussian probability distributions by relying

on Kalman filters [16], [17], [19]; instead we use a grid-

based approximation of posteriors, so that multiple hypotheses

can be evaluated in parallel. This is particularly important

when operating in noisy environments (see [15] for another

application of grid-based belief approximation to formant
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tracking). We will show, that the application of Bayesian

smoothing [27] on the obtained filtering distributions further

enhances noise robustness.

Lastly, our framework incorporates algorithms for pitch,

voicing, and gender extraction [28], [29]. This is advantageous

as formant profiles of male, female, and children’s voices

differ significantly [30]. We use this gender decision to mod-

ulate the probabilistic tracking regime insofar as we switch

gender-dependent probabilistic formant models according to

the detected gender. We performed an evaluation on the VTR–

Formant database [31] and further applied our framework

within the scope of an online system using instantaneous

feature-based resynthesis.

The remainder of the contribution is organized as follows.

An overview of our formant estimation framework is given in

section II. Section III focuses on the auditory-based prepro-

cessing followed by a detailed description of the probabilistic

tracking regime in section IV. The extraction of pitch, voicing,

and gender as well as their application to tracking formants

is highlighted in section V. A comprehensive evaluation of

our method is presented in section VI. The application of the

framework within the scope of an online system is highlighted

in section VII. Finally, section VIII summarizes the paper.

II. SYSTEM OVERVIEW

The architecture of our system for formant trajectory es-

timation is presented in Fig. 1. It can be divided into three

main processing blocks: an auditory-based preprocessing for

enhancing formant structure in the spectro-temporal domain

(top left), a probabilistic tracking framework for estimating

formant trajectories (bottom), as well as a gender extraction

(top right), whose decision modulates the tracking of formants.

The following sections will focus on the individual parts

of the architecture and provide insights into the detailed

processing carried out.

III. PREPROCESSING

According to the linear source-filter theory speech is pro-

duced by a non-linear volume velocity source followed by

a time-varying linear filter and radiation components [32].

Because formants are the resonance frequencies of the vocal

tract, their extraction can be improved by eliminating the

spectral influence of excitation and radiation. More precisely,

the formant structure in a spectrogram is mainly impaired by

two causes: First, excitation and radiation introduce a spectral

tilt that has to be corrected via a preemphasis. Second, for

voiced sounds the glottis convertes the steady airflow produced

by the lungs into a quasi-periodic train of flow pulses by which

the transfer function of the vocal tract is sampled at multiples

of the fundamental frequency. Consequently, spectrograms

feature spectral peaks at the harmonics rather than the vocal

tract resonance frequencies. The preprocessing we present in

the following aims at compensating for these effects.

A. Gammatone Filterbank

We transform the speech signal into the spectro-temporal

domain via the Patterson-Holdsworth auditory filterbank [33].
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Pitch Tracking
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Fig. 1. The architecture of the formant estimation system.

This filterbank is based on neurophysiological findings on the

human auditory system and models the peripheral processing

as carried out by the cochlea, where sound is transformed into

spatio-temporal response patterns on the auditory nerve. The

filterbank is implemented as a set of Gammatone filters, each

of them being tuned to a different frequency range. Thereby,

we follow the implementation suggested by Slaney [34]. Our

filterbank is composed of 128 Gammatone filters covering

the frequency range from 80 Hz to 8 kHz. Subsequently, the

spectral envelope is calculated via rectification and low-pass

filtering. The logarithmic envelope of the filter responses to

an exemplary speech signal chosen from the TIMIT database

[35] is shown in Fig. 2 (a).

B. Preemphasis

For voiced sounds, the voice source signal is produced at

the glottis. By constituting relations between glottal spectra

and the frequency response of linear filters, Fant suggested the

use of a second-order low-pass filter for the approximation of

the glottal flow spectrum [36]. This is a valid approximation

when assuming the most common phonation types, modal and

creaky phonation [37]. Thus, voiced excitation changes the

spectral characteristic by -12 dB/oct.

Furthermore, it can be derived that a first-order high-

pass filter models the lip impedance, which corresponds to

the transfer function of the radiation component [38]. Thus,

radiation changes the spectral characteristics by +6 dB/oct.

Overall this means that a preemphasis via amplification of
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Fig. 2. In (a) the original spectrogram for the utterance ”They all agree
that the essay is barely intelligible.” spoken by a male speaker is shown.
The spectrogram after the application of the preprocessing for enhancing the
formant structure is shown in (b).

frequency magnitudes by +6 dB/oct adequately eliminates the

spectral influence of excitation and radiation.

C. Spectral Filtering

After the above mentioned preemphasis we enhance the

formant structure in the spectrogram by smoothing along the

frequency axis following the same spirit as [6]. Therefore,

we use channel-dependent Difference-of-Gaussians (DoG) op-

erators with standard deviations of the negative Gaussian

components being twice as large as that of the corresponding

positive ones:

DoGn(f) =
1√
(2π)

(
exp

(
−

(f − fcn)2

2σ2
n

)

−
1

2
exp

(
−

(f − fcn)2

8σ2
n

))
(1)

Here, DoGn is the DoG operator of channel n featuring a

center frequency fcn. We set the standard deviations σn to

70 Hz. For filter channels with center frequencies in the range

from 5 to 8 kHz we further increased the standard deviations

linearly up to 400 Hz in order to suppress formants higher

than F4. Additionally, the logarithmic arrangement of the

Gammatone filterbank’s channel center frequencies is taken

into account, insofar as the DoGs are discretized by sampling

and normalizing them accordingly. Fig. 3 exemplarily depicts

the DoGs of 8 filter channels. The application of the DoG

operators on the emphasized spectrogram spreads harmonics

and forms peaks at formant locations, whereas regions between

formants are suppressed.

D. Contrast Enhancement

In our experiments an additional contrast enhancement

mimicking a competition between filter responses has been

proven to be useful. At first a normalization of the values

to the maximum at each sample is performed. By doing so,
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Fig. 3. The DoG operators of the filter channels used for enhancing
formant structure in spectrograms vary in bandwidth and frequency resolution
dependent on the channels’ center frequencies. Here, the DoG operators of 8
exemplarily chosen filter channels are shown.

formant structures also become visible in signal parts where

the energy is relatively low. An application of a sigmoidal

function r to the normalized spectrogram S further enhances

the spectral contrast.

r(S) =
1

1 + exp(−α(S − θ))
(2)

We use α = 3.5 and θ = −0.2 for the slope and threshold

parameters, respectively. Fig. 2 (b) continues the example de-

picted in (a) by showing the spectrogram after the application

of the preprocessing. As can be seen, the proposed method

significantly enhances the formant structure (see section VI-C

for a thorough performance evaluation).

IV. FORMANT TRACKING

The preprocessing algorithm described in the previous sec-

tion enhances the formant structure in spectrograms. Never-

theless, it neither detects exact formant locations nor their

trajectories. To obtain complete formant trajectories, a tracking

algorithm is applied. Formant tracking has been investigated

already for a long time. Yet it is still a rather challenging task

as multiple formants have to be tracked at the same time.

While tracking multiple formants two general problems

arise. The first one is widely known as the data association

problem, i.e. the assignment of spectral peaks to formants.

This cannot be achieved by focusing on only one formant;

rather one has to look at the joint distribution of formants

in conjunction with spectro-temporal constraints. The second

problem is the sequential estimation of formant locations

based on noisy observations. For this reason the robustness

of the used tracking algorithm against noise and clutter is

of particular interest. In the following a tracking framework

meeting these requirements is proposed.

A. Bayesian Mixture Filtering

Because no sensor is perfect, handling uncertainty intro-

duced by noise and clutter is one of the key issues in any

dynamical system. Over the past years particularly Bayesian

filter techniques have become popular, since they provide a

powerful framework of probabilistically estimating a dynamic

system’s state. Their benefit in handling noisy observations

was shown in different applications [39].

Bayesian filters represent the state at time t by random vari-

ables xt, whereas uncertainty is introduced by a probabilistic

distribution over xt, called the belief Bel(xt). Bayesian filters
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target the sequential estimation of such beliefs over the state

space conditioned on all information contained in the sensor

data [40]. Let zt denote the observation at time t, then the

standard Bayesian filter recursion can be written as follows:

Bel(x0) = p(x0) (3)

Bel(xt) = α · p(zt|xt)

∫
p(xt|xt−1)Bel(xt−1) dxt−1 (4)

Here p(x0) is some a priori distribution used for initialization

and α a normalization constant ensuring the belief’s prob-

abilistic character. Furthermore, the so called motion model

p(xt|xt−1) and the observation model p(zt|xt) are used for

the description of the system dynamics as well as the state-

dependent likelihood of perceiving observations, respectively.

According to this, the standard Bayesian filter recursion can

be interpreted as a two-stage process. Every time a sensor

provides a new observation zt the system calculates the

predictive belief Bel−(xt) using (5) and subsequently corrects

the prediction according to (6):

Bel−(xt) =

∫
p(xt|xt−1) · Bel(xt−1) dxt−1 (5)

Bel(xt) =
p(zt|xt) · Bel−(xt)∫

p(zt|xt) · Bel−(xt) dxt

(6)

Several implementations of Bayesian filters were proposed,

which mainly differ in the used representation of beliefs [40].

The most famous one is the Kalman filter, which recently has

become popular in the domain of formant tracking as well

[16], [17], [19]. Kalman filters approximate beliefs by their

first and second moment, which is identical to a unimodal

Gaussian representation. In this way they are optimal esti-

mators, assuming the initial uncertainty is Gaussian and the

observation model and system dynamics are linear functions

of the state. However, these assumptions are too restrictive in

most cases, especially for tracking formants.

We want to focus on belief representations which are able

to represent arbitrary distributions, thus allowing a multi-

hypotheses tracking. Such a multi-hypotheses tracking is par-

ticularly important for achieving noise robustness. Particle fil-

ters provide the possibility to represent arbitrary beliefs. Their

inherent property of focusing on the most important regions

of the state space let particle filtering become a powerful

technique when operating in high-dimensional (continuous)

state spaces. However, since we want to estimate formant

locations on a low-dimensional discrete grid defined by the

channels of the Gammatone filterbank, we choose a grid-based

approximation of the belief. Thus, assuming that the filterbank

is composed of N channels, the state space at time t can be

written as xt = {x1,t, x2,t, . . . , xN,t}.

Nevertheless, in practical implementations Bayesian filters

can maintain multimodality only over a defined time-window.

Longer durations cause the belief to migrate to one of the

modes, subsequently discarding all other modes. As a conse-

quence the standard Bayesian filters are not suited for multi-

target tracking as in the case of formant tracking. For this

reason, we adopt the mixture filtering technique which was

recently introduced in the computer vision community [25].

More precisely, we model the target distribution Bel(xk,t)

by a non-parametric mixture of M filtering distributions

Belm(xk,t), such that each formant is represented by one

mixture component (see Fig. 4 (a)). In addition a mixture

weight πm,t is assigned to each component belief to maintain

the correct target distribution:

Bel(xk,t) =
M∑

m=1

πm,t · Belm(xk,t) (7)

Hence, the Bayesian filter recursion can be rewritten with

respect to the mixture modeling technique by substituting the

beliefs in (5) and (6) with (7):

Bel−m(xk,t) =

N∑

l=1

pm(xk,t|xl,t−1)Belm(xl,t−1) (8)

Belm(xk,t) =
p(zt|xk,t)Bel−m(xk,t)∑N

l=1 p(zt|xl,t)Bel−m(xl,t)
(9)

πm,t =
πm,t−1

∑N

k=1 p(zt|xk,t)Bel−m(xk,t)∑M

n=1 πn,t−1

∑N

l=1 p(zt|xl,t)Bel−n (xl,t)
(10)

The formulas show that the incorporation of the mixture

modeling technique results in the standard Bayesian recursion

at the level of individual mixture components. This means

that the component filtering distributions Belm(xk,t) evolve

independently over time, whereas an interaction between the

components only takes place during the calculation of the

new mixture weights πm,t. This nice result unfortunately also

entails that the mixture filtering distributions are not immune

against belief degeneration. More precisely, component beliefs

will become more and more diffuse over time which may result

in loosing track of formants. This is exactly the opposit of what

we want to achieve. In fact, components assigned to formants

should be clearly separated in order to avoid ambiguities and

maintain multimodality.

To prevent mixture components from belief degeneration,

a procedure which reclusters the component beliefs has to

be applied from time to time. Assuming such a function

exists and returns sets R1,t, R2,t, . . . , RM,t for M components

which segment the frequency range into consecutive formant-

specific regions. This means that each frequency channel xk,t

at each instance in time is element of exactly one set Rm,t

and therewith assigned to exactly one non-empty mixture

component m covering a certain formant. What remains is

the recalculation of the component beliefs and the associated

mixture weights, such that the joint beliefs before and after

the reclustering procedure are equal. Because the segmentation

algorithm results in disjunct state sets and the joint filtering

distribution before and after the reclustering has to be equal,

the new component beliefs Bel′m(xk,t) and associated mixture

weights π′

m,t have to be of the form:

π′

m,t =
∑

k∈Rm,t

M∑

n=1

πn,t · Beln(xk,t) (11)

Bel′m(xk,t) =

{ ∑
M

n=1
πn,t·Beln(xk,t)

π′

m,t

, ∀xk,t ∈ Rm,t

0 , ∀xk,t 6∈ Rm,t

(12)

Fig. 4 illustrates the proposed method of recalculating

component beliefs and mixture weights. As shown in (a) the
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Fig. 4. The mixture modeling approach: (a) the joint belief (dashed line) is
modeled by overlapping mixture components (solid lines); (b) the calculated
cluster boundaries (dotted lines) are used for the recalculation of beliefs
resulting in non-overlapping mixture components.

component beliefs overlap significantly close to the bound-

aries. After the reclustering algorithm has been applied and

optimal component boundaries, which divide the frequency

range into disjunct sets of frequency channels, are known, the

recalculation can be done. Fig. 4 (b) shows that previously

overlapping probabilities are separated. Thereby, consecutive

components exchange parts of their probabilities in a mixture

weight dependent manner. With this method, a mixture of

consecutive but separated components is achieved by which

multimodality can be maintained.

B. Adaptive Frequency Range Segmentation

To find the optimal segment boundaries we introduce a

new variable x
(m)
k,t that specifies the assignment of state xk

to segment m at time t. With the help of this variable the

trellis shown in Fig. 5 can be build, where each x
(m)
k,t is

represented by one node. Now the problem of frequency

range segmentation can be reformulated to finding an optimum

path from x
(1)
1,t to x

(M)
N,t through the trellis. This can be

seen by postulating that each x
(m)
k,t becomes true only if its

corresponding node is part of the path.

If all possible paths from x
(1)
1,t to x

(M)
N,t are considered, it

can be seen that each path has length N and exactly one

node corresponding to state xk,t is part of each path. This

means, that all paths encode one possible segmentation by

assigning exactly one component label m to each state xk,t.

Furthermore, by choosing the topology shown in Fig. 5 all

possible segmentations are covered by paths through the trellis.

Additionally, the sequential order of components is maintained

by using only vertical and diagonal transitions between nodes.

Finally, this algorithm produces non-empty components since

at least one node encoding the assignment of a state to each

component is part of a path.

What remains is an appropriate choice of necessary pa-

rameters as well as an algorithm for calculating the most

likely path through the trellis. The latter can be done by

using Viterbi decoding. For the former three parameters can be

identified: the likelihood of each state p(x
(m)
k,t ) as well as the

transition probabilities p(x
(m)
k,t |x

(m−1)
k−1,t ) and p(x

(m)
k,t |x

(m)
k−1,t).
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Fig. 5. The trellis used for frequency range segmentation. The colored path
through the trellis encodes one possible segmentation.

Unfortunately, these likelihoods are not available, rather they

have to be set according to some heuristics. Following the

principle of maximum entropy we use uniformly distributed

transition probabilities, whereas the following formula is used

to model the priors:

p(x
(m)
k,t ) = pm(xk,0) · Belm(xk,t) (13)

According to (13) the likelihood of state x
(m)
k,t depends on

the a priori probability distribution of component m as well as

the actual m-th component belief. Since the belief represents

the segmentation at the last timestep updated according to the

motion and observation models, this formula applies some

data-driven segment continuity constraint. Furthermore, the

used a priori probability distribution pm(xk,0) antagonizes

segment degeneration by application of long-term constraints.

Because the suggested method relies on the component

beliefs at the actual timesteps, the frequency range is sequen-

tially segmented in an adaptive and computationally efficient

manner. Therewith we are able to apply the Bayesian mixture

filtering for tracking the joint distribution of formants while

maintaining its multimodality. Fig. 6 continues the example

of Fig. 2. In (a) the filtering distributions obtained by the

application of Bayesian mixture filtering using 5 components

are shown. Addtionally, the calculated segment boundaries are

overlayed (dashed lines).

This example demonstrates the ability of the proposed

approach of effectively maintaining multimodality through

mixture modeling. Thereby, the frequency range segmentation

algorithm plays an important role in dividing the frequency

range into formant specific parts, thus, resolving the data

association problem. The computed segment boundaries adapt

to formant profiles in a data-driven manner. Even during

closely contiguous formant frequencies this approach performs

well. The reason for this is the application of continuity as well

as long-term constraints.

Nevertheless, this example also reveals limits of Bayesian

mixture filtering. Uncertainties already included in observa-

tions cannot be resolved completely. They rather result in a

diffuse mixture filtering distribution at these locations. Hence

some further processing is necessary in order to achieve robust

formant trajectories even in these cases.

C. Bayesian Smoothing

If we keep in mind that Bayesian mixture filtering assumes

the underlying process to be Markovian, its limits can readily
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be understood. In a Markovian process the actual state only

depends on the previous state as well as the actual observation.

Thus the belief of a state xk,t depends on all observations

up to time t as shown by (14). In order to robustly extract

formant trajectories, particularly in noisy environments, also

future observations have to be taken into account. Insofar (15),

where B̂el(xk,t) denotes the belief regarding both past and

future observations, would be a preferable measurement for

tracking formants.

Bel(xk,t) = p(xk,t | z1, z2, . . . , zt) (14)

B̂el(xk,t) = p(xk,t | z1, z2, . . . , zt, . . . , zT−1, zT ) (15)

Bayesian smoothing provides a way of estimating such a

distribution over xk,t [27]. It works very similar to standard

Bayesian filters, but in reverse time direction. It recursively

estimates the smoothed distribution B̂el(xk,t) based on pre-

defined system dynamics pm(xt+1|xt) as well as the already

obtained filtering distributions Belm(xt):

B̂el
−

m(xk,t) =

N∑

l=1

B̂elm(xl,t+1) · pm(xl,t+1|xk,t) (16)

B̂elm(xk,t) =
Belm(xk,t) · B̂el

−

m(xk,t)
∑N

l=1 Belm(xl,t) · B̂el
−

m(xl,t)
(17)

Our implementation of Bayesian smoothing incorporates the

sliding window technique in order to make the algorithm suit-

able for online operation. For the experimental results reported

in section VI the window size is set to 150 ms. However,

in order to reduce the introduced signal delay the window

size can be decreased considerably while obtaining similar

performance (e.g. in our application presented in section VII

a window size of 80 ms is used).

Fig. 6 (b) shows the result of Bayesian smoothing applied

to the filtering distribution of (a) and demonstrates that the

formant trajectories are significantly enhanced. Due to the

continuity constraints regarding both past and future observa-

tions almost all ambiguities were resolved. Thus former diffuse

filtering distributions were sharpened, likewise at locations

where observations were characterized by uncertainty.

The final calculation of exact formant locations Fm(t) can

be done by picking the peaks of the smoothed component

beliefs such that the location of the m-th formant equals

the peak location in the smoothed distribution of component

m (see (18)). In Fig. 6 (c) the resulting formant tracks are

overlayed to the original spectrogram.

Fm(t) = arg max
xk,t

[
B̂elm(xk,t)

]
(18)

The formant tracking algorithm introduced in this section

has several advantages over conventional approaches. Besides

using Bayesian filtering to cope with noisy environments

[40], our algorithm models the joint distribution of formants

via a mixture of formant-specific component beliefs. These

beliefs are represented using a grid-based approximation with

the grid being defined by the filterbank’s channels. Since

mixture components evolve independently over time, formant-

specific a priori distributions pm(xk,0) and motion models

pm(xk,t|xl,t−1) can be chosen for each component separately.
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Fig. 6. The formant tracking algorithm applied to the example depicted in
Fig. 2. The filtering distributions (a), the smoothing distributions (b), as well
as the resulting formant trajectories overlaid to the original spectrogram (c)
are shown.

V. GENDER EXTRACTION

Beyond the utilization of formant-specific probability dis-

tributions, the extraction of formants can further be improved

by taking additional information into account. Here, we in-

corporate knowledge about the gender of speakers via gender-

dependent formant-specific probability distributions pG
m(xk,0)

and pG
m(xk,t|xl,t−1). This is reasonable since it is well-known

that formant profiles of children, women, and men differ

significantly [30]. More precisely, there is a close relation

between formant locations and vocal tract size, which in turn

differs from male to female subjects. As a result, female

formant patterns are on average scaled to about 20 % higher

frequencies than corresponding male formant patterns [41].

These results can be extended to vocal tract resonance fre-

quencies of children by further introducing an age-dependent

scaling factor [42]. It is additionally known that a subject’s

mean pitch is correlated with its vocal fold length [43]. This

renders pitch an excellent feature for detecting gender.

For this reason, we extract pitch and voicing informa-

tion and subsequently judge a speaker’s gender. Based on

this information different gender-dependent formant-specific

probability distributions are used in the formant tracking

framework.

A. Pitch & Voicing extraction

In the following we will sketch our algorithms for pitch and

voicing extraction in order to give the reader a comprehensive
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overview of our framework. Nevertheless, a detailed descrip-

tion of the used algorithms is beyond the scope of this paper.

For more details refer to [28] and [29].

In our pitch extraction algorithm we combine information

residing in the temporal and spectral representation [28]. On

the one hand the algorithm captures the temporal aspects by

relying on a histogram of Zero Crossing Distances (ZCDs).

Such a histogram is very similar to the so called all order in-

terspike histogram modeling the phase locked firing of neurons

in the auditory system [44]. On the other hand spectral aspects

were incorporated by using comb filters. Most importantly,

combining both cues allows a suppression of spurious side

peaks within the histogram of ZCDs by which a significant

increase in noise robustness can be achieved.

In order to obtain continuous pitch trajectories we apply

a tracking algorithm on the final ZCD histogram. Here, we

use the same algorithm as for the estimation of the formant

trajectories (see section IV), with the exception that only one

mixture component is used, since no multi-target tracking has

to be done. In this case, the algorithm resembles the standard

Bayesian filtering and smoothing. After that, the maximum at

each sample in time is picked and converted from a distance

measure to a frequency.

Next, we carry out a voiced-unvoiced classification of

speech samples based on two cues [29]. One is the ratio of

the energy in a high frequency band to that in a low frequency

band. The other cue is the harmonicity of the signal which is

estimated by calculating the variance of the ZCD histogram.

Finally, a multidimensional hypothesis test integrating both

features yields a voicing decision.

B. Gender Detection

In order to judge a speaker’s gender, we introduce vari-

ables g ∈ {’male’, ’female’}, v ∈ {’voiced’, ’unvoiced’}, and

F0 denoting gender, voicing, and pitch, respectively. Next,

we set p(g|F0, v = ’unvoiced’) = 0 and estimate the pos-

terior p(g|F0, v = ’voiced’) using the training set of the

VTR–Formant database [31]. These posteriors are finally used

to calculate the gender G(t) of a speaker at each timestep t:

G(t) =

{
’male’ , if h(’male’, t) ≥ h(’female’, t)

’female’ , otherwise
(19)

h(g, t) = (1 − κ) · h(g, t) + κ · p(g|F0(t), v(t)) (20)

As stated in (20), we perform a smoothing on the posteriors

with time constant κ. This yields two desirable properties:

fluctuations in gender decision are suppressed and gender de-

cisions are extended from voiced to unvoiced speech segments.

VI. RESULTS

To evaluate the proposed method, we performed tests on

the VTR–Formant database [31]. As a subset of the widely-

used TIMIT corpus, this database comprises a total of 516

utterances spoken by male and female speakers. It additionally

provides formant trajectories which have been initially derived

by an automatic formant tracker [45] and subsequently hand-

corrected for the first three formants. However, the difficulty

of the VTR–Formant database in providing a ground truth

is worth noting. First, methods related to [45] may benefit

from the employed semi-automatic labeling and, second, in

some cases even visual inspection may not provide means to

identify real formant locations. We nevertheless think that this

database provides a reasonable basis for deriving quantitative

performance measures. For this reason we used it in order to

compare our algorithm to existing approaches with respect to

precision and robustness in noisy echoic environments.

A. Experimental Setup

For all experiments our algorithm contained four mixture

components corresponding to the first four formants (F1–F4)

as well as an additional component covering the frequency

range above F4. The gender-dependent priors pG
m(xk,0) and

motion models pG
m(xk,t|xl,t−1) for each mixture component

m, which describe the spectro-temporal behavior of the corre-

sponding formants, were estimated based on the training set of

the VTR–Formant database. The same holds for the posterior

p(g|F0, v) used for detecting gender g based on extracted pitch

F0 and voicing v.

The evaluation was carried out on the test set of the VTR–

Formant database, which consist of 34 and 56 utterances

spoken by male and female speakers, respectively. We further

added white noise, babble noise, and car noise at 7 different

signal-to-noise ratios (SNRs) to the clean speech signal. For

estimating SNRs, non-speech samples were excluded from

energy calculation.

We applied our algorithm to clean and noisy utterances and

calculated the absolute errors normalized by the formant loca-

tions given in the manual labels at time steps equally spaced by

10 ms. The obtained mean relative errors are depicted by the

plots in Fig. 7 where 95 % confidence intervals are additionally

shown. For estimating confidence intervals we applied the

bootstrap technique using sentence-wise data sampling [46],

[47]. The results mirror the typical performance curves where

the error continuously increases when SNR decreases. Overall

our algorithm yields suitable estimates under all conditions

without showing any significant drops in performance. The

plots additionally illustrate that car noise, with its energy

concentrated on low frequencies, has only a small influence

on the estimation of high formants.

B. Comparison to Existing Approaches

To judge the quality of the obtained results we compared

them to existing approaches. More precisely, we applied the

formant estimation algorithms provided by two widely-used

speech processing tools (Praat [48] and the Snack Sound

Toolkit used in WaveSurfer [49]) as well as that of a recently

proposed approach [50] also targeting noise robust tracking.

Both Praat’s and Snack’s formant extraction rely on LPC

analysis. After an initial preemphasis they estimate formant

candidates by solving for the roots of the linear predictor

polynomial. Whereas Praat considers formant candidates to

already be the final formant estimates, Snack additionally

applies a dynamic programming based cost minimization of

connecting formant candidates to obtain complete trajectories.
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Fig. 7. The plots depict the mean relative errors of our method when speech was degraded by various types of noise at different SNRs. Bars mark 95 %
confidence intervals.

TABLE I
MEAN RELATIVE IMPROVEMENTS (AND 95 % CONFIDENCE INTERVALS) IN % OF OUR METHOD COMPARED TO [48], [49], [50]

Formant
Praat [48] Snack [49] Mustafa [50]

babble white car babble white car babble white car

F1
50.5 79.4 74.0 8.3 52.5 45.3 50.1 39.0 64.2

(+2.1;-2.3) (+0.9;-1.0) (+1.4;-1.5) (+1.8;-1.8) (+2.1;-2.2) (+2.7;-2.8) (+2.1;-2.2) (+2.6;-2.6) (+2.5;-2.7)

F2
29.4 63.0 64.0 11.0 39.1 33.4 -0.1 19.8 28.4

(+3.8;-3.9) (+2.3;-2.4) (+2.8;-2.9) (+2.8;-2.9) (+2.9;-3.0) (+4.6;-4.8) (+2.3;-2.4) (+2.8;-2.9) (+4.0;-4.2)

F3
34.3 56.4 55.1 31.4 40.8 30.8 30.2 34.2 35.4

(+3.8;-4.1) (+2.4;-2.6) (+2.9;-3.0) (+3.4;-3.5) (+2.5;-2.6) (+4.5;-4.7) (+4.6;-4.9) (+3.3;-3.6) (+4.9;-5.3)

Therefore, it is hypothesized that Snack yields superior per-

formance to Praat. The algorithm presented in [50] follows

another approach. After a preemphasis and Hilbert transfor-

mation the signal is filtered by 4 Formant Filters. These are

adaptive bandpass filters whose zeros and poles are updated

based on the formant frequency estimates at the previous

timestep by which a separation of formants into different

channels can be achieved. A first-order LPC analysis on each

of the 4 filter channels finally estimates F1-F4.

The relative performance improvements achieved by our

framework with respect to these methods are summarized in

Table I where the relative improvements are averaged over all

SNRs for each type of noise, respectively. Table I additionally

shows 95 % confidence intervals. As can be seen, our approach

significantly outperforms the other methods in all cases tested,

except for speech degraded by babble noise where the algo-

rithm presented in [50] reaches similar performance for F2.

However, in all other cases we achieve relative performance

enhancements ranging from 20 % to 60 %. In some cases, we

even obtain improvements of 80 %.

Finally, we evaluated the influence of echoic environ-

ments on the precision of the different formant tracking

algorithms. For doing so, we measured impulse responses

of a loudspeaker-enclosure-microphone (LEM) system using

loudspeaker-microphone distances of 1 and 3 meters in a

room with an echo constant of τ60 = 1100 ms. We convolved

clean speech signals with the obtained impulse responses and

additionally added babble noise, white noise, and car noise

at an SNR of 6 dB. The mean relative errors as obtained by

averaging over all noise types are plotted in Fig. 8. As shown,

the incorporation of echoes impairs the performance of the

algorithms, particularly for the extraction of F2. Moreover,

for our algorithm there is just a minor effect of echoic

environments with respect to the extraction of F1 and F3.

Overall our algorithm reaches superior performance compared

to the other approaches in all cases tested.

C. Relative Contributions of the System Components

Given the compelling results, in the following we separate

out the individual contributions of the system components

with respect to their effects on the performance of the overall

framework. Therefore, we performed an additional test in

which we applied the proposed formant tracking algorithm to

a spectrogram as obtained via LPC analysis. More precisely,

we used the same preprocessing as Snack does, that is a

signal resampling to 10 kHz followed by a preemphasis (factor

0.7) and a cos4-windowed (length = 49 ms, increment = 10 ms)

12th-order LPC analysis. Finally, a spectrogram is constructed

from the LPC coefficients, which serves as input to the formant

tracking algorithm.

Fig. 9 shows plots of the mean relative errors including 95%

confidence intervals for three systems applied to noisy speech:

• ABP+BMT: the proposed auditory-based preprocessing

(ABP) followed by the proposed Bayesian mixture track-

ing (BMT)

• LPC+BMT: the LPC analysis (LPC) followed by the

proposed Bayesian mixture tracking (BMT)

• LPC+DPT: the LPC analysis (LPC) followed by dynamic

programming-based tracking (DPT) which is the frame-

work of Snack [49]

By comparing the performance curves of the different methods

the relative contributions of the auditory-based preprocessing

and the Bayesian mixture tracking to the overall performance

of our framework can be assessed.
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Fig. 9. Different combinations of two methods for enhancing formants in spectrograms (the proposed auditory-based preprocessing (ABP) and LPC analysis
(LPC)) as well as two methods for formant tracking (the proposed Bayesian mixture tracking (BMT) and dynamic programming-based tracking (DPT)) were
applied to noisy speech. The plots depict the obtained mean relative errors including 95 % confidence intervals. By comparing the performance curves the
relative contributions of the auditory-based preprocessing and the Bayesian mixture tracking to the overall performance of our framework can be judged.

First, a comparison between the results for LPC+BMT

and LPC+DPT highlights that the proposed formant tracking

significantly improves performance compared to the tracking

algorithm used by Snack, except for the estimation of F2 when

speech is degraded by babble noise. In this case performance

slightly decreases. Next, by comparing the performance of

ABP+BMT to that of LPC+BMT we see that the proposed

auditory-based preprocessing is superior to LPC analysis,

particularly for F1 and F2. The most likely reason for minor

problems in the extraction of F3 is that the used preemphasis

by 6 dB/oct may not be a valid compensation of the spectral

tilt in high-frequency regions. The hypothesis that the reduced

frequency resolution (logarithmic compared to linear arrange-

ment of channel center frequencies) may limit performance

for F3 could be ruled out via additional tests. Overall the

results illustrate that both the preprocessing and the formant

tracking substantially contribute to the superior performance of

our framework compared to existing approaches. Nevertheless,

the relative contribution of the tracking algorithm exceeds that

of the preprocessing.
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Fig. 10. The architecture of the system used for assessing the quality of
pitch and formant extraction via instantaneous feature-based resynthesis.

Lastly, we investigated the effect of incorporating gender

information. Therefore, we performed an additional test with-

out using gender information. Irrespective of using gender

or not there is a general decline in performance from low

to high pitch-valued speech. However, the incorporation of

the gender decision yielded significant relative improvements

for the extraction of F2 and F3 of 4.7 % (+1.9 %;-1.8 %)

and 5.4 % (+2.7 %;-2.8 %), respectively. More precisely, im-

provements for F2 are particularly present for high pitch-

valued speech (female voices), whereas the extraction of

F3 is improved for low pitch-valued speech (male voices).

In contrast, no significant effect on the extraction of F1

(0.3 % (+1.3 %;-1.4 %)) could be observed.

VII. APPLICATION

Even though the results obtained on the VTR–Formant

database demonstrate the efficiency of our method compared

to existing approaches, it is still difficult to assess its quality in

terms of its applicability to real-world scenarios. Therefore, we

investigated the behavior of our framework in an interactive

setting. More precisely, we implemented the extraction of

formants and pitch in an online system in conjunction with

a resynthesis solely based on these parameters [51]. Conse-

quently the system reminds one of a parrot which repeats

everything it hears. However, it is important to note that the

focus of this work is on the extraction of the parameters. The

resynthesis solely enabled us to assess the quality of the pa-

rameter extraction, insofar as we could judge the intelligibility

of the resynthesized speech.

Fig. 10 shows a sketch of the system architecture. The

ToolBOS framework for the software design, execution, and

monitoring of real-time applications was used for the imple-

mentation [52]. The system runs on one computer with an Intel

Quad Core processor (Q6600 @ 2.4 GHz). The signal delays

introduced by the different system components are as follows:

• 40 ms for enhancing formant structure in spectrograms

(12 ms for the application of the Gammatone filterbank

+ 28 ms for the smoothing during envelope calculation)

• 80 ms for the estimation of formant trajectories via the

tracking framework (the delay is introduced by the sliding

window technique used during Bayesian smoothing)

• 112.5 ms for the optional extraction of gender (12.5 ms

for the ZCD histogram calculation + 100 ms for the pitch

tracking)

Due to the parallel processing employed the overall signal

delay within the application is reduced to 124.5 ms.

Fig. 11. Test of the system in a room with τ60 ≈ 810 ms at a distance
of 8 m and an SNR of 0 dB. Only the left microphone (ear) is used in this
experiment.

In contrast to using prerecorded sentences there is no ground

truth when speaking to the online system and it is difficult to

judge the correctness of the extraction. For this reason, we use

the intelligibility of the resynthesized speech signal in order to

subjectively assess the extraction performance of the complete

system. This is reasonable, since an erroneous extraction of

formants and pitch will result in the generation of unnatural

sounds or deviating pitch trajectories, respectively. The capa-

bilities of the system are demonstrated in the accompanying

video (available at http://ieeexplore.ieee.org) where we first

talk close to the microphone and then at a distance of 8 m,

which is the limit we could test in our laboratory. An image

of the video is shown in Fig. 11.

When evaluating the system, it has to be taken into account

that we do not model unvoiced parts of speech and rather

resynthesize all segments as voiced. Nevertheless, the resyn-

thesized speech is highly intelligible in the case where we talk

close to the microphone and only drops a little bit when we

talk from far. This demonstrates the large amount of robustness

against noise and echoes that our system achieves.

We tested the system in rooms featuring echo constants

of 625 ms, 810 ms, and 975 ms. The scenarios resulted in

SNR levels ranging from 15 dB to 0 dB (due to additional

noise sources like computers and air conditioning) which were

estimated based on recordings of the stationary noise signal

and the speech signal plus noise. The most difficult setup with

an 8 m speaker-microphone distance and a rather low SNR of

≈ 0 dB is shown in the accompanying video. Consequently,

the system achieved better performance in all other scenarios.

VIII. SUMMARY

In this paper, we proposed a framework for estimating

formant trajectories from continuous speech. The focus of our

work was to overcome the problems of existing approaches

with respect to precision and robustness to narrow the gap

between theoretical models for formant tracking and their

applicability to real-world scenarios.



11

We believe that a processing following functional principles

of the human auditory system may ultimately be more robust

than common methods of spectral analysis. Therefore, the first

building block of our system is a Gammatone filterbank which

transforms the speech signal in the spectro-temporal domain.

We illustrated that a subsequent spectral preemphasis and

DoG filtering as well as a contrast enhancement mimicking

a competition between filter responses enhances formants

in spectrograms considerably. Experimental results showed a

superior performance when using the proposed preprocessing

compared to the commonly used LPC analysis.

The probabilistic framework for tracking formants consti-

tutes the key innovation of our work. In contrast to previous

approaches, we estimate the joint distribution of formants by

adapting a mixture modeling approach. Thereby, the joint dis-

tribution is modeled via a non-parametric mixture of compo-

nent distributions, each of them covering exactly one formant.

We formulated an algorithm for the independent evolution of

component distributions over time. Furthermore, we showed

how a reclustering of component beliefs based on dynamic

programming ensures the maintenance of multimodality, one

of the key issues in multi-target tracking.

Our formant tracking algorithm contributes to the overall

robustness of the framework in different ways. First, the tight

coupling between Bayesian mixture filtering and adaptive fre-

quency range segmentation incorporates interactions between

neighboring formants. This particularly enhances performance

when formants are close to each other. Second, the application

of Bayesian smoothing on the obtained filtering distributions

resolves ambiguities arising from uncertain noisy measure-

ments by incorporating past as well as future observations in

the process of estimating formant trajectories. Lastly, we do

not rely on Kalman filtering/smoothing which would restrict

estimation to unimodal Gaussian distributions. Rather we use

a grid-based approximation of beliefs, thereby allowing an

evaluation of multiple hypotheses in parallel. This is especially

important when operating in noisy environments.

We incorporated a gender decision based on pitch and

voicing information into the formant tracking regime via

switching the probabilistic formant models based upon it.

Finally, results of comprehensive evaluations of our frame-

work were presented. Tests on the VTR–Formant database

yielded significant performance improvements compared to

existing approaches. More importantly, evaluations on noisy

speech considering different types of noise at various SNR

levels highlighted the high robustness of our method against

speech degradation. Even the incorporation of echoes did not

disrupt the performance. For demonstrating the applicability

of our method to real-world scenarios, we implemented the

formant estimation framework within the scope of an online

system. Thereby, an instantaneous feature-based resynthesis

allowed us to assess the quality of the parameter extraction

by judging the intelligibility of the resynthesized speech. The

results demonstrated the high precision of our method even

for large speaker-microphone distances of up to 8 m and SNR

levels of ≈ 0 dB.
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[49] K. Sjölander and J. Beskow, “Wavesurfer - an open source speech tool,”

in Proc. ICSLP, vol. 4, 2000, pp. 464–467.
[50] K. Mustafa and I. Bruce, “Robust formant tracking for continuous speech

with speaker variability,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 14, no. 2, pp. 435–444, 2006.
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