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Abstract

Facial expressions are one important nonverbal com-
munication cue, as they can provide feedback in conversa-
tions between people and also in human–robot interaction.
This paper presents an evaluation of three standard pattern
recognition techniques (active appearance models, raw im-
ages, gabor energy filters) for facial feedback interpretation
in terms of valence (success, failure) and compares the re-
sults to the human performance. The used database con-
tains videos of people interacting with a robot by teaching
the names of several objects to it. After teaching, the robot
should term the objects correctly. The subjects reacted to
its answer while showing spontaneous facial expressions,
which were classified in this work. One main result is that
an automatic classification of facial expressions in terms
of valence using simple standard pattern recognition tech-
niques is possible with an accuracy comparable to the hu-
man classification, but with a high variance between differ-
ent subjects, likewise to the human performance.

1. Introduction

Facial expressions provide one important nonverbal
communication channel. People often give implicit feed-
back about a conversation by means of facial expressions,
for instance by appearing to be interested or seeming to un-
derstand. One important goal of the research on automatic
facial expression recognition in recent years is to enable a
robot to communicate with humans in a fairly natural way.
In order to achieve this goal, besides the understanding of
speech, also the recognition and interpretation of facial ex-
pressions and other nonverbal cues is important, as they can
provide useful imformation about the interaction situation.

We think that the six emotional facial expressions hap-
piness, anger, disgust, fear, surprise, and sadness accord-
ing to Ekman [6] are not the most important ones in this
context. According to experiences in this field (as reported
by Lang et al. [12], for instance), most of these emotional

expressions occur much less frequently in human–robot in-
teraction than facial expressions that carry some commu-
nicative semantics. Some examples of this kind of “com-
municative” facial expressions are looking disappointed or
puzzled, appearing to agree or disagree with the interlocu-
tor, or seeming satisfied with or frustrated by the situation.
“Facial expressions” are considered in a broader sense in
this context, also including head poses and head gestures,
as they often carry a communicative meaning as well. How-
ever, emotional and communicative facial expressions are
not disjunct. A repetitive failure of the robot might cause
anger or the behavior of the robot could be surprising, so
that the user might show the corresponding emotional facial
expressions, which also imply a communicative meaning in
these situations.

In this paper, we investigate the automatic recognition by
means of standard pattern recognition techniques of a spe-
cial type of communicative facial expressions: the recogni-
tion of valence in terms of success and failure, following the
approach of Lang et al. [12]. Applied to human–robot inter-
action, success means that a particular interaction with the
robot could be performed as desired, whereas failure means
that some problem occured. We think that in many prac-
tical interactions with robots, the detection of failure situ-
ations by means of facial expression interpretation would
improve the interaction experience notably, even without a
finer interpretation of the perceived facial expressions. For
instance, the robot could change into a “problem solving”
state and offer options that are applicable for many types of
failures. To achieve this, the interpretation of a facial ex-
pression as signalling a failure would be sufficient, a finer
classification (“angry”, “sad”, “disappointed”, “puzzeld”,
etc.) is not essentiell in many cases (a would probably be
very challenging). For the evaluations in this paper, we used
a database of object–teaching scenes where several subjects
showed objects to a robot and taught their names. One ad-
vantage of facial expression recognition in terms of valence
is that one often can be sure about the ground truth of the
data, as one can usually decided whether an interaction suc-
ceeded or or problem occured based on comparatively ob-
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jective criteria (for example whether the robot termed an
object correctly or not).

This paper is organized as follows. The next section
briefly discusses some related works. Afterwards, the used
database of object–teaching scenes is introduced. In sec-
tion 4, the results of the investigated automatic recognition
methods are presented and compared to the human perfor-
mance in section 5. Finally, the last section draws conclu-
sions and makes remarks about future work.

2. Related Work

Most work considers the classification into the six basic
emotion categories according to Ekman [6] or the recog-
nition of facial actions in terms of the facial action coding
system proposed by Ekman & Friesen [7]. Fasel & Luet-
tin [8] and Pantic & Rothkrantz [13] presented surveys on
facial expression recognition techniques. Buenaposada et
al. [2] presented a real–time capable system that can clas-
sify basic emotions. Bartlett et al. [1] have developed a
system that classifies 20 action units. The system’s per-
formance was tested on a database of spontaneous facial
expressions, in contrast to databases of posed facial expres-
sions that were usually used. In recent years, spontaneous
facial expressions received more research attention. Sebe
et al. [15] also created a database of spontaneous, authentic
facial expressions. Zeng et al. [?] recently presented a sur-
vey that focusses on the recognition of spontaneous facial
expressions.

To our knowledge, there is not much work considering
the direct interpretation in valence categories. Most work
about the detection of communication problems considers
speech. Krahmer et al. [11] showed that people can cor-
rectly classify disconfirmation fragments of dialogs as pos-
itive or negative communication signals and concluded that
prosodic features such as duration, intonation, and pitch are
relevant for communication. The automatic recognition of
user corrections in spoken dialog systems has been investi-
gated by Hirschberg et al. [10]. Zhou et al. [17] conducted
user studies to find cues to error detection that could be used
to improve the error correction capabilities of speech recog-
nition systems.

3. Video Database

The video database used in this paper is the object teach-
ing corpus presented by Lang et al. [12]. It contains
videos of people interacting with the robot “Biron” [9] in
an object–teaching scenario. The subjects taught the names
of several objects to the robot, who should term the objects
correctly afterwards. Figure 1 depicts some example images
from the database. Lang et al. annotated all object–teaching
scenes in the videos and subdivided them into four phases:

1. present: The subject presented the object to Biron and
said its name or asked for the name.

2. waiting: The subject waited for the answer of the robot
(not mandatory).

3. answer: The robot answered the subject, for instance,
by classifying the object or asking a question.

4. react: The subject reacted to the answer of the robot.

Furthermore, each object teaching scene was classified
into a specific category, depending on the answer of the
robot. Two categories are success and failure, meaning that
the robot said the correct or a wrong object name in the
answer phase. There are several other categories, which
are not used in this paper. In total, there are 221 success
and 227 failure scenes, distributed over 11 subjects, nine of
which had never interacted with the robot before. The fa-
cial expressions that the subjects showed during the react
phase can be considered as beeing authentic, because the
subjects did not know beforehand that a Wizard of Oz study
was performend and that facial expressions are important at
all, but assumed that the object classification performance
of an autonomously acting robot was to be evaluated.

Lang et al. also evaluated the human interpretation per-
formance in terms of valence recognition by letting other
people watch and judge videos from the database. They
extracted a subpart of each object–teaching scene, starting
near the end of the answer phase, exactly when the robot
started to say the object name, and ending at the end of the
react phase. This starting point was chosen because it is the
first moment from which the subject could know whether
the answer of the robot was correct or not. We used the
same video segmentation for the evaluations in this paper.
The sequence length is typically in the range from two to
seven seconds (25 frames per second), a few videos are not-
edly longer.

4. Automatic Classification
This section reports the results of the conducted facial

expressions classification in terms of valence using stan-
dard pattern recognition techniques. For each success and
failure scene of the database an automatic face detection
based on the approach of Castrillón et al. [3] was applied.
It succeeded for 98% of the scenes, the remaining 2% were
excluded from the evaluation.

Three different types of features were used: For each
subject, we built an individual, hand–annotated active ap-
pearance model (aam) [4] with 55 landmarks placed over
the face. The parameter vectors of the aam (when fitted to
the images in the video sequences) were used as feature vec-
tors for each frame. The aam fitting was initialized based on
the method described by Rabie et al. [14]. As second fea-
ture extraction method, we applied a bank of 40 gabor en-
ergy filters, consisting of eight equally spaced orientations
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(a) scenario overview (b) object–teaching scene (c) examples of facial expressions

Figure 1. Example images from the used object–teaching video database.

and five spatial frequencies with wavelengths of 1.17, 1.65,
2.33, 3.30, and 4.67 standard iris diameters (seventh part of
the distance between the eye centers), as used by Whitehill
et al. [16]. This filter design was found to be well suited
for face recognition [5, 16]. We also used the face images
directly as features.

4.1. SVM majority voting over frames

We used a support vector machine (svm) classifier with
radial basis function (rbf) kernel. The evaluation was con-
ducted by a leave–one–out cross validation for all videos
of a subject: all frames of all videos except one were used
for the training, then the excluded video was classified via
a majority voting over the single frames.

4.1.1 Meta Parameter Selection

In order to evaluate the effectiveness of the svm classifier
in the given scenario, we performed a grid search to find
good meta parameters (rbf parameter σ and regularization
cost C), using a 10–fold cross validation for each parameter
combination, over all frames of all videos of a subject. Af-
terwards the training and test of the classifier was executed
as described in section 4.1. The results for different variants
of the features are summarized in table 1: aams with 95%
and 99% pca variance preservation (aam-95 and aam-99),
gabor energy filters with response images scaled down to
4x4, 8x8, and 12x12 (gab-size), and the raw face images
scaled down to 8x8, 16x16, and 25x25, for both gray level
and rgb images (gray-size and rgb-size).

On the one hand, the classification rates are rather low
for a two–class problem. On the other hand, the classifica-
tion problem is expected to be hard, as the average human
performance is only 82% [12] (please see section 5). For
the subsequent investigations, we used only the best per-
forming variant of each feature (marked in bold in table 1),
except for the gabor energy filters, where we used variant
“gab-4“ instead of ‘gab-8‘ because of the lower feature vec-
tor dimensionality (640 compared to 2,560) and the only

feature all scenes success failure
variants mean std mean std mean std
aam-95 63.6 23.1 54.8 27.1 69.8 23.9
aam-99 76.1 10.3 66.6 18.0 83.2 12.2
gab-4 72.8 12.3 65.7 28.4 76.3 15.5
gab-8 73.1 11.6 66.5 27.9 76.0 15.4
gab-12 71.3 12.9 64.4 27.9 74.9 17.3
gray-8 73.3 13.1 69.3 23.7 73.3 19.6
gray-16 75.1 12.5 67.5 25.3 79.0 14.6
gray-25 74.8 14.1 66.5 30.4 78.9 16.1
rgb-8 72.5 13.9 63.8 28.1 77.6 14.6
rgb-16 72.1 14.3 65.9 28.0 74.2 17.8
rgb-25 68.2 16.7 60.9 29.7 70.8 27.1
img-aam 70.5 11.1 64.0 21.2 73.3 18.3

Table 1. Mean value and standard deviation of the classification
performance for all videos, only success and only failure videos
(distribution over subjects), each for different features. Please re-
fer to sections 4.1.1 and 4.1.2.

marginal difference in the classification rate (0.3% means
just one more video classified correctly).

In real applications, it is not possible to use all feature
vectors to find optimal meta parameters, as the test data is
unknown and not available for meta parameter optimiza-
tion. Therefore we conducted new grid searches, this time
prior to each training, using only the respective training set
of the svm for the search. Furthermore, it is not desirable
for each training process to have its own set of meta param-
eters, as usually a certain stability of these parameters is re-
quired for practical usage. In order to estimate this stability,
we tested the classifiers for the third time, using the mean σ
and C values from the second test for all training processes.
The results of these tests are listed in table 2. The classi-
fication rates are only slightly lowered, and the best meta
parameters in the second grid search test were usually clus-
terd in a certain region in the search space. This supports
the assumption that good meta parameters can be selected
without knowing all data beforehand. For the subsequent

3
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feature all scenes success failure
variants mean std mean std mean std
aam-gs 74.2 11.0 63.0 19.1 82.5 14.3
aam-av 75.4 10.1 64.1 19.3 84.0 12.5
img-gs 74.5 12.9 67.3 24.8 78.1 16.6
img-av 74.4 12.9 67.7 25.5 76.8 18.0
gab-gs 72.1 12.7 65.3 27.9 75.4 15.6
gab-av 72.4 12.5 65.4 28.1 76.0 15.4

Table 2. Mean value and standard deviation of the majority vot-
ing classification performance for all videos, only success and
only failure videos (distribution over subjects), each for different
features and meta parameters (feature-gs: individual grid search
for each training process, feature-av: average meta parameters of
these grid searches) Please refer to section 4.1.1.

evaluations, the results from the first grid search were used.

4.1.2 Feature Comparison

The raw image features compare surprisingly well to the
active appearance models. The reason behind is that about
19% of the frames needed to be rejected from the aam clas-
sification, because the model fitting was too poor, mainly
due to too large head rotations. If the raw image feature
performance is evaluated only on those frames that are used
for the aam tests, the classification rates decrease notably,
as listed in the last row of table 1.

Surprisingly, the gabor energy filters yielded the lowest
classification rates. Theoretically, they are expected to out-
perform the raw image features. We surmise that compared
to the amount of available training data, the dimension of
the feature vectors is too high, even though the gabor re-
sponses are highly downscaled (which might be a problem
in its own), making in difficult to find appropriate class bor-
ders. It might be beneficial to use less filters with a higher
resolution for future tests. In the remainder of the paper, we
continue the investigations for aams and images only.

4.1.3 Classification Details

The classification performances of the aam and image fea-
tures for each of the 11 subjects are listed in the left columns
of table 3. The variance of the classification rates is very
high, ranging from very good to very poor, even system-
atic misclassifications occur. We think that this difficulty
of the classification problem is due to the high intraclass
variance, compared to the interclass variance. As a rough
estimate of these variances, we computed the mean pair-
wise euclidean distances between all success and all failure
frames separately (mean intraclass distance), and also the
mean pairwise euclidean distance between all success and
all failure frames of each subject (mean interclass distance).
The distances are listed in the right columns of table 3. The

subject classification rates mean distance values
all succ fail succ fail inter

aam-01 85 80 89 25.5 22.1 26.8
aam-02 72 65 83 23.0 17.6 21.3
aam-03 83 82 83 26.9 19.3 24.5
aam-04 95 90 100 30.9 21.8 29.9
aam-05 84 75 94 39.9 28.7 37.5
aam-06 64 67 62 44.3 47.2 46.8
aam-07 64 48 77 27.4 29.3 29.0
aam-08 67 72 62 29.8 20.3 27.4
aam-09 69 25 91 22.1 21.8 23.0
aam-10 71 58 83 23.0 33.0 29.4
aam-11 83 71 91 25.4 17.1 24.6
img-01 91 93 89 3.03 2.09 2.73
img-02 66 76 50 1.89 1.54 1.80
img-03 80 86 72 2.52 2.16 2.43
img-04 97 95 100 3.11 2.08 2.92
img-05 88 81 94 2.85 2.83 2.95
img-06 71 73 69 3.14 3.24 3.23
img-07 59 32 81 2.17 2.15 2.19
img-08 72 81 62 2.68 1.85 2.43
img-09 60 17 83 1.43 1.44 1.48
img-10 71 58 83 2.42 2.89 2.75
img-11 71 50 86 2.39 1.70 2.25

Table 3. Classification details for majority vote classification. Left:
Classification rates for all videos, only success and only fail-
ure videos for all 11 subjects, each for aam and image features.
Right: Mean pairwise inter- and intraclass feature vector distances.
Please refer to section 4.1.3.

mean intra- and interclass distances are of comparable sizes,
which is an indication of the difficulty of the classification
problem. There is a significant correlation between the clas-
sification rate and the ratio of interclass to itraclass distance,
the latter represented as the sum of the intraclass distances
of the two classes (Spearman’s rank correlation coefficient,
r = 0.77, p = 0.0059 for aam features and r = 0.61,
p = 0.0484 for image features). This supports our conjec-
ture that a low interclass to intraclass variance ratio is the
main reason for misclassifications in the investigated sce-
nario.

For the aam features, the classification performance is
also correlated to the percentage of selected support vec-
tors (17% on average, 7.3 standard deviation) to some ex-
tent (close to significance, Spearman test, r = −0.58,
p = 0.0590), which reflects the problem difficulty also in
terms of model complexity. This correlation does not hold
for the image feature (19% support vectors on average, 8.4
standard deviation, r = −0.19, p = 0.5703).

4.2. SVM Mean Feature Vector Classification

In section 4.1, the results of a simple majority voting
over single frames are reported. This section considers an

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#27

CVPR
#27

CVPR 2010 Submission #27. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

feature all scenes success failure
variants mean std mean std mean std
m-aam 82.1 10.1 76.1 14.0 86.8 10.2
m-img 80.0 10.0 76.4 21.4 80.7 12.6
m-aam-gs 76.0 11.5 70.3 19.2 79.2 13.3
m-aam-av 77.6 11.6 73.5 16.7 80.3 10.1
m-img-gs 73.5 10.5 66.2 25.5 77.5 11.6
m-img-av 76.3 11.2 68.7 25.7 80.4 13.3

Table 4. Mean classification performance and standard deviation
for mean vector features, each for all scenes, only success, and
only failure scenes. Abbreviations likewise to table 2.

even simpler approach: each video as represented by one
feature vector only, namely the mean vector of its frames.
This simple classification method yielded surprisingly good
results, outperforming the previous majority voting scheme.

4.2.1 Classification Performance

The classification performances for the mean feature vec-
tors are summarized in table 4. The aam features with meta
parameters selected via a cross validation grid search over
all training data performed best, but also the classification
rate of the image features improved, compared to the major-
ity voting. The results for meta parameters selected by an
individual grid search over the training data prior to each
training and the mean parameters of these grid searches
(please refer to section 4.1.1) are a few percent lower. This
difference is greater than in the majority voting case, show-
ing a higher sensitivity to the meta parameter selection. We
attribute this to the drastically decreased number of feature
vectors. However, even most of these classification rates are
better than the corresponding rates in the majority voting.

4.2.2 Classification Details

Table 5 shows the mean classification rates, intra- and in-
terclass distances for all subjects, likewise to table 3 in
the majority voting case. The average classification per-
formance improved for all 11 subjects for the aam features
and for eight subjects for the image features. The correla-
tion between classification performance and ratio of inter-
to intraclass distance is now stronger for the aam features
(Spearman test, r = 0.85, p = 0.0010) and is weak-
ened beyond the significance level for the image features
(r = 0.54, p = 0.0896). For both feature types, the corre-
lations between percentage of selected support vectors and
classification performance are not significant (r = −0.45,
p = 0.1686 for aam features and r = −0.57, p = 0.0686
for image features). Due to the much smaller number of
training vectors, a higher percentage is choosen as support
vectors (aam features: 68%, 17.9 standard deviation; im-
age features: 69%, 15.7 standard deviation). The training

subject classification rates mean distance values
all succ fail succ fail inter

aam-01 91 80 100 12.9 16.1 18.4
aam-02 79 76 83 14.4 11.2 13.8
aam-03 87 89 83 24.9 23.6 25.4
aam-04 97 95 100 20.2 12.0 21.0
aam-05 88 88 88 32.6 22.8 30.3
aam-06 68 67 69 39.0 38.5 38.5
aam-07 66 57 73 19.2 20.3 20.5
aam-08 81 72 92 25.3 15.5 23.2
aam-09 74 50 87 19.2 13.8 17.6
aam-10 79 75 83 18.8 17.1 18.2
aam-11 93 88 97 18.3 11.6 20.0
img-01 94 87 100 1.73 1.31 1.70
img-02 83 88 75 1.22 1.12 1.22
img-03 76 86 61 1.69 1.83 1.80
img-04 89 85 94 1.62 1.03 1.79
img-05 88 94 81 1.64 1.45 1.63
img-06 79 93 62 1.43 1.71 1.61
img-07 63 28 90 1.48 1.31 1.42
img-08 76 75 77 1.52 1.29 1.62
img-09 63 42 74 1.04 0.83 0.97
img-10 83 83 83 1.78 1.60 1.67
img-11 86 79 91 1.67 1.26 1.67

Table 5. Classification details for mean feature vector classifica-
tion. Left: Classification rates for all videos, only success and
only failure videos for all 11 subjects, each for aam and image
features. Right: Mean pairwise inter- and intraclass feature vector
distances. Please refer to section 4.2.2.

error is usually in the range of 15% – 30%, whereas it is
below 1% in very most cases in the majority voting classifi-
cation. This is natural to some degree due to the differences
in the amount of training data, but it might also indicate
some overfitting in the majoriy voting.

4.2.3 Comparison to Majority Voting

In order to investigate why the mean feature vectors per-
formed better than the majority voting over frames, we con-
sidered those videos where the two approaches disagreed
in their classification. This was the case for 77 scenes for
the aam features and 86 scenes for the image features. The
classification of the mean features was correct in 51 and
53 cases, respectively. In an inspection of these scenes it
was found that very often there are one or two subsequences
where almost all frames are wrongly classified, and also one
or two subsequences where almost all frames are classified
correctly. In case the former outnumber the latter ones in
terms of total length, the scene will necessarily by misclas-
sified by the majority voting scheme. In contrast, the mean
vector of all frames can still capture important characteris-
tics of the associated class and hence allow for correct clas-

5
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sification. Visual inspection of the videos also led to the
conclusion that often only a (possibly short) subsequence
of the video is discriminative in terms of valence interpreta-
tion, although the videos were already segmented to contain
only important information, according to the given annota-
tions. For those scenes, majority voting over the complete
video sequence is not well suited. Instead, an automatic de-
tection of important subsequences would be very beneficial
and remains for future work.

5. Comparison to the Human Performance
In their paper [12], Lang and his colleagues also evalu-

ated the human recognition performance in facial feedback
interpretation in terms of valence. They randomly chose
88 videos from the database (four success and four failure
videos of each subject) and showed them to 44 new subjects
who should interprete the videos in terms of valence. All
videos were presented without sound and in four different
context conditions: showing the full scene or only the face
region of the video sequence, each combined with showing
the video sequence over the full length or only the first half
of the video. The condition where only the face of the sub-
ject is shown over the full length of the scene (according to
the annotations) matches best with the information the auto-
matic classification approaches considered in this paper can
use, as they also process the whole video without any vi-
sual context. The average human recognition performance
for this condition was 82%, with a high variance over both
observing subjects and shown videos. The results are sum-
marized in table 6.

The best performing automatic recogniton approach con-
sidered in this paper, the mean aam features, reaches the
average human recognition performance. When evaluated
on the above mentionend 88 videos only (instead of all
available videos), the performance of the mean aam fea-
tures even exceeds the human performance, as shown in the
last row of table 6. Further commonalities between human
and automatic recognition performances are that on average
failure scenes were easier to classify than success scenes,
a higher variance for success than for failure scenes, and
a high variance of the classification rate depending on the
subject resp. video in general.

In order to evaluate whether the human observers and
the mean aam feature svm classification tended to make
the same classification errors, we binarized the classifica-
tion results for the 11 observing subjects1 for each video by
setting the classification result to 1 if six or more subjects
classified it correctly, and to 0 otherwise. This binariza-
tion was done to become compatible with the results of the
automatic recognition, which yield only one binary value

1 There were 44 observing subjects, who are distributed over the four
context conditions, thus resulting in 11 observing subjects for each context
condition, not to be confused with the 11 subjects shown in the videos.

class- all scenes success failure
ifier mean std mean std mean std
human 82.0 19.1 78.1 21.2 86.0 16.1
aam-1 82.1 10.1 76.1 14.0 86.8 10.2
aam-2 86.6 8.8 79.5 15.1 93.2 11.7

Table 6. Comparison of the performances of human recognition,
mean aam features evaluated on all videos (aam-1), and mean aam
features evaluated only on those videos the human subjects judged
(aam-2). Please refer to section 5.

(correct or false classification) for each video. It turned out
that there is a significant correlation between these classifi-
cation results on the 88 videos (Pearson’s correlation coef-
ficient, r = 0.25, p = 0.0187), indicating that indeed the
human observes and the automatic classification tended to
make the same classification errors to some extent.

6. Conclusions and Future Work

We demonstrated that it is possible to reach the human
performance in facial expression interpretation in human–
robot interaction in terms of valence categories using sim-
ple standard pattern recognition techniques when a subject–
specific classification is performed. However, the classifica-
tion performance is in part sensitive to the meta parameter
selection. Likewise to the human classification, the variance
of the recognition performance is very high, and on aver-
age failure scenes are easier to classify than success scenes.
The surprisingly good performance of the mean feature vec-
tors compared to the majority voting over frames indicates
that the detection und usage of descriminative subsequences
might be very benefical and shall be investigated in future
work. Despite the achievement of the human average recog-
nition performance, the classification rates are rather low
for a two–class problem, espescially for the success class.
We assume that this can be improved be using more sophis-
ticated classification approaches. One main problem seems
to be a comparatively low interclass to intraclass ratio, mea-
sured on frame level.

The good performance of the raw images compared to
the active appearance models show that also the video parts
with large out–of–plane head rotations (which are problem-
atic for the aam fitting and were rejected in the aam tests)
convey useful information and should be considered for the
interpretation. All features that were used in this paper
operate on single frames. In future work pattern recogni-
tion methods that consider the temporal dynamics shall be
evaluated. This paper considered only subject–specifc in-
terpretation of facial expressions. Generalization between
different subjects is expected to be much more difficult and
a target of future work. Also the automatic segmentation of
interesting video segements is to be investigated, as so far
presegmented scenes were used.
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