
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

An Analysis of Depth Estimation within
Interaction Range

Cem Karaoguz, Andrew Dankers, Tobias Rodemann,
Mark Dunn

2010

Preprint:

This is an accepted article published in IEEE-RSJ International Conference on
Intelligent Robot and Systems (IROS 2010). The final authenticated version is
available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


An Analysis of Depth Estimation within Interaction Range

Cem Karaoguz1,2, Andrew Dankers2, Tobias Rodemann2 and Mark Dunn2

Accepted for IROS 2010, October 18 – 22, 2010 in Taipei, Taiwan

Abstract— Interactions between humans or humanoids and
their environment through tasks like grasping or manipula-
tion typically require accurate depth information. The human
vision system integrates various monocular and binocular
depth estimation mechanisms in order to achieve robust and
reliable depth perception. Such an integrated approach can
be applied to humanoid depth perception. Integration requires
a knowledge of the characteristics of the methods being
combined. Three different methods incorporating active vision
(stereo disparity, vergence and familiar size) were statistically
examined and combinations of these methods based on this
statistical examination were investigated. We found evidence
that active vision provides better depth estimations than the
standard static-parallel stereo methods examined within in-
teraction range and therefore is better suited for tasks like
reaching, grasping and manipulation. We also demonstrate that
a combination of methods have the potential to increase the
accuracy of estimations.

I. INTRODUCTION
Complex tasks like reaching, grasping or driving involve

depth perception and vision is a sufficient and reliable depth
information source for such kinds of tasks. However, depth
estimation is an ill-posed problem since the optical process
of visual information gathering projects the 3D information
onto a 2D retina [14]. Various mechanisms contribute to
depth estimation for the human visual system, each with their
own characteristics (accuracy, constraints, neural substrate,
etc.) and one may perform dominantly for certain tasks.
For humans, combining these different mechanisms provides
robust and reliable depth perception. As in the human
vision system, depth estimation methods can be combined
to achieve more reliable depth estimations for humanoids.
However, the characteristics of these methods must be un-
derstood in order to determine the optimal combination.

We focus on depth estimation in the near visual field to
support tasks like grasping for humanoids. Such tasks benefit
from accurate estimations of depth in the near workspace.
In this instance, the use of active vision may yield benefit
over traditional static stereo vision. A visual system able
to adjust its visual parameters to aid task oriented behavior
is an approach called active vision [1]. As we shall see,
using active vision produces accurate depth information at
close ranges. Additionally an active vision approach better
copes with dynamic scenes (e.g. eliminating motion blur)
and allows sub-pixel analysis via small camera movements.
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A limited comparison of vergence and photogrammetry
methods is done in [10]. In [5] and [15] reviews on different
stereo disparity computation methods were presented. How-
ever these were restricted to a static-parallel stereo camera
setup. We examined three depth estimation methods (stereo
disparity, vergence and familiar size) with an active vision
setup in an extensive test setting. These methods are common
and well studied in the vision community [2], [5], [10], [15],
[16]. The goal of this work is to determine how accurately
depth can be estimated, which method is more accurate in
what depth region, what the main error sources are and
how the estimations be improved by combining the methods.
The evaluation was conducted based on raw sensory data.
The results may be improved by applying post-processing
methods (e.g. [3]). Based on the statistical data obtained
from the experiments, combinations of different depth es-
timation methods using maximum-likelihood estimation is
investigated. A comparison between the active and static-
parallel stereo vision approaches for depth estimation was
also conducted.

The depth estimation methods are explained in Sec. II. The
hardware system and the experimental procedure is described
in Sec. III. The results are shown in Sec. IV. The findings
and discussions are presented in Sec. V. Finally, the summary
and conclusion are presented in Sec. VI .

II. DEPTH ESTIMATION METHODS

A. Vergence

Stereo fixation on an object is achieved when both eyes
are positioned such that optical axes intersect on the surface
of the object, allowing the projection of the object to fall
on the foveae of both retinae. This type of eye movement
is called vergence and is an important source of information
about depth in the human visual system [14]. For an artificial
system, depth estimation by vergence triangulation using a
pinhole camera model is shown in Fig. 1. The distance to
the stereo fixation point can be derived from the vergence
angle as:

z =
b

2 · tan(Θv

2 )
, (1)

where Θv is the vergence angle and b is the baseline (Fig. 1).
The vergence angle is computed from left and right camera
angles as Θv = Θleft+Θright. In our application symmetric
vergence (|Θleft| = |Θright| = Θ) is applied. We used a
correlation based vergence control algorithm [2] to achieve
fixation on the object surface. The vergence angle to depth
correspondence was determined by measuring the vergence



angles used to stereo fixate an object for different points
in depth. Fig. 2 plots depth vs vergence angle (left vertical
axis). The curve is non-linear with steep slopes in the close
range and flat slopes in the far range. From this, more precise
estimations in the near ranges are expected with vergence.

B. Stereo Disparity (SD)

An object that is not at stereo fixation projects to different
locations on the left and right retinae according to scene
depth and the horizontal baseline separating the eyes [14].
The difference between these two locations is referred to
as stereo disparity. Stereo disparity is a common depth
cue used in artificial vision systems [5], [15]. In active
vision estimations, depth computed from stereo disparity is
relative to the fixation point. In order to obtain absolute
depth information (i.e. the distance from the baseline to
the stereo fixated object) an active rectification process [6]
is used. As shown in Fig. 1 this process epipolar rectifies
images from an active stereo camera configuration (cameras
with solid lines) to virtual image planes of a parallel stereo
camera configuration (cameras with red dotted lines). The
computation of depth in this framework is done as:

z =
bf

d
+ r + f, (2)

where d is the disparity (defined as d = xV L−xV R, xV L and
xV R being the projections of the object on the virtual left
and right image planes), f is the focal length of the cameras,
r is the distance from the center of rotation of the cameras
to the image planes (Fig. 1). Disparity maps are computed
using the block matching algorithm from OpenCV Version
2.0 [4]. For comparison, disparity maps were also computed
in another experimental session with a static-parallel stereo
camera setup. Two algorithms were used in this case: the
block matching algorithm from OpenCV Version 2.0, which
was used in the active vision case, and the SRI Small Vision
System (SVS) Version 4.4d (2007) [13]. The SVS uses the
same block matching algorithm as OpenCV, however dispar-
ities are refined via post processing (sub-pixel interpolation
and post-filtering). The disparity search range was 32 pixels
(-16 to +15) for the active vision case and 96 pixels for
the static-parallel stereo case. All other parameters were the
same. A simple color based segmentation process was used
to distinguish the disparities corresponding to the object in
the disparity maps and the average of these disparities was
taken for depth estimation each frame. It should be noted
that more advanced segmentation methods [7], [8] may be
applied. Since depth estimation from stereo disparity varies
with the vergence angle in the active vision case, estimations
in the near range are expected to be more precise than in the
far range, as in the vergence case.

C. Familiar Size (FS)

The depth of an object can be estimated from the size of its
projection on the camera images if the real size of the object
is known. Various approaches exist for this operation [16].

Fig. 1. Analytical model of the active vision system and depth estimation
methods. Depth z is defined by the distance from the baseline to the object.
FL and FR denote focal points, CL and CR denote center of rotations of
the left and right cameras respectively. The static parameters of our system
are as follows: r = 18.75 mm, f = 5.4 mm, b = 65 mm.

Fig. 2. Change of vergence angle with the object distance (left vertical
axis, avg. over 10 objects). Change of object width on the image plane with
the object distance (right vertical axis, avg. over 10 objects).

We used simple analytical relations derived from a pinhole
camera model (Fig. 1). Object depth can be derived as:

z =
(fW

w
+ r + f

)
cos(Θ), (3)

where Θ is the camera angle and cos(Θ) ≈ 1 due to small
baseline. The physical size W was measured beforehand for
all objects used in the experiments, the retinal size w was
computed using a simple color based segmentation process
(the same used with the stereo disparity method). The width
of the objects was used for estimations since it showed better
overall accuracy than the height. Fig. 2 shows depth versus
object size on the image plane (right vertical axis) which is
very similar to the vergence versus depth curve. Hence the
estimations from familiar size are expected to exhibit similar
characteristics to the estimations via vergence.

D. Combination of Methods

Bayesian cue integration [9] was used to combine the
estimations from different methods. This is formulated as:



z =
∑

i

wizi. (4)

where z is the maximum-likelihood estimate and zi is the
estimate from the ith method. The weight w is expressed as:

wi =
1/σ2

i∑
j

1/σ2
j

, (5)

where σ2
i is the variance of the ith method. Variance of

each method was calculated using the statistics provided
by the experiments. The combinations of the methods are
computed on the experimental data using leave-one-out cross
validation.

III. EXPERIMENTS
A. Hardware

An experimental stereo vision head with 4 DoF (2 DoF
for head and 1 DoF for each camera) and a baseline of
65 mm was used as a platform for the examined depth
estimation methods. All experiments were performed using
images with a resolution of 400x300 pixels. This was the
standard resolution for most of our vision applications [11].

A linear unit (Fig. 3(a)) that moves a small object platform
on a linear axis is utilized to rapidly and autonomously gener-
ate data for depth estimation algorithms and acquire ground-
truth depth information. The object platform is moved via a
stepper motor within an error of 0.1 mm/100 mm.

(a) (b)

Fig. 3. (a) The linear unit with a rubber duck object on its carrier platform
(upper right corner of the image). (b) The objects used in the experiments.

B. Experimental Setup
The linear unit is positioned in front of the stereo camera

head and aligned to the center of the baseline (Fig. 4). The
object platform is elevated to the height of the cameras. From
the HRI150 database [12] 11 objects were selected that are
suitable for the analysis (Fig. 3(b)). One of the objects was
used for calibration purposes as explained in Section II-A.
Care has been taken for the placement of the objects on the
carrier. However there could still be misplacements of objects
from the center of the platform, which could introduce a
bias between the actual distance of the object and measured
distance of the platform. Based on the average depth of the
objects used in the experiments, this bias is expected to be
in the range of ±3 cm.

Fig. 4. Experimental setup. The depth (z) is defined as the distance from
the mid-point between the center of rotation of the cameras (B) to the
object (P ). The object is placed on a moving platform on the linear unit.
The zero position of the moving platform is denoted as O. Distance d is
the horizontal gap between point B and point O. Depth of an object is
calculated as z = d + x.

C. Experiment Routine

100 different positions of the linear unit in the range from
300 to 1500 mm were generated randomly beforehand. For
each object the following routine was followed: the linear
unit platform was moved to a perscribed position, relevant
data was saved and the routine iterates. An experiment
was concluded when all 100 positions had been completed.
Repeating the experiment for all 10 objects provided 1000
data samples in total. The same experiments were conducted
with a static-parallel stereo camera setup.

IV. RESULTS

The methods were expected to give more precise estima-
tions in the near ranges than in the far. Results show this
is indeed the case. The accuracies of the three estimation
methods are shown in Fig. 5 as mean estimation errors1 of
the methods. The error is defined as the absolute value of
the difference between the mean estimated depth and actual
depth. The accuracies of the methods were also examined
in different ranges. The close, middle and far ranges were
defined as 300-700 mm, 700-1100 mm and 1100-1500 mm
respectively. The ranges were determined such that each
comprises of an equal number of measurements. These
distinctions are also relevant for humanoid applications such
as reaching tasks where object detection typically occurs in
the far range, approaching takes place in the middle range
and grasping is executed in the close range. Table I shows
the mean and standard deviation of the average errors over
these ranges.

The theoretical maximum errors have been calculated
for all methods (see Appendix) and are listed in Table II.
The maximum inaccuracies that are likely to occur in our
experimental setting were set as follows: ∆b = ∆r = ∆W
= 1 mm, ∆Θv = 0.18 degree, ∆f = 0.1 mm, ∆d = ∆w =
0.5 pixel. For the familiar size method W was set at 90 mm
which is the average size of the objects used.

1The terms mean estimated depth and mean estimation error imply given
information is averaged over all 10 objects.



Fig. 5. Mean estimation errors of the methods. Plots above show pure
data; plots below show running average of the data over a window size of
eight data points.

TABLE I
MEAN (AND STANDARD DEVIATION) OF ESTIMATION ERRORS (IN MM)

FOR ALL OBJECTS AT DIFFERENT RANGES.

Methods Near Middle Far
Vergence 6.37 (5.51) 20.75 (11.79) 38.85 (32.92)
FS 27.22 (6.12) 11.82 (9.46) 76.68 (38.47)
SD 14.91 (15.32) 16.78 (12.84) 100.92 (51.56)
Combination of methods
Vergence+FS 8.26 (5.40) 16.81 (10.41) 80.83 (54.67)
SD+FS 17.46 (11.60) 13.05 (10.84) 106.15 (41.03)
Vergence+SD 8.86 (7.36) 17.46 (10.54) 72.75 (41.97)
Vergence+FS+SD 10.33 (6.79) 15.23 (8.95) 84.74 (38.80)
Static-parallel stereo setup
OpenCV 207.89 (45.73) 38.29 (34.63) 97.14 (75.53)
SVS 137.35 (81.05) 20.56 (10.42) 25.1 (9.49)

The overall accuracy of each method is shown in Fig. 6
where the estimation errors are averaged over 10 objects and
the whole range. The mean errors and the standard deviations
were approximately 22±24, 39±36 and 45±52 mm for the
vergence, FS and SD methods respectively.

Results of the combinations of methods using maximum-
likelihood estimators are shown in Fig. 7. Table I shows the
mean and standard deviations of the estimation errors for the
combined methods.

A comparison between the stereo disparity calculation for
the active vision case and the static-parallel stereo case was
also conducted (Fig. 8). Mean estimation errors of each of the
two stereo algorithms used in the static-parallel stereo case
is shown in Table I. Besides depth estimation performance,
quality of disparity information across the objects was also
examined for both active and static-parallel stereo cases (Fig.
9 and Fig. 10).

TABLE II
AVERAGE THEORETICAL ERROR VALUES (IN MM) FOR DIFFERENT

RANGES.

Methods Near Middle Far
Vergence 20.47 53.69 102.38
FS 19.54 41.18 68.62
SD 23.24 50.36 85.5

Fig. 6. Estimation error statistics (avg. over the objects and the whole
range). Boxplot function of the Matlab Statistics Toolbox is used. The
central mark is the median, the edges of the boxes are the 25th and 75th
percentiles, the whiskers extend to the most extreme datapoints.

Fig. 7. Mean estimation errors of the combination of methods. Plots above
show pure data; plots below show running average of the data over a window
size of eight data points.

Fig. 8. (a) Mean estimation results of stereo disparity algorithms with
active and static-parallel cases. (b) Mean estimation errors of stereo disparity
algorithms with active and static-parallel cases. Plots above show pure data;
plots below show running average of the data over a window size of eight
data points.

(a) (b) (c)

Fig. 9. Disparity maps computed for an object at 340 mm distance. (a) Left
rectified camera image (b) Disparity map computed with active stereo setup
(c) Disparity map computed with static-parallel stereo setup. The object
boundaries were highlighted in all three images. The images are cropped to
show only relevant information.



(a) (b)

Fig. 10. Histograms of the disparity values across the object from the
disparity maps shown in Fig. 9. (a) Active stereo case. (b) Static-parallel
stereo case. Outliers are left out and only the relevant disparity ranges are
displayed.

V. DISCUSSION

A. Error Sources

Depth estimation accuracy may be reduced by poor mea-
surement of the intrinsic and extrinsic parameters of the
vision system (e.g. baseline, focal length, etc.). The estima-
tion errors for vergence were in the range of the theoretical
maximum error values. The same is true for SD in the near
and middle ranges.

Inaccuracy in the measurement of the vergence angle,
which is mainly caused by measurement noise and low
resolution of the vergence motors, is crucial for the vergence
method, especially in the far ranges. It is obvious from (1)
that even small inaccuracies cause high errors for small
vergence angles. This has a high impact on estimation of
distant targets. For example, 0.18 degrees (which is the
resolution of the vergence motors) of inaccuracy in the
vergence angle causes already 90 mm of estimation error
at 1000 mm distance. Higher resolution motors may reduce
this error. Increasing the baseline may also increase the
reliable estimation range. However this may impede the
anthropomorphic features of the vision system and may con-
tradict humanoid considerations. Since the active rectification
process relies on the vergence angle, the SD method is also
affected from inaccurate vergence angles.

The accuracy of FS depends primarily on the object
segmentation. Two pixels of error in the segmentation pro-
cess leads to approximately 32, 83 and 157 mm of mean
maximum theoretical errors in the near, middle and far ranges
respectively. This may explain the estimation errors in our
experiments.

Apart from those, a significant source of error for all
methods is due to pixel quantization. Using higher resolution
images may reduce this effect.

B. Combinations of Methods

The interpretation of results from the combinations of
methods is two-fold. On one hand, the accuracy of individual
methods may be improved by combining other methods. For
example, combination of vergence with SD or FS gave better
results than those two methods deliver alone in the near and
far ranges. In the middle range, incorparating SD with FS
improved the results of SD. On the other hand, overall com-
parison of results shows that the combinations of methods

did not give the best results. The vergence outperformed any
combination of methods in the near and far ranges while
FS was the best method in the middle range. The reason for
this may be that the integration method requires unbiased and
uncorrelated signals to be effective and these requirements
have not been met in this application. More advanced cue
integration methods may be worth considering.

C. Active Vision vs Static-parallel Stereo

The results showed that all three methods (Vergence, SD
and FS) compatible with active vision outperformed the
methods using static-parallel stereo setup in the near and
middle ranges. In the experiments for the static-parallel
stereo case, a systematic underestimation in disparities (i.e.
overestimations in depth) in the near and middle ranges for
OpenCV block matching algorithm is noticeable (Fig. 8).
This is not present in the SVS even though both algorithms
use the same block matching method. This is likely due to the
fact that the SVS applies post-processing on disparity calcu-
lation. Lack of this post-processing in the OpenCV algorithm
is likely the cause of this systematic underestimation because
for a close object situated at a large disparity, the propensity
for search algorithms (performing the search starting from
zero) to mismatch within a large disparity search range
increases. This biases the disparity search towards disparity
underestimation when the true object disparity is large. On
the other hand, the estimations with the same OpenCV block
matching algorithm using the active vision case did not show
any systematic overestimations despite no post-processing
was applied. The reason for this is likely that the disparity
search is done in a smaller range around zero (i.e. the fixation
point) in the active vision case, reducing the bias and evenly
spreading it in positive and negative search directions.

The stereo disparity search in the static-parallel stereo
camera configuration involves large disparities. Setting the
disparity search range, which determines the magnitude
of disparities that can be detected, too low impairs depth
estimation in close ranges. High errors of the SVS in the
near range are due to this phenomenon (Table I, Fig. 8).
Removing erroneously labeled disparity values in disparity
maps computed via the SVS reduced the mean estimation
error to 20.28 mm in the close range. The search range
can be increased at the expense of computation time, since
increasing the search range means higher number of cor-
relations to compute. This outlines a trade-off between the
disparity range and computational resources. Active vision
eliminates this trade-off by fixating on the object of interest
and constraining the disparity search around zero. A virtual
tracking system may solve this trade-off problem for the
static-parallel stereo case only if the object is in the field
of view of both cameras.

Another benefit of conducting a disparity search around
zero for a given search range, as an active vision approach
offers, is having better quality of depth information for a
specific scene volume than the static-parallel stereo disparity
search provides, especially in the near range. This may be
especially beneficial in humanoid grasping tasks. Disparities



calculated with the active vision setup are distributed around
zero at multiple values more smoothly, implying more con-
tinuous and detailed depth transitions across the object (Fig.
10(a)). Disparity values calculated with the static-parallel
stereo setup are more discontinuously clustered and show
artefacts in the representation of depth across the object (Fig.
10(b)).

VI. CONCLUSION
Depth estimation in the near visual field to support tasks

like grasping for humanoids has been a major focus of this
work. Three depth estimation methods incorporating active
vision on a biomimetic head were tested. The accuracy of the
methods were high in the near range and diminishes further
away. Compared to static-parallel stereo methods examined
in this work, active vision methods better results in the
near and middle ranges. These results suggest active vision
approach may be better suited for depth estimation within
close and middle ranges where grasping and manipulation
occur. It has also been shown that estimation of each method
may be improved by combining with other methods. The ac-
curacy of estimations may further be improved by using more
precise hardware (e.g. higher resolution motors) and software
(e.g. advanced object segmentation methods) solutions. The
estimations that were based on pure sensory data in this work
may be enhanced using common post-processing methods.
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APPENDIX

Theoretical maximum errors are calculated and compared
with the results from the experiments. For the vergence
method main sources of error are the baseline (b) and the
vergence angle (Θv). The maximum error for this method is
calculated from (1) as

∆zverg =
∣∣∣∂z

∂b

∣∣∣ ·∆b +
∣∣∣ ∂z

∂Θv

∣∣∣ ·∆Θv.

The individual components are calculated as

∂z

∂b
=

z

b
,

∂z

∂Θv
= − b

4sin2(atan( b
2z ))

.

The SD is affected by inaccuracies in the baseline (b), focal
length (f ), disparity (d) and the distance between the rotation
center of the camera and the image plane (r). The maximum
error for the parallel stereo disparity method is derived from
(2) as

∆zsd =
∣∣∣∂z

∂b

∣∣∣ ·∆b +
∣∣∣ ∂z

∂f

∣∣∣ ·∆f +
∣∣∣∂z

∂d

∣∣∣ ·∆d +
∣∣∣∂z

∂r

∣∣∣ ·∆r.

The individual components are calculated as

∂z

∂b
=

z − r − f

b
,

∂z

∂f
=

z − r

f
,

∂z

∂d
= − (z − r − f)2

b · f
,

and ∂z
∂r = 1. The FS is affected by inaccuracies in the focal

length (f ), object size on the image (w) and physical size of
the object(W ). The maximum error is computed from (3) as

∆zfs =
∣∣∣ ∂z

∂f

∣∣∣ ·∆f +
∣∣∣ ∂z

∂W

∣∣∣ ·∆W +
∣∣∣ ∂z

∂w

∣∣∣ ·∆w.

The individual components are calculated as

∂z

∂f
=

z − r

f
,

∂z

∂W
=

w − r − f

W
,

∂z

∂w
= − (z − r − f)2

W · f
.


