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Abstract. In this paper, we propose the application of standard decom-
position approaches to find local correlations in multimodal data. In a test
scenario, we apply these methods to correlate the local shape of turbine
blades with their associated aerodynamic flow fields. We compare several
decomposition algorithms, i.e., k-Means, Principal Component Analysis,
Non-negative Matrix Factorization and Non-Negative Sparse Coding, with
regards to their efficiency at finding local correlations and their ability to
predict one modality from another.

1 Introduction

The relationship between local and global structural properties is a key issue in
many complex problem domains, e.g., visual perception, motor planning, and
data mining. Methods that are capable of identifying local decompositions of
large problems into more manageable local elements are important in order to
achieve structural robustness and generalization. Unsupervised decomposition
algorithms have been investigated extensively in recent years in the field of object
and pattern recognition. They find statistically relevant correlations in high-
dimensional data sets. Hence, applying a decomposition algorithm to a data
set comprising several modalities allows for the identification of inter-modal, se-
mantically meaningful correlations. The simultaneous use of multimodal data in
decomposition approaches can: (i) improve the interpretability of the extracted
basis components of each single modality, and (ii) extract functionally relevant
correlations between different modalities. In the next section, we provide a short
introduction to the compared decomposition approaches. Section 3 investigates
the application of these methods to a turbine blade test scenario comprising
shape information and aerodynamical flow fields. In three studies we compare
the abilities of the algorithms at finding local, relevant correlations between both
modalities. Finally, Section 4 discusses the results and makes some conclusions.

2 Decomposition of Multimodal Data

The starting point of all decomposition approaches is a set of L vectors pooled
in an input matrix, X = [x1, . . . ,xL] ∈ R

M×L. Each data vector, xi, can be
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regarded as an observation of M random variables. We aim for a more compact,
approximate representation of this data matrix using a small set of N < M ≪ L

meaningful components spanning a new vector space, F = [f1, . . . , fN ]. This
assumes that the data vectors, xi, are highly correlated and span only a low-
dimensional subspace of R

M . In this case, the basis vectors, fi, will express
typical correlations within the training set, and also correlations between differ-
ent modalities of the data. Expressing the data vectors, xi, with respect to this
new basis yields an approximation matrix R = [r1, . . . , rL]. The coefficients of
the linear combination – also known as encodings – form an N × L matrix G.
Formally, we can restate this approach as matrix factorization: X ≈ F ·G ≡ R,
G = F−1 ·X, where F−1 is the pseudoinverse of F. The accuracy of the represen-
tation based on the basis, F, is measured by the reconstruction error, e, between
the original data, X, and its approximation, R: e = ‖X − F · G‖

2
= ‖X − R‖

2
.

Different decomposition approaches are distinguished by the restrictions imposed
on F and G. For example, Non-negative Matrix Factorization (NMF) [1] con-
strains basis vectors and encodings to non-negative values to avoid cancellations
of features and facilitate their interpretability. Non-Negative Sparse Coding
(NNSC) [2] is a combination of Sparse Coding with the constraints of NMF.
It enforces sparseness on the encodings, G. k-Means clustering [3] represents
observations by a set of prototypes, fi, resulting in an encoding, which is ex-
tremely sparse: only the coefficient associated to the nearest prototype is equal
to one. Principal Component Analysis (PCA) [4] computes basis vectors that
are pairwise orthogonal and point in the directions of the largest variances.

3 Application to a Turbine Blade Data Set

To investigate the practical abilities of the depicted algorithms at finding local
inter-modal correlations, we compare these approaches in a test scenario using
turbine blade shapes, which are of similar complexity to the ones used in an
evolutionary optimization framework in [5]. The input data consists of 2D blade
profiles – represented as binary images – and their associated aerodynamic flow
fields – represented by pressure values calculated from a simulated draft (see
Fig. 1). For the simulation of the fluid dynamic properties of the blade designs
we used an in-house Navier-Stokes flow solver [6]. The set of turbine blades
comprises shapes that are not necessarily suitable for practical application and
are thus only of academic interest. Any arbitrary turbine shape induces a flow
field which can be simulated using Computational Fluid Dynamics (CFD). Con-
trary to this, flow fields can exist that do not have a corresponding turbine blade
shape. We conducted three studies to compare the decomposition approaches
based on their efficiency at finding local, relevant correlations and their ability
to predict one modality from another. To visualize the flow fields we use an
adjusted jet color map (see Fig. 1(c)). It maps small absolute values to black in
order to show their marginal influence in linear combinations. Larger positive
and negative numbers are mapped onto ranges of red to blue colors respectively.
Shapes are depicted on top of the corresponding flow fields using shades of gray.



(a) Basic blade forms study 1 (b) Some observations of training data study 2 (c)

Fig. 1: (a) Training data of first study are limited to variations of two basic
blade shapes differing in trailing edges. Associated aerodynamical flow fields
represented by pressure values are calculated using CFD to simulate a draft. (b)
Training data used in studies 2 and 3 have no shape restrictions. (c) Color map.

(a) PCA: mean vector and first two prin-
cipal components.

(b) (c) NMF: basis components 1 to 3. (d)

Fig. 2: Study 1 decomposition results: PCA: orthogonal basis components (a)
and encodings (b) have arbitrary signs. Superposition of positive and negative
parts. NMF: holistic, non-sparse basis components (c) and sparse encodings (d)
caused by nature of training data, limited to non-negative values.

3.1 Study 1: Identifying Two Basic Blade Shapes

To verify the ability of the decomposition algorithms to identify common con-
stituents of a data set, the first study considers a simple toy data set consisting
of two basic blade shapes as shown in Fig. 1(a). Both shapes have a common
front part and only differ in their trailing edges. The data set contains six small
variations of each basic shape. We always compute three basis components, al-
though two should suffice. Hence, we expect the third component to have much
less of an influence on the reconstruction error than the first two. k-Means
clustering produces prototypical basis vectors that are holistic and non-negative
(due to the non-negativity of the training data). The encodings are maximally
sparse and orthogonal. As depicted in Fig. 2(a) and 2(b), PCA extracts the
mean vector of the training data and the two principle components related to
the highest eigenvalues. All three features are holistic and the two principle
components are orthogonal. The values of the encodings and the basis vectors
have arbitrary signs. Using the mean vector and the first principle component,
both basic blade shapes can be restored by summation or subtraction resulting
in cancellations between positive and negative parts. The second principle com-
ponent contributes to a further reduction of the reconstruction error. NMF (see
Fig. 2(c) and 2(d)) is able to produce either sparse basis components or sparse
encodings [7]. Due to the training data presented in the first study, NMF gener-
ates holistic, prototypical basis components and sparse encodings that consist of
non-negative values. NNSC extracts prototypical, holistic basis components that
represent the basic turbine blade forms. The encodings are extremely sparse.



(a) Representative holistic and sparse basis
components.

(b) Original, encodings, reconstruction, abso-
lute difference.

Fig. 3: (a) Study 2: three out of the 20 basis components calculated by NMF on
250 observations. (b) Study 3: encodings were calculated only on the pressure
values and then were used to reconstruct the missing shape modality.

(a) Study 2 (b) Study 2 (c) Study 2 (d) Study 3
Approach Observed Data Test Data Ob. Data Test Data Test Data

5 10 20 35 49 5 10 20 35 49 Sep. Com. Sep. Com. PR SR

K-Means 52 36 29 23 21 87 88 78 78 77 19 21 70 77 80 104
PCA 38 28 19 13 10 74 53 44 38 34 9 10 32 34 38 57
NMF 40 31 22 17 15 74 59 48 38 36 13 15 32 36 51 71
NNSC 40 31 22 17 14 74 66 46 40 37 13 14 34 37 43 60

Table 1: Study 2: Normalized mean squared reconstruction errors (NMSE) for
observed (a) and test data set (b) against number of basis components (BC).
(c): 49 BC, Sep.: separate decomposition of modalities, Com.: combined decom-
position of modalities. Study 3: Reconstruction of missing modalities (d), PR:
pressure reconstructed, SR: shape reconstructed. Values scaled by factor 103.

3.2 Study 2: No Shape Restrictions

In the second study, we appraise functional components that emerge from tur-
bine blades not having any form restriction. In order to cover a higher variance of
blade shapes we generate 250 diverse observations consisting of both modalities,
shape and pressure. Figure 1(b) shows some of the training samples. We extract
subspaces spanned by 5, 10, 20, 35 or 49 basis components. The variation of the
number of basis vectors allows us to analyze the reconstruction errors in more
detail. Additionally, we use a disjoint test data set comprising 65 observations to
measure the ability to generalize and represent novel though similar data. The
results of k-Means clustering are very similar to those of the first study. The
basis components are prototypical and the encodings maximally sparse. The
ability to generalize is limited to the selection of the nearest cluster centroid.
The holistic principal components of PCA accomplish very small reconstruction
errors, but are difficult to interpret due to positive and negative values. The
basis components of NNSC are prototypical and holistic. They represent the
basic blade forms of the training set. The encodings are sparse and in most
cases observations are reconstructed by three or less activated features. NMF
shows fundamental changes in comparison to the first study. For this data set
most basis components and the encoding matrix are sparse. Figure 3(a) depicts
three representative basis vectors calculated by NMF. The first illustrated com-
ponent represents a holistic basic shape and its associated flow field. The second
feature shows an interesting correlation between the lower, frontal surface and
the pressure profile above the turbine blade and the third image displays a basis



vector focusing mainly on a single modality, the pressure profile. All NMF runs
show qualitatively similar components, independent of their number. As can be
seen from Tab. 1(a) and 1(b), the normalized mean squared reconstruction error,

NMSE = 1

L

∑
L

i=1

‖xi−ri‖
2

‖xi‖
2 , decreases for all methods uniformly, if the number of

available basis components (BC) is increased from 5 to 49. It is shown that the
subspace trained on the observed data is able to represent novel test data. How-
ever, in this generalization test the reconstruction errors are slightly increased.
We also evaluated the impact of multimodality on the reconstruction error. To
this end, Tab. 1(c) compares the reconstruction errors obtained from separate
decomposition of both modalities and subsequent accumulation of the individ-
ual errors (column “Sep.”) with those reconstruction errors obtained from joint
decomposition of both modalities (column “Com.”). Regarding the reconstruc-
tion error, PCA performs best. It is closely followed by NMF and NNSC. The
relative generalization ability of NMF is unmatched. k-Means is outperformed
by the other methods in reconstruction of the observed training and novel test
data set. For all evaluated algorithms we find that the multimodality of the
data slightly degrades reconstruction performance. Additional constraints such
as non-negativity, sparseness or orthogonality further increase the reconstruction
error. Nevertheless, these factors render it possible to extract more meaningful

features and to find local correlations between modalities, which increase the
quality of the basis vectors, i.e. their relevance and interpretability.

3.3 Study 3: Reconstruction of Missing Modalities

In the final study, we focus on the ability to reconstruct missing modalities based
on the inherent correlations between the components’ subparts. The subspaces
comprising 49 basis vectors computed for the second study on 250 observations
are used to represent novel test data consisting of only shape or pressure informa-
tion. The basis vectors are specialized to represent turbine blades. To project the
test observations into the spanned subspace, we utilize the Moore-Penrose pseu-
doinverse. Some negative encodings are introduced, because the least squares
solution for the linear combination is not restricted to non-negative contribu-
tions. However, this does not prevent the estimation of missing modalities, if
we use those encodings to reconstruct all modalities, including the previously
neglected ones. If the test data set is similar to the training observations used
to calculate the features, the missing information is approximated successfully.
Figure 3(b) depicts the reconstruction of a missing shape modality for a novel
test observation. The reconstruction errors for the approximation of missing
modalities can be seen in Tab. 1(d). “PR” stands for pressure reconstructed.
This means that the encodings were estimated solely on the shape information
and then used to reconstruct form and pressure. “SR” describes the counterpart:
shape reconstructed. The encodings are calculated using only the flow fields and
then utilized to estimate both modalities, including the former missing shape.
PCA excels due to its strong capability at finding correlations. NNSC performs
second best using its holistic, non-negative features. NMF represents a good



compromise between interpretability and reconstruction quality. K-Means’ lack
of flexibility caused by its limitation to only select the nearest cluster mean
results in the highest reconstruction errors. Nevertheless, all the evaluated al-
gorithms are able to approximate missing modalities successfully.

4 Conclusion

In this paper, we have proposed the application of standard decomposition ap-
proaches to find local correlations in multimodal data. In a test scenario, we
applied these methods to correlate the local shape of turbine blades with their
associated aerodynamic flow fields. We compared the algorithms with regards
to their efficiency at identifying local, relevant correlations and their ability to
predict one modality from the other. We found that the multimodality of the
data and additional constraints such as non-negativity, orthogonality or sparse-
ness can improve the algorithm’s ability to extract meaningful basis components
with a trade-off of a small decrease in the reconstruction performance. With
regards to the reconstruction error, PCA performs best, because it decorrelates
the input data and increases its statistical dispersion. NNSC is strong at re-
constructing missing modalities using non-negative features. NMF revealed an
interesting inter-modal correlation between a shape feature on the lower side of
the blades and the aerodynamical flow field on their upper side. Further, it was
possible to predict one modality from the other, which is evidence for the learned
inter-modal correlation and might turn out to be useful in design optimization
processes. New design concepts could be generated by combining different lo-
cal contributions to form a desired global flow field and selecting the associated
shape primitives accordingly. Also, interchangeable local features might be iden-
tified that have similar influence on the air flow but have different shapes.
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