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A Method for learning a Fault Detection Model from Component
Communication Data in Robotic Systems

Raphael Golombek, Sebastian Wrede, Marc Hanheide, and Martin Heckmann

Abstract— A promising means to increase the dependabil-
ity of a robotic system is to equip it with the ability to
autonomously monitor it own system state and detect faults.
In this contribution we propose a method for fault detection
in robotic systems which exploits the concept of anomaly
detection and learns a model based on dynamics in the system’s
internal exchange of data. Learning a model reduces the need
for expert system-knowledge and enables on-line adaptation.
Furthermore, communicated data as learning input enables the
detection of subtle system failures such as resource starvation.
The method in this contribution is applicable during runtime
and can be used in an a-posteriori analysis of the system. The
evaluate of the method takes place on a mobile robotic platform
employed in human robot interaction scenarios.

I. INTRODUCTION

Means to increase dependability have been identified
throughout the whole life cycle of the system and can be
roughly categorized into methods for prevention, tolerance,
removal and forcasting of faults [1]. At least two of this
categories require that the system is able to autonomously an-
alyze its current state and detect faults during runtime. There
exist several approaches for fault detection in autonomous
robotic systems. In [6] model-based reasoning is used to
detect faults in robot control software. Here, well understood
reasoning algorithms can be used. But, defining rules for a
complex robotic system strongly depends on the available
expert knowledge. In [8] particle filters are used for real-time
fault diagnosis in mobile robotic systems. The advantage of
this approach is that it is able to cope with uncertainty.
However, the scope of addressed faults is constrained to
failures related to the locomotion of the robotic system.

Along these lines, a novel method for fault detection
in robotics systems is presented. Following the concept
of anomaly detection a probabilistic model is learned on
internally exchanged data recorded during normal behavior
of the system. This alleviates developers from the need
to explicitly specify every exceptional or normal situation
at design time of a to-be-controlled system. Furthermore,
our approach abstracts from system specific characteristics
before learning the probabilistic model and is therefore
applicable to a wide range of systems.
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II. FAULT DETECTION METHOD

We consider a robotic system as a set of functional
components communicating with each other to fulfill a given
task thereby generating complex temporal communication
patterns. We learn these patterns to build a model of normal
behavior exploiting temporal correlations in the communi-
cation. To realize the fault detection existing approaches for
anomaly detection could be used [2]. However, most of them
do not consider temporal correlations in the communicated
data which provide valuable information about the system
behavior. Other assume the Markov property which is mostly
invalid for the interaction in complex robotic systems. In the
remainder of this section our method is described in detail.

a) Encoding Data: The components of a system gener-
ate domain specific output from different scales of measure
(e.g., nominal, ordinal or a mixture of scales) resulting in a
temporally ordered data sequence D. We decouple our model
from implementation details of a specific system by applying
a system specific mapping function f : Dj 7→ E to D. f maps
each single data entity dj ⊂ D from its origin domain space
Dj to a common domain space E resulting in a sequence E
which we call an event sequence.

b) Learning The Model: We learn the model M based
on an event sequence E recorded during normal behav-
ior of the system. Traversing through E we calculate a
probability distribution Pi,j for each pair of unique events
ei, ej . Thereby, Pi,j models the timespan between the last
occurrence of the event type ei in E and the currently
considered event ej while traversing E. Consequently, the
model M constitutes of the probability distributions Pi,j for
all possible combinations of two unique events ei, ej in E.

c) Evaluating The System State: This step corresponds
to calculating a fitness value ŝE for a sequence of events
E which we call the score of E by averaging over the
individual scores sj of events ej in E. Each sj is calculated
as the weighted sum over the probabilities Pi,j(∆t) where
∆t is the duration between the last occurrences of ei and
the current event ej . The weight for a single Pi,j(∆t)
behaves inversely proportional to the entropy of Pi,j . A low
entropy indicates low uncertainty in the distribution and high
correlation between ei and ej .

d) Assessing The System State: Deciding whether the
system behavior is normal or abnormal is done by comparing
the score ŝE of a sequence E against a threshold s∗. If ŝE

of E is high enough it is declared as normal. Otherwise
abnormality is assumed. We determine the threshold s∗

by calculating the receiver operating characteristic(ROC)



curve [7] on test data and finding the optimal cut-off in the
curve.

III. EVALUATION

The fault detection method is evaluated in the context of
real human robot interaction scenarios. To measure the per-
formance we induce several faults in the system and calculate
the detection rate of our method. Additionally, we discuss
the results compared to two base line methods, namely an
entropy based and a Markov chain based approach.

As evaluation platform we use the mobile robot BIRON
which is a robot companion equipped with social interaction
capabilities [9], [4]. As a pool of interaction scenarios we
chose the set of tasks defined for the robocup@home com-
petition [5]. These tasks represent realistic human robot inter-
action scenarios and are fitted to evaluate the performance of
the robot to navigate (“Follow Me” task), localize/recognize
persons (“Who is Who” task) and interact in unknown
environments (“Go Get it!” task).

We use the following set of failures for performance mea-
surement. First we trigger the crash of a component called
player which publishes laser data into the system. This crash
results in the immobility of the robot. Second, we induce
a fault that affects the slam component which generates
hypothesis about the robot’s position in the environment
thereby degrading the navigation performance of the robot.
By this means we test the fault detection rate on different
levels of data processing i.e., barely processed sensory data
and hypothesis of the robot’s position. As third fault we
trigger a resource starvation failure by inducing a high CPU-
load in the system. Faults of this type are of interest as
they occur often when integrating independently developed
components into a system. Another fault occurs in the context
of distributed systems and results from asynchronous clocks
of the underlying operating systems. This fault affects all
components which rely on synchronization based on the
system clock. The last fault is an external disturbance of
the speaker localization system. In noisy environments the
localization mechanism is subject to an increased number
of incorrectly detected speaking persons and consequently
negatively affects the human robot interaction.

The evaluation of the fault detection method is work in
progress. Up to know we evaluated the first four aforemen-
tioned faults during the “Follow Me” task with our fault
detection method. The threshold calculated with the ROC-
curve method results in ŝE = 4.5. We gather four data
records of 100 second length while the system behaves
normal as well as four records with the same durations for
each fault. The faults are induced during normal behavior
at specific point in time and lasts to the end of the record.
Applying the method parametrized with the threshold ŝE =
4.5 on the records of normal behavior yields a False positive
rate of 6, 51%.

The first three cases were detected successfully. For the
first fault reporting after detection was done with a True
Positive rate(recall) of 1.00, and a precision value of 0.92.
For the second fault the method yields a recall value of

0.99 and precision value of 0.94. In the case of the re-
source starvation fault the reached recall value was 0.98 and
measuring the precision resulted in 0.93. All these values
indicate a good performance for the first three faults. In
the case of the asynchronous communication the fault is
detected only sporadically. The reason behind this effect is
that the asynchronicity becomes only apparent if components
are effected that synchronize each other via the monitored
communication channels which leads to discontinuous de-
tection of this failure. This argumentation is supported by an
a-posteriori analysis of the recorded data. This shows that
during the detection of the fault an expected hypothesis about
a recognized person is missing in the recorded data. This
again can be ascribed to the asynchronous communication
as too old hypotheses are discarded.

IV. CONCLUSION AND OUTLOOK

In this paper we introcude a novel method for fault
detection in robotic systems learned on the basis of data
interchange in the system. The method is largely independent
from the specific system and shows promising results even
for transient malfunctions in system behavior. Furthermore, it
provides the basis for the developement of means to increase
the dependability of autonomous robotic systems.

Next steps involve futher evaluation of the fault detection
method in the remaining robocup tasks, comparison to the
baseline methods and further a-posteriori analysis to demon-
strate the practice of such an analysis in the developement
cycle.
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