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Abstract. This paper describes an architecture that can enhance a
robot with the capability of performing automatic speech recognition
even while the robot is moving. The system consists of three blocks:
(1) a multi-channel noise reduction block comprising consequent stages
of microphone-array-based sound localization, geometric source separa-
tion and post filtering, (2) a single-channel template subtraction block
and (3) a speech recognition block. In this work, we specifically investi-
gate a missing feature theory based automatic speech recognition (MFT-
ASR) approach in block (3), that makes use of spectrotemporal elements
that are derived from (1) and (2) to measure the reliability of the au-
dio features and to generate masks that filter unreliable speech features.
We evaluate the proposed technique on a robot using word error rates.
Furthermore, we present a detailed analysis of recognition accuracy to
determine optimal parameters. Proposed MFT-ASR implementation at-
tains significantly higher recognition performance compared to the per-
formances of both single and multi-channel noise reduction methods.

Key words: Ego noise, noise reduction, robot audition, speech recog-
nition, missing feature theory, microphone array

1 Introduction

Robots with microphones (such as NEC Papero [1]) are usually equipped with
adaptive noise cancellation, beamforming and acoustic echo cancellation meth-
ods for robust speech recognition in noisy environments. However, the robot’s
own noise, so called ego noise, can also cause mis-recognition of spoken words
during an interaction with a human, even if there are no other interfering sound
sources in the environment. One special type of ego noise, which is observed
while the robot is performing an action using its motors, is called ego-motion

noise. This type of interference is more difficult to cope with compared to back-
ground noise or static fan-noise of the robot, because it is non-stationary and, to
a certain extent, similar to the signals of interest. Therefore, conventional noise
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reduction methods like spectral subtraction do not work well in practice. Several
researchers tackled ego-motion noise problem by predicting and subtracting ego-
motion noise using templates recorded in advance [2], [3]. Ince et al. [4] proposed
to use a parameterized template subtraction which incorporates tunable parame-
ters to deal with variations in the ego-motion noise. However, all those methods
suffer from the distorting effects of musical noise [5] that comes along with
nonlinear single-channel based noise reduction techniques and reduces the intel-
ligibility and quality of the audio signal. Besides, this method has the following
weakness: when applied together with a nonlinear stationary background noise
prediction technique, e.g. Minima Controlled Recursive Averaging (MCRA) [6],
in order to cope with the dynamically-changing environmental factors (e.g. sta-
tionary noise, reverberation), it creates a series of two consecutive nonlinear
noise reduction operations. These operations produce even more musical noise,
eventually causing damaged acoustic features and deteriorated recognition per-
formance of automatic speech recognition (ASR).
It was shown that unreliable speech features degrade recognition performance
severely [7]. Missing feature theory (MFT), which can be basically desribed as a
filtering operation applied to the missing or damaged acoustic features, has al-
ready found useful applications like recognition of speech corrupted by music and
several types of noise (refer to [7] for a comprehensive study ) or simultaneous
speech recognition of several speakers in the field of robot audition [8], [9], where
they based their models of mask generation on the disturbing effect of leakage
noise over speech caused by an imperfect source separation. In this work, we
incorporate MFT to solve the ego-motion noise problem of a robot. To estimate
the reliability of the features of speech, which is subject to residuals of motor
noise after template subtraction and to improve the performance of ASR, we
propose to use MFT with a model that is based on the ego-motion noise estima-
tions. To generate suitable masks, we propose to integrate also a multi-channel
framework that consists of sound source localization (SSL), sound source sepa-
ration (SSS), and speech enhancement (SE), of which the first two steps make
use of the directivity properties of motor noises to cancel them and thus pro-
vide additional information about the reliability assessment. In this respect, the
main contribution of our work will be the incorporation of an original missing
feaute mask (MFM) generation method based on the signals available from two
blocks (template subtraction & multi-channel noise reduction) that run in par-
allel. The mask relies on a measure of a frequency bin’s quality calculated from
the similarity of two totally different- yet complementary- approaches. Firstly, a
binary mask, that uses either 0 or 1 to estimate the reliability of each acoustic
feature, is suggested. We, later, enhance the proposed method further by using
a soft mask represented as continuous values between 0 and 1 that yields more
detailed information about the reliability. We demonstrate that the proposed
methods achieve a high noise elimination performance and thus ASR accuracy.
The rest of the paper is organized as follows: Section 2 describes the proposed
system and briefly summarizes the preprocessing-stages, namely SSL, SSS, SE
and template subtraction. Section 3 investigates speech recognition integration
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and computation of the missing feature masks in detail. Conducted experiments
and consecutive results are presented in Section 4. The last section gives a con-
clusion and future work.

2 System Overview

As sensors we use an array of multiple omnidirectional microphones mounted
around the head of the robot. The overall architecture of the proposed noise
reduction system is shown in Fig. 1. The first block of our processing chain, com-
posed of elements for performing SSL, extracts the location of the most dominant
sources in the environment. The estimated locations of the sources are used by
a linear separation algorithm called Geometric Source Separation (GSS) [8]. It
can be considered as a hybrid algorithm that exerts Blind Source Separation
(BSS) [10] and beamforming. The next stage after SSS is a speech enhancement
step called multichannel Post Filtering (PF). This module attenuates station-
ary noise, e.g. background noise, and non-stationary noise that arises because
of the leakage energy between the output channels of the previous separation
stage for each individual sound source. These three main modules constitute the
multi-channel noise reduction block [11], whereas the second block performs
template subtraction [4]. Altogether, both branches are responsible for the
audio features for speech recognition and spectrograms to be processed further
in the MFM generation stage. Finally, a new third block, MFT-based speech
recognition, designed to achieve a more robust ASR uses both the features and
spectrograms created in the pre-processing stages in order to extract the most
suitable features. This part will be discussed in Section 3 in detail.

2.1 Multi-channel Noise Reduction System [11]

In order to estimate the Directions of Arrival (DoA) of each sound source, we use
a popular adaptive beamforming algorithm called MUltiple Signal Classification
(MUSIC) [12]. It detects the DoA by performing eigenvalue decomposition on
the correlation matrix of the noisy signal, by separating subspaces of undesired
interfering sources and sound sources of interest, and finally by finding the peaks
occurring in the spatial spectrum. A consequent source tracker system performs
a temporal integration in a given time window.

Geometric Source Separation [10], later on extended to be an adaptive algo-
rithm that can process the input data incrementally [13], makes use of the loca-
tions of the sources explicitly. To estimate the separation matrix properly, GSS
introduces cost functions that must be minimized in an iterative way (see [13]
for details). Moreover, we use adaptive step-size control that provides fast con-
vergence of the separation matrix [14].

After the separation process, a multi-channel post filtering operation pro-
posed by Valin [13] is applied, which can cope with nonstationary interferences
as well as stationary noise. This module treats the transient components in the
spectrum as if they are caused by the leakage energies that may occasionally
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Fig. 1. Proposed noise cancellation system

arise due to poor separation performance. For this purpose, noise variances of
both stationary noise and source leakage are predicted. Whereas the former one
is computed using the MCRA [5] method, to estimate the latter the algorithm
proposed in [13] is used.

2.2 Single-channel Template Subtraction System [4]

During the motion of the robot, current position (θ) information from each
joint is gathered regularly in the template generation (database creation) phase.
Using the difference between consecutive motor position outputs, velocity (θ̇)
values are calculated, too. Considering that J joints are active, joint position
vectors with the size of 2J are generated. The resulting vector has the form
of F=[θ1, θ̇1, θ2, θ̇2 . . . , θJ , θ̇J ]. At the same time, motor noise is recorded and
the spectrum of the motor noise is calculated in parallel with motion element
acquisition. Both joint position vectors and spectra are continuously labeled
with time tags so that they can be synchronized. Finally, a large noise template
database that consists of short noise templates for desired joint configurations
is created. In the prediction phase a nearest neighbor search in the database is
conducted for the best matching template of motor noise for the current time
instance (frame at that moment) using the joint-status vectors. The templates
are used as weights inside the spectral subtraction routine.

3 MFT-based Automatic Speech Recognition System

Different strategies, which make use of a confidence-based weighting of the time-
frequency representation of audio signals, can enhance the quality of speech. As
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stated in [7], Missing Feature Theory is a very promising approach that basi-
cally applies a mask to decrease the contribution of unreliable parts of distorted
speech. By keeping the reliable parameters that are essential for speech recog-
nition, a substantial increase in recognition accuracy is achieved [8], [9]. In this
section, we will discuss the basic steps of such an ASR system and how this
approach can be adapted to fit to the ego-motion noise problem by presenting
a robust mask design method for estimating reliability of speech based on the
current motor noise.

3.1 Acoustic Feature Extraction

Acoustic features are extracted from the refined spectrum, which is the final
product of the noise reduction stage (See Fig. 1). Because we do not want to have
the distortions spreading to all coefficients of the cepstrum, we avoided the usage
of Mel-Frequency Cepstral Coefficients (MFCC) in contrast to conventional ASR
systems. Instead, we used the Mel-Scale Log Spectrum (MSLS), whose detailed
calculation method can be found in [15]. Moreover, linear regression of each
spectral coefficient is represented as a delta feature and it is used to enhance the
quality of acoustic features. A consequent stage of spectral mean normalization
improves noise robustness of MSLS features by subtracting the average of the
features in the last 5 sec. from the current features.

3.2 MFM Generation

The reliability of features is computed for each frame and for each mel-frequency
band. If continuous values between 0 and 1 constitute the mask, it is called a
soft mask. On the other hand, a hard mask contains only discrete values, either
0 or 1. In this paper, we used both methods to assess their performance for this
particular type of ego-noise problem. We start by explaining some underlying
findings about the ego-motion noise suppression capabilities of the preprocessing
stages of our proposed system in the next two paragraphs as a motivation. Then,
we show how to derive the masks later in detail.

GSS lacks the ability to catch motor noise originating from the same direction
of the speaker and suppress it, because the noise is considered as part of the
speech. Moreover, when the position of the noise source is not detected precisely,
GSS cannot separate the sound in the spatial domain. As a consequence, motor
noise can be spread to the separated sound sources in small portions. However,
multi-channel noise suppression systems work very well for weaker motion noises
like arm or leg motions compared to head motion noise, as we found out in
our experiments [11]. Additionally, it is optimally designed for ”simultaneous
multiple speakers” scenarios with background noise and demonstrates a very
good performance when no motor noise is present.

On the other hand, template subtraction does not make any assumption
about the directivity or diffuseness of the sound source and can match a pre-
recorded template of the motor noise at any moment. The drawback of this
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approach is, however, due to the non-stationarity, the characteristics of predicted
and actual noise can differ to a certain extent.

Fig. 2. Spectrogram of (a) clean speech, (b) motor noise + background noise, (c) noisy
speech (a+b), (d) background noise reduction (MCRA) applied to c, (e) GSS applied
to c, (f) extracted template for template subtraction, (g) PF applied to e, (h)template
subtraction applied to d using f, (i) hard mask generated using g and h, (j) hard mask
generated using g and h. In (a)-(h), y-axis represents frequency bins between 0 and
8kHz, in (i)-(j) 13 static mel-features are represented in y-axis. x-axis represents in all
panels the index of frames.

As we have stated, the strengths and weaknesses of both approaches are
distinct and thus can be used in a complementary fashion. A speech feature is
considered unreliable, if the difference between the energies of refined speech
signals generated by multi-channel and single-channel noise reduction systems
is above a threshold T . Computation of the masks is performed for each frame,
k, and for each frequency band, f . First, a continuous mask is calculated like
following:

m(f, k)=
|Ŝm(f, k) − Ŝs(f, k)|

Ŝm(f, k) + Ŝs(f, k)
, (1)

where Ŝm(f, k) and Ŝs(f, k) are the estimated energy of the refined speech
signals, which were subject to multi-channel noise reduction and resp. single-
channel template subtraction. Both signals are computed using a mel-scale fil-
terbank. The numerator term represents the deviation of the two outputs, which
is a measure of the uncertainty or unreliability. The denominator term, however,
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is a scaling constant and is given by the average of the two estimated signals.
(To simplify the equation, we remove the scalar value in the denominator, so
that m(f, k) can take on values between 0 and 1.) Depending on the type of the
mask (hard or soft) used in the MFT-ASR, Eq.(2) or Eq.(3) is selected.

1. For hard (binary) mask:

M(f, k)=

{

1, if m(f, k) < T

0, if m(f, k) ≥ T
. (2)

2. For soft mask [9]:

M(f, k)=







1

1 + exp(−σ(m(f, k) − T ))
, if m(f, k) < T

0, if m(f, k) ≥ T

, (3)

where σ is the tilt value of a sigmoid weighting function.

Fig. 2 gives a general overview about the effect of each processing stage until the
masks are generated. In Fig. 2c), we see a tightly overlapped speech (Fig. 2a))
and motor noise (Fig. 2b)) mixture with an SNR of -5dB. GSS+PF in Fig. 2g)
reduces only a minor part of the motor noise while sustaining the speech. On the
other hand, template subtraction (Fig. 2h)) reduces the motor noise aggresively
while damaging some parts of the speech, where some features of the speech get
distorted. The hard mask (Fig. 2i)) gives us a filter eliminating unreliable and
still noisy parts of the speech (T=0.5). The soft mask (Fig. 2j)), in addition,
provides more detailed information about the reliability degree of each feature
so that the noise-free features are weighted more than the noise-containing parts
in the MFT-ASR ({T, σ}={0.5, 5}). Furthermore, we observe that weights in the
first 50 frames contaminated with noise were given either zero or low weights in
the mask. Note that speech features are located between the [50 110]-th frames.

3.3 MFT-ASR

Missing Feature Theory Based Automatic Speech Recognition (MFT-ASR) is a
Hidden Markov Model based speech recognition technique [7]. Suppose M(i) is
the MFM vector that is generated as in Sec. 3.2 for the i-th acoustic feature, the
output probability can be given as follows:

bj(x)=

L
∑

l=1

P (l|Sj) exp

{

I
∑

i=1

M(i) log f(x(i)|l, Sj)

}

, (4)

where bj(x) is the output probability of j-th state, x(i) is denoted as an acoustic
feature vector, I represents the size of the acoustic feature vector, P (·) is the
probability operator and Sj is the j-th state. Density in each state Sj is mod-
eled using mixtures of L Gaussians with diagonal-only covariance. Please note
that when all mask values are set to 1, Eq.(4) becomes the same as the output
probability calculation of a conventional ASR.
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4 Results

In this section we present comparative results for pre-processing based ASR,
hard and soft mask based ASR, and the influence of selected parameters for
template subtraction and MFT-ASR on the performance. To evaluate the per-
formance of the proposed techniques, we use Honda’s humanoid robot ASIMO.
The robot is equipped with an 8-ch microphone array on top of its head. Of the
robots many degrees of freedom, we use only 2 motors for head motion, and 4
motors for the motion of each arm with altogether 10 degrees of freedom. We
recorded random motions performed by the given set of limbs by storing a train-
ing database of 30 minutes and a test database 10 minutes long. Because the
noise recordings are comparatively longer than the utterances used in the iso-
lated word recognition, we selected those segments, in which all joints contribute
to the noise. The noise signal consisting of ego noise (incl. ego-motion noise) and
environmental background noise is mixed with clean speech utterances used in
a typical human-robot interaction dialog. This Japanese word dataset includes
236 words for 4 female and 4 male speakers. Acoustic models are trained with
Japanese Newspaper Article Sentences (JNAS) corpus, 60-hour of speech data
spoken by 306 male and female speakers, hence the speech recognition is a word-
open test. We used 13 static MSLS, 13 delta MSLS and 1 delta power. Speech
recognition results are given as average WER of instances from the test set. In
’isolated word recognition’ tasks, WER is an evaluation criteria alternative to
Word Correct Rate (WCR), such that WER = 100% − WCR holds. The posi-
tion of the speaker is kept fixed at 0◦ throughout the experiments. The recording
environment is a room with the dimensions of 4.0m×7.0m×3.0m with a rever-
beration time (RT20) of 0.2s. Although the position of the original sound source
was given in advance to avoid the mis-recognition due to localization errors, we
did not fix the ego-noise direction of the robot. In this experiment, the SSL
module predicted it automatically.

Fig. 3a) illustrates the ASR accuracies for all methods under consideration.
The results are evaluated using an acoustic model trained with MCRA-applied
speech data, except GSS+PF method for which we used a matched acoustic
model for that condition. We evaluated MFMs for three heuristically selected
threshold parameters T={0.25, 0.5, 0.75}. In the preliminary tests we found out
that the feature set that is derived at the output of template subtraction achieves
higher accuracy in a range of 10 to 20% in WER compared to the features after
multi-channel noise reduction. So, we concluded that the former feature type
is more suitable to be used in an MFT-ASR. Single-channel results are used
as a baseline. MFM-ASR outperforms both mere single (TS) & multi-channel
(GSS+PF) noise reduction methods. In the case of T<0.5, indicating a mask
model based on a reliability estimation exerting sharp differentiation of both
evidences of noise reduced spectra was unable to improve the ASR, because es-
sential features belonging to the speech are thrown away, thus WERs deteriorate.
On the contrary, higher thresholds improved the outcomes significantly.

In the second part of our experiments, we compared the results of hard
masking with optimal threshold (T=0.75) obtained in the first part of the ex-
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Fig. 3. Speech recognition performance for a) different processing stages b) soft mask
- hard mask comparison for given parameters.

periments, to the results of soft masking for a parameter set of σ={5, 10, 50}.
All three cases with the given parameters yielded more or less the same WER
improvements, however, outside this range the results become very sensible to
σ and worsen eventually. Therefore, we will only present the results for σ=5.
Besides, we inspected the effect of decreasing the aggresiveness level of the tem-
plate subtraction, by leaving an artificial floor on the bottom of the spectra. So
far, the parameter called spectral floor (β, where 0 ≤ β ≤ 1) [4] was set to zero.
We assess the results for β={0, 0.2, 0.5} in the framework of soft-hard mask com-
parison in Fig. 3b) by giving the WER improvement relative to the hard mask
results obtained for β=0 and T=0.75. By increasing β, we observed that the
WERs improve considerably. That means that a tradeoff between ”noise reduc-
tion level” and ”signal distortion” contributed to the mask quality substantially.
Furthermore, soft masks reduce the WERs even further by up to 8% compared
to hard masks. This reduction is attained due to the improved probabilistic rep-
resentation of the reliability of each feature. Optimal results are obtained when
we use a soft mask with the following parameter set: {T, σ, β}={0.75, 5, 0.5}.

5 Summary and Outlook

In this paper we presented a method for eliminating ego-motion noise from
speech signals. The system we proposed to utilize (1) a multi-channel noise
reduction stage, (2) a template subtraction scheme, and finally (3) a masking
stage to improve speech recognition accuracy. We used an MFM model, which is
based on the similarity measurements of ego-motion noise estimations gathered
from (1) and (2). We validated the applicability of our approach by evaluating
its performance for different settings for both hard and soft MFM. Our method
demonstrated significant WER improvement for hard masking (45% relative to
single-channel recognition) and soft masking (up to 53%).
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In future work, we plan to find an optimized parameter set for template
subtraction and especially for MFM-ASR block in a wider range. The next step is
an evaluation in real time and a real situation, which involves speech recognition
of several speakers simultaneously while the robot is performing some motion.
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